aboutsummaryrefslogtreecommitdiffhomepage
path: root/src/gpu/SkGr.cpp
blob: 9059f55c7af4b4630c53a85c2c9885f6dd15d8a0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
/*
 * Copyright 2010 Google Inc.
 *
 * Use of this source code is governed by a BSD-style license that can be
 * found in the LICENSE file.
 */

#include "SkGr.h"

#include "GrDrawTargetCaps.h"
#include "GrGpu.h"
#include "GrXferProcessor.h"
#include "SkColorFilter.h"
#include "SkConfig8888.h"
#include "SkData.h"
#include "SkMessageBus.h"
#include "SkPixelRef.h"
#include "SkTextureCompressor.h"
#include "effects/GrDitherEffect.h"
#include "effects/GrPorterDuffXferProcessor.h"
#include "effects/GrYUVtoRGBEffect.h"

#ifndef SK_IGNORE_ETC1_SUPPORT
#  include "ktx.h"
#  include "etc1.h"
#endif

/*  Fill out buffer with the compressed format Ganesh expects from a colortable
 based bitmap. [palette (colortable) + indices].

 At the moment Ganesh only supports 8bit version. If Ganesh allowed we others
 we could detect that the colortable.count is <= 16, and then repack the
 indices as nibbles to save RAM, but it would take more time (i.e. a lot
 slower than memcpy), so skipping that for now.

 Ganesh wants a full 256 palette entry, even though Skia's ctable is only as big
 as the colortable.count says it is.
 */
static void build_index8_data(void* buffer, const SkBitmap& bitmap) {
    SkASSERT(kIndex_8_SkColorType == bitmap.colorType());

    SkAutoLockPixels alp(bitmap);
    if (!bitmap.readyToDraw()) {
        SkDEBUGFAIL("bitmap not ready to draw!");
        return;
    }

    SkColorTable* ctable = bitmap.getColorTable();
    char* dst = (char*)buffer;

    const int count = ctable->count();

    SkDstPixelInfo dstPI;
    dstPI.fColorType = kRGBA_8888_SkColorType;
    dstPI.fAlphaType = kPremul_SkAlphaType;
    dstPI.fPixels = buffer;
    dstPI.fRowBytes = count * sizeof(SkPMColor);

    SkSrcPixelInfo srcPI;
    srcPI.fColorType = kN32_SkColorType;
    srcPI.fAlphaType = kPremul_SkAlphaType;
    srcPI.fPixels = ctable->readColors();
    srcPI.fRowBytes = count * sizeof(SkPMColor);

    srcPI.convertPixelsTo(&dstPI, count, 1);

    // always skip a full 256 number of entries, even if we memcpy'd fewer
    dst += 256 * sizeof(GrColor);

    if ((unsigned)bitmap.width() == bitmap.rowBytes()) {
        memcpy(dst, bitmap.getPixels(), bitmap.getSize());
    } else {
        // need to trim off the extra bytes per row
        size_t width = bitmap.width();
        size_t rowBytes = bitmap.rowBytes();
        const char* src = (const char*)bitmap.getPixels();
        for (int y = 0; y < bitmap.height(); y++) {
            memcpy(dst, src, width);
            src += rowBytes;
            dst += width;
        }
    }
}

////////////////////////////////////////////////////////////////////////////////

static void generate_bitmap_cache_id(const SkBitmap& bitmap, GrCacheID* id) {
    // Our id includes the offset, width, and height so that bitmaps created by extractSubset()
    // are unique.
    uint32_t genID = bitmap.getGenerationID();
    SkIPoint origin = bitmap.pixelRefOrigin();
    int16_t width = SkToS16(bitmap.width());
    int16_t height = SkToS16(bitmap.height());

