aboutsummaryrefslogtreecommitdiffhomepage
path: root/src/gpu/batches/GrTessellatingPathRenderer.cpp
blob: 8185a85e47e4174d36395d393a23e634da68c644 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
/*
 * Copyright 2015 Google Inc.
 *
 * Use of this source code is governed by a BSD-style license that can be
 * found in the LICENSE file.
 */

#include "GrTessellatingPathRenderer.h"

#include "GrBatchFlushState.h"
#include "GrBatchTest.h"
#include "GrDefaultGeoProcFactory.h"
#include "GrMesh.h"
#include "GrPathUtils.h"
#include "GrResourceCache.h"
#include "GrResourceProvider.h"
#include "GrTessellator.h"
#include "SkGeometry.h"

#include "batches/GrVertexBatch.h"

#include <stdio.h>

/*
 * This path renderer tessellates the path into triangles using GrTessellator, uploads the triangles
 * to a vertex buffer, and renders them with a single draw call. It does not currently do
 * antialiasing, so it must be used in conjunction with multisampling.
 */
namespace {

struct TessInfo {
    SkScalar  fTolerance;
    int       fCount;
};

// When the SkPathRef genID changes, invalidate a corresponding GrResource described by key.
class PathInvalidator : public SkPathRef::GenIDChangeListener {
public:
    explicit PathInvalidator(const GrUniqueKey& key) : fMsg(key) {}
private:
    GrUniqueKeyInvalidatedMessage fMsg;

    void onChange() override {
        SkMessageBus<GrUniqueKeyInvalidatedMessage>::Post(fMsg);
    }
};

bool cache_match(GrBuffer* vertexBuffer, SkScalar tol, int* actualCount) {
    if (!vertexBuffer) {
        return false;
    }
    const SkData* data = vertexBuffer->getUniqueKey().getCustomData();
    SkASSERT(data);
    const TessInfo* info = static_cast<const TessInfo*>(data->data());
    if (info->fTolerance == 0 || info->fTolerance < 3.0f * tol) {
        *actualCount = info->fCount;
        return true;
    }
    return false;
}

class StaticVertexAllocator : public GrTessellator::VertexAllocator {
public:
    StaticVertexAllocator(GrResourceProvider* resourceProvider, bool canMapVB)
      : fResourceProvider(resourceProvider)
      , fCanMapVB(canMapVB)
      , fVertices(nullptr) {
    }
    SkPoint* lock(int vertexCount) override {
        size_t size = vertexCount * sizeof(SkPoint);
        fVertexBuffer.reset(fResourceProvider->createBuffer(
            kVertex_GrBufferType, size, kStatic_GrAccessPattern, 0));
        if (!fVertexBuffer.get()) {
            return nullptr;
        }
        if (fCanMapVB) {
            fVertices = static_cast<SkPoint*>(fVertexBuffer->map());
        } else {
            fVertices = new SkPoint[vertexCount];
        }
        return fVertices;
    }
    void unlock(int actualCount) override {
        if (fCanMapVB) {
            fVertexBuffer->unmap();
        } else {
            fVertexBuffer->updateData(fVertices, actualCount * sizeof(SkPoint));
            delete[] fVertices;
        }
        fVertices = nullptr;
    }
    GrBuffer* vertexBuffer() { return fVertexBuffer.get(); }
private:
    SkAutoTUnref<GrBuffer> fVertexBuffer;
    GrResourceProvider* fResourceProvider;
    bool fCanMapVB;
    SkPoint* fVertices;
};

}  // namespace

GrTessellatingPathRenderer::GrTessellatingPathRenderer() {
}

bool GrTessellatingPathRenderer::onCanDrawPath(const CanDrawPathArgs& args) const {
    // This path renderer can draw all fill styles, all stroke styles except hairlines, but does
    // not do antialiasing. It can do convex and concave paths, but we'll leave the convex ones to
    // simpler algorithms.
    return !IsStrokeHairlineOrEquivalent(*args.fStroke, *args.fViewMatrix, nullptr) &&
           !args.fAntiAlias && !args.fPath->isConvex();
}

class TessellatingPathBatch : public GrVertexBatch {
public:
    DEFINE_BATCH_CLASS_ID

    static GrDrawBatch* Create(const GrColor& color,
                               const SkPath& path,
                               const GrStrokeInfo& stroke,
                               const SkMatrix& viewMatrix,
                               SkRect clipBounds) {
        return new TessellatingPathBatch(color, path, stroke, viewMatrix, clipBounds);
    }

