aboutsummaryrefslogtreecommitdiffhomepage
path: root/src/gpu/GrDefaultGeoProcFactory.cpp
blob: a74565c5d744c38842439909c5adeaf9dcb66ce4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
/*
 * Copyright 2014 Google Inc.
 *
 * Use of this source code is governed by a BSD-style license that can be
 * found in the LICENSE file.
 */

#include "GrDefaultGeoProcFactory.h"

#include "GrDrawState.h"
#include "GrInvariantOutput.h"
#include "gl/GrGLGeometryProcessor.h"
#include "gl/builders/GrGLProgramBuilder.h"

/*
 * The default Geometry Processor simply takes position and multiplies it by the uniform view
 * matrix. It also leaves coverage untouched.  Behind the scenes, we may add per vertex color or
 * local coords.
 */
typedef GrDefaultGeoProcFactory Flag;

class DefaultGeoProc : public GrGeometryProcessor {
public:
    static GrGeometryProcessor* Create(GrColor color, uint8_t coverage, uint32_t gpTypeFlags,
                                       bool opaqueVertexColors) {
        return SkNEW_ARGS(DefaultGeoProc, (color, coverage, gpTypeFlags, opaqueVertexColors));
    }

    virtual const char* name() const SK_OVERRIDE { return "DefaultGeometryProcessor"; }

    const GrAttribute* inPosition() const { return fInPosition; }
    const GrAttribute* inColor() const { return fInColor; }
    const GrAttribute* inLocalCoords() const { return fInLocalCoords; }
    const GrAttribute* inCoverage() const { return fInCoverage; }
    uint8_t coverage() const { return fCoverage; }

    void initBatchTracker(GrBatchTracker* bt, const InitBT& init) const SK_OVERRIDE {
        BatchTracker* local = bt->cast<BatchTracker>();
        local->fInputColorType = GetColorInputType(&local->fColor, this->color(), init,
                                                   SkToBool(fInColor));

        bool hasVertexCoverage = SkToBool(fInCoverage) && !init.fCoverageIgnored;
        bool covIsSolidWhite = !hasVertexCoverage && 0xff == this->coverage();
        if (covIsSolidWhite) {
            local->fInputCoverageType = kAllOnes_GrGPInput;
        } else if (!hasVertexCoverage) {
            local->fInputCoverageType = kUniform_GrGPInput;
            local->fCoverage = this->coverage();
        } else if (hasVertexCoverage) {
            SkASSERT(fInCoverage);
            local->fInputCoverageType = kAttribute_GrGPInput;
        } else {
            local->fInputCoverageType = kIgnored_GrGPInput;
        }

        local->fUsesLocalCoords = init.fUsesLocalCoords;
    }

    bool onCanMakeEqual(const GrBatchTracker& m,
                        const GrGeometryProcessor& that,
                        const GrBatchTracker& t) const SK_OVERRIDE {
        const BatchTracker& mine = m.cast<BatchTracker>();
        const BatchTracker& theirs = t.cast<BatchTracker>();
        return CanCombineLocalMatrices(*this, mine.fUsesLocalCoords,
                                       that, theirs.fUsesLocalCoords) &&
               CanCombineOutput(mine.fInputColorType, mine.fColor,
                                theirs.fInputColorType, theirs.fColor) &&
               CanCombineOutput(mine.fInputCoverageType, mine.fCoverage,
                                theirs.fInputCoverageType, theirs.fCoverage);
    }

    class GLProcessor : public GrGLGeometryProcessor {
    public:
        GLProcessor(const GrGeometryProcessor& gp, const GrBatchTracker&)
            : fColor(GrColor_ILLEGAL), fCoverage(0xff) {}

        virtual void emitCode(const EmitArgs& args) SK_OVERRIDE {
            const DefaultGeoProc& gp = args.fGP.cast<DefaultGeoProc>();
            GrGLGPBuilder* pb = args.fPB;
            GrGLVertexBuilder* vs = pb->getVertexShaderBuilder();
            GrGLGPFragmentBuilder* fs = args.fPB->getFragmentShaderBuilder();
            const BatchTracker& local = args.fBT.cast<BatchTracker>();

            vs->codeAppendf("%s = %s;", vs->positionCoords(), gp.inPosition()->fName);

            // Setup pass through color
            this->setupColorPassThrough(pb, local.fInputColorType, args.fOutputColor, gp.inColor(),
                                        &fColorUniform);

            // Setup local coords if needed
            if (gp.inLocalCoords()) {
                vs->codeAppendf("%s = %s;", vs->localCoords(), gp.inLocalCoords()->fName);
            } else {
                vs->codeAppendf("%s = %s;", vs->localCoords(), gp.inPosition()->fName);
            }

            // setup position varying
            vs->codeAppendf("%s = %s * vec3(%s, 1);", vs->glPosition(), vs->uViewM(),
                            gp.inPosition()->fName);