    GrCacheID::Key key;
    memcpy(key.fData8 +  0, &genID,     4);
    memcpy(key.fData8 +  4, &origin.fX, 4);
    memcpy(key.fData8 +  8, &origin.fY, 4);
    memcpy(key.fData8 + 12, &width,     2);
    memcpy(key.fData8 + 14, &height,    2);
    static const size_t kKeyDataSize = 16;
    memset(key.fData8 + kKeyDataSize, 0, sizeof(key) - kKeyDataSize);
    GR_STATIC_ASSERT(sizeof(key) >= kKeyDataSize);
    static const GrCacheID::Domain gBitmapTextureDomain = GrCacheID::GenerateDomain();
    id->reset(gBitmapTextureDomain, key);
}

static void generate_bitmap_texture_desc(const SkBitmap& bitmap, GrSurfaceDesc* desc) {
    desc->fFlags = kNone_GrSurfaceFlags;
    desc->fWidth = bitmap.width();
    desc->fHeight = bitmap.height();
    desc->fConfig = SkImageInfo2GrPixelConfig(bitmap.info());
    desc->fSampleCnt = 0;
}

namespace {

// When the SkPixelRef genID changes, invalidate a corresponding GrResource described by key.
class GrResourceInvalidator : public SkPixelRef::GenIDChangeListener {
public:
    explicit GrResourceInvalidator(GrResourceKey key) : fKey(key) {}
private:
    GrResourceKey fKey;

    virtual void onChange() SK_OVERRIDE {
        const GrResourceInvalidatedMessage message = { fKey };
        SkMessageBus<GrResourceInvalidatedMessage>::Post(message);
    }
};

}  // namespace

static void add_genID_listener(GrResourceKey key, SkPixelRef* pixelRef) {
    SkASSERT(pixelRef);
    pixelRef->addGenIDChangeListener(SkNEW_ARGS(GrResourceInvalidator, (key)));
}

static GrTexture* sk_gr_allocate_texture(GrContext* ctx,
                                         bool cache,
                                         const GrTextureParams* params,
                                         const SkBitmap& bm,
                                         GrSurfaceDesc desc,
                                         const void* pixels,
                                         size_t rowBytes) {
    GrTexture* result;
    if (cache) {
        // This texture is likely to be used again so leave it in the cache
        GrCacheID cacheID;
        generate_bitmap_cache_id(bm, &cacheID);

        GrResourceKey key;
        result = ctx->createTexture(params, desc, cacheID, pixels, rowBytes, &key);
        if (result) {
            add_genID_listener(key, bm.pixelRef());
        }
   } else {
        // This texture is unlikely to be used again (in its present form) so
        // just use a scratch texture. This will remove the texture from the
        // cache so no one else can find it. Additionally, once unlocked, the
        // scratch texture will go to the end of the list for purging so will
        // likely be available for this volatile bitmap the next time around.
        result = ctx->refScratchTexture(desc, GrContext::kExact_ScratchTexMatch);
        if (pixels) {
            result->writePixels(0, 0, bm.width(), bm.height(), desc.fConfig, pixels, rowBytes);
        }
    }
    return result;
}

#ifndef SK_IGNORE_ETC1_SUPPORT
static GrTexture *load_etc1_texture(GrContext* ctx, bool cache,
                                    const GrTextureParams* params,
                                    const SkBitmap &bm, GrSurfaceDesc desc) {
    SkAutoTUnref<SkData> data(bm.pixelRef()->refEncodedData());

    // Is this even encoded data?
    if (NULL == data) {
        return NULL;
    }

    // Is this a valid PKM encoded data?
    const uint8_t *bytes = data->bytes();
    if (etc1_pkm_is_valid(bytes)) {
        uint32_t encodedWidth = etc1_pkm_get_width(bytes);
        uint32_t encodedHeight = etc1_pkm_get_height(bytes);

        // Does the data match the dimensions of the bitmap? If not,
        // then we don't know how to scale the image to match it...
        if (encodedWidth != static_cast<uint32_t>(bm.width()) ||
            encodedHeight != static_cast<uint32_t>(bm.height())) {
            return NULL;
        }