    const char* name() const override { return "TessellatingPathBatch"; }

    void computePipelineOptimizations(GrInitInvariantOutput* color,
                                      GrInitInvariantOutput* coverage,
                                      GrBatchToXPOverrides* overrides) const override {
        color->setKnownFourComponents(fColor);
        coverage->setUnknownSingleComponent();
    }

private:
    void initBatchTracker(const GrXPOverridesForBatch& overrides) override {
        // Handle any color overrides
        if (!overrides.readsColor()) {
            fColor = GrColor_ILLEGAL;
        }
        overrides.getOverrideColorIfSet(&fColor);
        fPipelineInfo = overrides;
    }

    void draw(Target* target, const GrGeometryProcessor* gp) const {
        // construct a cache key from the path's genID and the view matrix
        static const GrUniqueKey::Domain kDomain = GrUniqueKey::GenerateDomain();
        GrUniqueKey key;
        int clipBoundsSize32 =
            fPath.isInverseFillType() ? sizeof(fClipBounds) / sizeof(uint32_t) : 0;
        int strokeDataSize32 = fStroke.computeUniqueKeyFragmentData32Cnt();
        GrUniqueKey::Builder builder(&key, kDomain, 2 + clipBoundsSize32 + strokeDataSize32);
        builder[0] = fPath.getGenerationID();
        builder[1] = fPath.getFillType();
        // For inverse fills, the tessellation is dependent on clip bounds.
        if (fPath.isInverseFillType()) {
            memcpy(&builder[2], &fClipBounds, sizeof(fClipBounds));
        }
        fStroke.asUniqueKeyFragment(&builder[2 + clipBoundsSize32]);
        builder.finish();
        GrResourceProvider* rp = target->resourceProvider();
        SkAutoTUnref<GrBuffer> cachedVertexBuffer(rp->findAndRefTByUniqueKey<GrBuffer>(key));
        int actualCount;
        SkScalar screenSpaceTol = GrPathUtils::kDefaultTolerance;
        SkScalar tol = GrPathUtils::scaleToleranceToSrc(
            screenSpaceTol, fViewMatrix, fPath.getBounds());
        if (cache_match(cachedVertexBuffer.get(), tol, &actualCount)) {
            this->drawVertices(target, gp, cachedVertexBuffer.get(), 0, actualCount);
            return;
        }

        SkPath path;
        GrStrokeInfo stroke(fStroke);
        if (stroke.isDashed()) {
            if (!stroke.applyDashToPath(&path, &stroke, fPath)) {
                return;
            }
        } else {
            path = fPath;
        }
        if (!stroke.isFillStyle()) {
            stroke.setResScale(SkScalarAbs(fViewMatrix.getMaxScale()));
            if (!stroke.applyToPath(&path, path)) {
                return;
            }
            stroke.setFillStyle();
        }
        bool isLinear;
        bool canMapVB = GrCaps::kNone_MapFlags != target->caps().mapBufferFlags();
        StaticVertexAllocator allocator(rp, canMapVB);
        int count = GrTessellator::PathToTriangles(path, tol, fClipBounds, &allocator, &isLinear);
        if (count == 0) {
            return;
        }
        this->drawVertices(target, gp, allocator.vertexBuffer(), 0, count);
        if (!fPath.isVolatile()) {
            TessInfo info;
            info.fTolerance = isLinear ? 0 : tol;
            info.fCount = count;
            SkAutoTUnref<SkData> data(SkData::NewWithCopy(&info, sizeof(info)));
            key.setCustomData(data.get());
            rp->assignUniqueKeyToResource(key, allocator.vertexBuffer());
            SkPathPriv::AddGenIDChangeListener(fPath, new PathInvalidator(key));
        }
    }

    void onPrepareDraws(Target* target) const override {
        SkAutoTUnref<const GrGeometryProcessor> gp;
        {
            using namespace GrDefaultGeoProcFactory;