        // Everything seems good... skip ahead to the data.
        bytes += ETC_PKM_HEADER_SIZE;
        desc.fConfig = kETC1_GrPixelConfig;
    } else if (SkKTXFile::is_ktx(bytes)) {
        SkKTXFile ktx(data);

        // Is it actually an ETC1 texture?
        if (!ktx.isCompressedFormat(SkTextureCompressor::kETC1_Format)) {
            return NULL;
        }

        // Does the data match the dimensions of the bitmap? If not,
        // then we don't know how to scale the image to match it...
        if (ktx.width() != bm.width() || ktx.height() != bm.height()) {
            return NULL;
        }

        bytes = ktx.pixelData();
        desc.fConfig = kETC1_GrPixelConfig;
    } else {
        return NULL;
    }

    return sk_gr_allocate_texture(ctx, cache, params, bm, desc, bytes, 0);
}
#endif   // SK_IGNORE_ETC1_SUPPORT

static GrTexture *load_yuv_texture(GrContext* ctx, bool cache, const GrTextureParams* params,
                                   const SkBitmap& bm, const GrSurfaceDesc& desc) {
    // Subsets are not supported, the whole pixelRef is loaded when using YUV decoding
    if ((bm.pixelRef()->info().width()  != bm.info().width()) ||
        (bm.pixelRef()->info().height() != bm.info().height())) {
        return NULL;
    }

    SkPixelRef* pixelRef = bm.pixelRef();
    SkISize yuvSizes[3];
    if ((NULL == pixelRef) || !pixelRef->getYUV8Planes(yuvSizes, NULL, NULL, NULL)) {
        return NULL;
    }

    // Allocate the memory for YUV
    size_t totalSize(0);
    size_t sizes[3], rowBytes[3];
    for (int i = 0; i < 3; ++i) {
        rowBytes[i] = yuvSizes[i].fWidth;
        totalSize  += sizes[i] = rowBytes[i] * yuvSizes[i].fHeight;
    }
    SkAutoMalloc storage(totalSize);
    void* planes[3];
    planes[0] = storage.get();
    planes[1] = (uint8_t*)planes[0] + sizes[0];
    planes[2] = (uint8_t*)planes[1] + sizes[1];

    SkYUVColorSpace colorSpace;

    // Get the YUV planes
    if (!pixelRef->getYUV8Planes(yuvSizes, planes, rowBytes, &colorSpace)) {
        return NULL;
    }

    GrSurfaceDesc yuvDesc;
    yuvDesc.fConfig = kAlpha_8_GrPixelConfig;
    SkAutoTUnref<GrTexture> yuvTextures[3];
    for (int i = 0; i < 3; ++i) {
        yuvDesc.fWidth  = yuvSizes[i].fWidth;
        yuvDesc.fHeight = yuvSizes[i].fHeight;
        yuvTextures[i].reset(
            ctx->refScratchTexture(yuvDesc, GrContext::kApprox_ScratchTexMatch));
        if (!yuvTextures[i] ||
            !yuvTextures[i]->writePixels(0, 0, yuvDesc.fWidth, yuvDesc.fHeight,
                                         yuvDesc.fConfig, planes[i], rowBytes[i])) {
            return NULL;
        }
    }

    GrSurfaceDesc rtDesc = desc;
    rtDesc.fFlags = rtDesc.fFlags |
                    kRenderTarget_GrSurfaceFlag |
                    kNoStencil_GrSurfaceFlag;

    GrTexture* result = sk_gr_allocate_texture(ctx, cache, params, bm, rtDesc, NULL, 0);

    GrRenderTarget* renderTarget = result ? result->asRenderTarget() : NULL;
    if (renderTarget) {
        SkAutoTUnref<GrFragmentProcessor> yuvToRgbProcessor(
            GrYUVtoRGBEffect::Create(yuvTextures[0], yuvTextures[1], yuvTextures[2], colorSpace));
        GrPaint paint;
        paint.addColorProcessor(yuvToRgbProcessor);
        SkRect r = SkRect::MakeWH(SkIntToScalar(yuvSizes[0].fWidth),
                                  SkIntToScalar(yuvSizes[0].fHeight));
        GrContext::AutoRenderTarget autoRT(ctx, renderTarget);
        GrContext::AutoMatrix am;
        am.setIdentity(ctx);
        GrContext::AutoClip ac(ctx, GrContext::AutoClip::kWideOpen_InitialClip);
        ctx->drawRect(paint, r);
    } else {
        SkSafeSetNull(result);
    }

    return result;
}

static GrTexture* sk_gr_create_bitmap_texture(GrContext* ctx,
                                              bool cache,
                                              const GrTextureParams* params,
                                              const SkBitmap& origBitmap) {
    SkBitmap tmpBitmap;

    const SkBitmap* bitmap = &origBitmap;

    GrSurfaceDesc desc;
    generate_bitmap_texture_desc(*bitmap, &desc);

    if (kIndex_8_SkColorType == bitmap->colorType()) {
        // build_compressed_data doesn't do npot->pot expansion
        // and paletted textures can't be sub-updated
        if (cache && ctx->supportsIndex8PixelConfig(params, bitmap->width(), bitmap->height())) {
            size_t imageSize = GrCompressedFormatDataSize(kIndex_8_GrPixelConfig,
                                                          bitmap->width(), bitmap->height());
            SkAutoMalloc storage(imageSize);
            build_index8_data(storage.get(), origBitmap);

            // our compressed data will be trimmed, so pass width() for its
            // "rowBytes", since they are the same now.
            return sk_gr_allocate_texture(ctx, cache, params, origBitmap,
                                          desc, storage.get(), bitmap->width());
        } else {
            origBitmap.copyTo(&tmpBitmap, kN32_SkColorType);
            // now bitmap points to our temp, which has been promoted to 32bits
            bitmap = &tmpBitmap;
            desc.fConfig = SkImageInfo2GrPixelConfig(bitmap->info());
        }
    }

    // Is this an ETC1 encoded texture?
#ifndef SK_IGNORE_ETC1_SUPPORT
    else if (
        // We do not support scratch ETC1 textures, hence they should all be at least
        // trying to go to the cache.
        cache
        // Make sure that the underlying device supports ETC1 textures before we go ahead
        // and check the data.
        && ctx->getGpu()->caps()->isConfigTexturable(kETC1_GrPixelConfig)
        // If the bitmap had compressed data and was then uncompressed, it'll still return
        // compressed data on 'refEncodedData' and upload it. Probably not good, since if
        // the bitmap has available pixels, then they might not be what the decompressed
        // data is.
        && !(bitmap->readyToDraw())) {
        GrTexture *texture = load_etc1_texture(ctx, cache, params, *bitmap, desc);
        if (texture) {
            return texture;
        }
    }
#endif   // SK_IGNORE_ETC1_SUPPORT

    else {
        GrTexture *texture = load_yuv_texture(ctx, cache, params, *bitmap, desc);
        if (texture) {
            return texture;
        }
    }
    SkAutoLockPixels alp(*bitmap);
    if (!bitmap->readyToDraw()) {
        return NULL;
    }

    return sk_gr_allocate_texture(ctx, cache, params, origBitmap, desc,
                                  bitmap->getPixels(), bitmap->rowBytes());
}

bool GrIsBitmapInCache(const GrContext* ctx,
                       const SkBitmap& bitmap,
                       const GrTextureParams* params) {
    GrCacheID cacheID;
    generate_bitmap_cache_id(bitmap, &cacheID);

    GrSurfaceDesc desc;
    generate_bitmap_texture_desc(bitmap, &desc);
    return ctx->isTextureInCache(desc, cacheID, params);
}

GrTexture* GrRefCachedBitmapTexture(GrContext* ctx,
                                    const SkBitmap& bitmap,
                                    const GrTextureParams* params) {
    GrTexture* result = NULL;

    bool cache = !bitmap.isVolatile();

    if (cache) {
        // If the bitmap isn't changing try to find a cached copy first.