            Color color(fColor);
            LocalCoords localCoords(fPipelineInfo.readsLocalCoords() ?
                                    LocalCoords::kUsePosition_Type :
                                    LocalCoords::kUnused_Type);
            Coverage::Type coverageType;
            if (fPipelineInfo.readsCoverage()) {
                coverageType = Coverage::kSolid_Type;
            } else {
                coverageType = Coverage::kNone_Type;
            }
            Coverage coverage(coverageType);
            gp.reset(GrDefaultGeoProcFactory::Create(color, coverage, localCoords,
                                                     fViewMatrix));
        }
        this->draw(target, gp.get());
    }

    void drawVertices(Target* target, const GrGeometryProcessor* gp, const GrBuffer* vb,
                      int firstVertex, int count) const {
        SkASSERT(gp->getVertexStride() == sizeof(SkPoint));

        GrPrimitiveType primitiveType = TESSELLATOR_WIREFRAME ? kLines_GrPrimitiveType
                                                              : kTriangles_GrPrimitiveType;
        target->initDraw(gp);

        GrMesh mesh;
        mesh.init(primitiveType, vb, firstVertex, count);
        target->draw(mesh);
    }

    bool onCombineIfPossible(GrBatch*, const GrCaps&) override { return false; }

    TessellatingPathBatch(const GrColor& color,
                          const SkPath& path,
                          const GrStrokeInfo& stroke,
                          const SkMatrix& viewMatrix,
                          const SkRect& clipBounds)
      : INHERITED(ClassID())
      , fColor(color)
      , fPath(path)
      , fStroke(stroke)
      , fViewMatrix(viewMatrix) {
        const SkRect& pathBounds = path.getBounds();
        fClipBounds = clipBounds;
        // Because the clip bounds are used to add a contour for inverse fills, they must also
        // include the path bounds.
        fClipBounds.join(pathBounds);
        if (path.isInverseFillType()) {
            fBounds = fClipBounds;
        } else {
            fBounds = path.getBounds();
        }
        if (!stroke.isFillStyle()) {
            SkScalar radius = SkScalarHalf(stroke.getWidth());
            if (stroke.getJoin() == SkPaint::kMiter_Join) {
                SkScalar scale = stroke.getMiter();
                if (scale > SK_Scalar1) {
                    radius = SkScalarMul(radius, scale);
                }
            }
            fBounds.outset(radius, radius);
        }
        viewMatrix.mapRect(&fBounds);
    }

    GrColor                 fColor;
    SkPath                  fPath;
    GrStrokeInfo            fStroke;
    SkMatrix                fViewMatrix;
    SkRect                  fClipBounds; // in source space
    GrXPOverridesForBatch   fPipelineInfo;

    typedef GrVertexBatch INHERITED;
};

bool GrTessellatingPathRenderer::onDrawPath(const DrawPathArgs& args) {
    GR_AUDIT_TRAIL_AUTO_FRAME(args.fTarget->getAuditTrail(),
                              "GrTessellatingPathRenderer::onDrawPath");
    SkASSERT(!args.fAntiAlias);
    const GrRenderTarget* rt = args.fPipelineBuilder->getRenderTarget();
    if (nullptr == rt) {
        return false;
    }

    SkIRect clipBoundsI;
    args.fPipelineBuilder->clip().getConservativeBounds(rt->width(), rt->height(), &clipBoundsI);
    SkRect clipBounds = SkRect::Make(clipBoundsI);
    SkMatrix vmi;
    if (!args.fViewMatrix->invert(&vmi)) {
        return false;
    }
    vmi.mapRect(&clipBounds);
    SkAutoTUnref<GrDrawBatch> batch(TessellatingPathBatch::Create(args.fColor, *args.fPath,
                                                                  *args.fStroke, *args.fViewMatrix,
                                                                  clipBounds));
    args.fTarget->drawBatch(*args.fPipelineBuilder, batch);

    return true;
}

///////////////////////////////////////////////////////////////////////////////////////////////////

#ifdef GR_TEST_UTILS

DRAW_BATCH_TEST_DEFINE(TesselatingPathBatch) {
    GrColor color = GrRandomColor(random);
    SkMatrix viewMatrix = GrTest::TestMatrixInvertible(random);
    SkPath path = GrTest::TestPath(random);
    SkRect clipBounds = GrTest::TestRect(random);
    SkMatrix vmi;
    bool result = viewMatrix.invert(&vmi);
    if (!result) {
        SkFAIL("Cannot invert matrix\n");
    }
    vmi.mapRect(&clipBounds);
    GrStrokeInfo strokeInfo = GrTest::TestStrokeInfo(random);
    return TessellatingPathBatch::Create(color, path, strokeInfo, viewMatrix, clipBounds);
}

#endif