        GrCacheID cacheID;
        generate_bitmap_cache_id(bitmap, &cacheID);

        GrSurfaceDesc desc;
        generate_bitmap_texture_desc(bitmap, &desc);

        result = ctx->findAndRefTexture(desc, cacheID, params);
    }
    if (NULL == result) {
        result = sk_gr_create_bitmap_texture(ctx, cache, params, bitmap);
    }
    if (NULL == result) {
        SkDebugf("---- failed to create texture for cache [%d %d]\n",
                 bitmap.width(), bitmap.height());
    }
    return result;
}

///////////////////////////////////////////////////////////////////////////////

// alphatype is ignore for now, but if GrPixelConfig is expanded to encompass
// alpha info, that will be considered.
GrPixelConfig SkImageInfo2GrPixelConfig(SkColorType ct, SkAlphaType) {
    switch (ct) {
        case kUnknown_SkColorType:
            return kUnknown_GrPixelConfig;
        case kAlpha_8_SkColorType:
            return kAlpha_8_GrPixelConfig;
        case kRGB_565_SkColorType:
            return kRGB_565_GrPixelConfig;
        case kARGB_4444_SkColorType:
            return kRGBA_4444_GrPixelConfig;
        case kRGBA_8888_SkColorType:
            return kRGBA_8888_GrPixelConfig;
        case kBGRA_8888_SkColorType:
            return kBGRA_8888_GrPixelConfig;
        case kIndex_8_SkColorType:
            return kIndex_8_GrPixelConfig;
    }
    SkASSERT(0);    // shouldn't get here
    return kUnknown_GrPixelConfig;
}

bool GrPixelConfig2ColorType(GrPixelConfig config, SkColorType* ctOut) {
    SkColorType ct;
    switch (config) {
        case kAlpha_8_GrPixelConfig:
            ct = kAlpha_8_SkColorType;
            break;
        case kIndex_8_GrPixelConfig:
            ct = kIndex_8_SkColorType;
            break;
        case kRGB_565_GrPixelConfig:
            ct = kRGB_565_SkColorType;
            break;
        case kRGBA_4444_GrPixelConfig:
            ct = kARGB_4444_SkColorType;
            break;
        case kRGBA_8888_GrPixelConfig:
            ct = kRGBA_8888_SkColorType;
            break;
        case kBGRA_8888_GrPixelConfig:
            ct = kBGRA_8888_SkColorType;
            break;
        default:
            return false;
    }
    if (ctOut) {
        *ctOut = ct;
    }
    return true;
}

///////////////////////////////////////////////////////////////////////////////

void SkPaint2GrPaintNoShader(GrContext* context, const SkPaint& skPaint, GrColor paintColor,
                             bool constantColor, GrPaint* grPaint) {

    grPaint->setDither(skPaint.isDither());
    grPaint->setAntiAlias(skPaint.isAntiAlias());

    SkXfermode::Coeff sm;
    SkXfermode::Coeff dm;

    SkXfermode* mode = skPaint.getXfermode();
    GrFragmentProcessor* fragmentProcessor = NULL;
    GrXPFactory* xpFactory = NULL;
    if (SkXfermode::AsFragmentProcessorOrXPFactory(mode, &fragmentProcessor, &xpFactory,
                                                   &sm, &dm)) {
        if (fragmentProcessor) {
            SkASSERT(NULL == xpFactory);
            grPaint->addColorProcessor(fragmentProcessor)->unref();
            xpFactory = GrPorterDuffXPFactory::Create(SkXfermode::kSrc_Mode);
            sm = SkXfermode::kOne_Coeff;
            dm = SkXfermode::kZero_Coeff;
        }
    } else {
        // Fall back to src-over
        xpFactory = GrPorterDuffXPFactory::Create(SkXfermode::kSrcOver_Mode);
        sm = SkXfermode::kOne_Coeff;
        dm = SkXfermode::kISA_Coeff;
    }
    SkASSERT(xpFactory);
    grPaint->setXPFactory(xpFactory)->unref();
    grPaint->setBlendFunc(sk_blend_to_grblend(sm), sk_blend_to_grblend(dm));

    //set the color of the paint to the one of the parameter
    grPaint->setColor(paintColor);

    SkColorFilter* colorFilter = skPaint.getColorFilter();
    if (colorFilter) {
        // if the source color is a constant then apply the filter here once rather than per pixel
        // in a shader.
        if (constantColor) {
            SkColor filtered = colorFilter->filterColor(skPaint.getColor());
            grPaint->setColor(SkColor2GrColor(filtered));
        } else {
            SkAutoTUnref<GrFragmentProcessor> fp(colorFilter->asFragmentProcessor(context));
            if (fp.get()) {
                grPaint->addColorProcessor(fp);
            }
        }
    }

#ifndef SK_IGNORE_GPU_DITHER
    // If the dither flag is set, then we need to see if the underlying context
    // supports it. If not, then install a dither effect.
    if (skPaint.isDither() && grPaint->numColorStages() > 0) {
        // What are we rendering into?
        const GrRenderTarget *target = context->getRenderTarget();
        SkASSERT(target);

        // Suspect the dithering flag has no effect on these configs, otherwise
        // fall back on setting the appropriate state.
        if (target->config() == kRGBA_8888_GrPixelConfig ||
            target->config() == kBGRA_8888_GrPixelConfig) {
            // The dither flag is set and the target is likely
            // not going to be dithered by the GPU.
            SkAutoTUnref<GrFragmentProcessor> fp(GrDitherEffect::Create());
            if (fp.get()) {
                grPaint->addColorProcessor(fp);
                grPaint->setDither(false);
            }
        }
    }
#endif
}

/**
 * Unlike GrContext::AutoMatrix, this doesn't require setting a new matrix. GrContext::AutoMatrix
 * likes to set the new matrix in its constructor because it is usually necessary to simulataneously
 * update a GrPaint. This AutoMatrix is used while initially setting up GrPaint, however.
 */
class AutoMatrix {
public:
    AutoMatrix(GrContext* context) {
        fMatrix = context->getMatrix();
        fContext = context;
    }
    ~AutoMatrix() {
        SkASSERT(fContext);
        fContext->setMatrix(fMatrix);
    }
private:
    GrContext* fContext;
    SkMatrix fMatrix;
};

void SkPaint2GrPaintShader(GrContext* context, const SkPaint& skPaint,
                           bool constantColor, GrPaint* grPaint) {
    SkShader* shader = skPaint.getShader();
    if (NULL == shader) {
        SkPaint2GrPaintNoShader(context, skPaint, SkColor2GrColor(skPaint.getColor()),
                                constantColor, grPaint);
        return;
    }

    GrColor paintColor = SkColor2GrColor(skPaint.getColor());

    // Start a new block here in order to preserve our context state after calling
    // asFragmentProcessor(). Since these calls get passed back to the client, we don't really
    // want them messing around with the context.
    {
        // SkShader::asFragmentProcessor() may do offscreen rendering. Save off the current RT,
        // clip, and matrix. We don't reset the matrix on the context because
        // SkShader::asFragmentProcessor may use GrContext::getMatrix() to know the transformation
        // from local coords to device space.
        GrContext::AutoRenderTarget art(context, NULL);
        GrContext::AutoClip ac(context, GrContext::AutoClip::kWideOpen_InitialClip);
        AutoMatrix am(context);

        // Allow the shader to modify paintColor and also create an effect to be installed as
        // the first color effect on the GrPaint.
        GrFragmentProcessor* fp = NULL;
        if (shader->asFragmentProcessor(context, skPaint, NULL, &paintColor, &fp) && fp) {
            grPaint->addColorProcessor(fp)->unref();
            constantColor = false;
        }
    }

    // The grcolor is automatically set when calling asFragmentProcessor.
    // If the shader can be seen as an effect it returns true and adds its effect to the grpaint.
    SkPaint2GrPaintNoShader(context, skPaint, paintColor, constantColor, grPaint);
}