            // Setup coverage as pass through
            if (kUniform_GrGPInput == local.fInputCoverageType) {
                const char* fragCoverage;
                fCoverageUniform = pb->addUniform(GrGLProgramBuilder::kFragment_Visibility,
                                                  kFloat_GrSLType,
                                                  kDefault_GrSLPrecision,
                                                  "Coverage",
                                                  &fragCoverage);
                fs->codeAppendf("%s = vec4(%s);", args.fOutputCoverage, fragCoverage);
            } else if (kAttribute_GrGPInput == local.fInputCoverageType) {
                SkASSERT(gp.inCoverage());
                fs->codeAppendf("float alpha = 1.0;");
                args.fPB->addPassThroughAttribute(gp.inCoverage(), "alpha");
                fs->codeAppendf("%s = vec4(alpha);", args.fOutputCoverage);
            } else if (kAllOnes_GrGPInput == local.fInputCoverageType) {
                fs->codeAppendf("%s = vec4(1);", args.fOutputCoverage);
            }
        }

        static inline void GenKey(const GrGeometryProcessor& gp,
                                  const GrBatchTracker& bt,
                                  const GrGLCaps&,
                                  GrProcessorKeyBuilder* b) {
            const DefaultGeoProc& def = gp.cast<DefaultGeoProc>();
            b->add32(def.fFlags);

            const BatchTracker& local = bt.cast<BatchTracker>();
            b->add32(local.fInputColorType | local.fInputCoverageType << 16);
        }

        virtual void setData(const GrGLProgramDataManager& pdman,
                             const GrPrimitiveProcessor& gp,
                             const GrBatchTracker& bt) SK_OVERRIDE {
            const BatchTracker& local = bt.cast<BatchTracker>();
            if (kUniform_GrGPInput == local.fInputColorType && local.fColor != fColor) {
                GrGLfloat c[4];
                GrColorToRGBAFloat(local.fColor, c);
                pdman.set4fv(fColorUniform, 1, c);
                fColor = local.fColor;
            }
            if (kUniform_GrGPInput == local.fInputCoverageType && local.fCoverage != fCoverage) {
                pdman.set1f(fCoverageUniform, GrNormalizeByteToFloat(local.fCoverage));
                fCoverage = local.fCoverage;
            }
        }

    private:
        GrColor fColor;
        uint8_t fCoverage;
        UniformHandle fColorUniform;
        UniformHandle fCoverageUniform;

        typedef GrGLGeometryProcessor INHERITED;
    };

    virtual void getGLProcessorKey(const GrBatchTracker& bt,
                                   const GrGLCaps& caps,
                                   GrProcessorKeyBuilder* b) const SK_OVERRIDE {
        GLProcessor::GenKey(*this, bt, caps, b);
    }

    virtual GrGLGeometryProcessor* createGLInstance(const GrBatchTracker& bt) const SK_OVERRIDE {
        return SkNEW_ARGS(GLProcessor, (*this, bt));
    }

private:
    DefaultGeoProc(GrColor color, uint8_t coverage, uint32_t gpTypeFlags, bool opaqueVertexColors)
        : INHERITED(color, opaqueVertexColors)
        , fInPosition(NULL)
        , fInColor(NULL)
        , fInLocalCoords(NULL)
        , fInCoverage(NULL)
        , fCoverage(coverage)
        , fFlags(gpTypeFlags) {
        this->initClassID<DefaultGeoProc>();
        bool hasColor = SkToBool(gpTypeFlags & GrDefaultGeoProcFactory::kColor_GPType);
        bool hasLocalCoord = SkToBool(gpTypeFlags & GrDefaultGeoProcFactory::kLocalCoord_GPType);
        bool hasCoverage = SkToBool(gpTypeFlags & GrDefaultGeoProcFactory::kCoverage_GPType);
        fInPosition = &this->addVertexAttrib(GrAttribute("inPosition", kVec2f_GrVertexAttribType));
        if (hasColor) {
            fInColor = &this->addVertexAttrib(GrAttribute("inColor", kVec4ub_GrVertexAttribType));
            this->setHasVertexColor();
        }
        if (hasLocalCoord) {
            fInLocalCoords = &this->addVertexAttrib(GrAttribute("inLocalCoord",
                                                                kVec2f_GrVertexAttribType));
            this->setHasLocalCoords();
        }
        if (hasCoverage) {
            fInCoverage = &this->addVertexAttrib(GrAttribute("inCoverage",
                                                             kFloat_GrVertexAttribType));
        }
    }

    virtual bool onIsEqual(const GrGeometryProcessor& other) const SK_OVERRIDE {
        const DefaultGeoProc& gp = other.cast<DefaultGeoProc>();
        return gp.fFlags == this->fFlags;
    }

    virtual void onGetInvariantOutputCoverage(GrInitInvariantOutput* out) const SK_OVERRIDE {
        if (fInCoverage) {
            out->setUnknownSingleComponent();
        } else {
            // uniform coverage
            out->setKnownSingleComponent(this->coverage());
        }
    }

    struct BatchTracker {
        GrGPInput fInputColorType;
        GrGPInput fInputCoverageType;
        GrColor  fColor;
        GrColor  fCoverage;
        bool fUsesLocalCoords;
    };

    const GrAttribute* fInPosition;
    const GrAttribute* fInColor;
    const GrAttribute* fInLocalCoords;
    const GrAttribute* fInCoverage;
    uint8_t fCoverage;
    uint32_t fFlags;

    GR_DECLARE_GEOMETRY_PROCESSOR_TEST;

    typedef GrGeometryProcessor INHERITED;
};

GR_DEFINE_GEOMETRY_PROCESSOR_TEST(DefaultGeoProc);

GrGeometryProcessor* DefaultGeoProc::TestCreate(SkRandom* random,
                                                GrContext*,
                                                const GrDrawTargetCaps& caps,
                                                GrTexture*[]) {
    uint32_t flags = 0;
    if (random->nextBool()) {
        flags |= GrDefaultGeoProcFactory::kColor_GPType;
    }
    if (random->nextBool()) {
        flags |= GrDefaultGeoProcFactory::kCoverage_GPType;
    }
    if (random->nextBool()) {
        flags |= GrDefaultGeoProcFactory::kLocalCoord_GPType;
    }

    return DefaultGeoProc::Create(GrRandomColor(random), GrRandomCoverage(random),
                                  flags, random->nextBool());
}

const GrGeometryProcessor* GrDefaultGeoProcFactory::Create(GrColor color,
                                                           uint32_t gpTypeFlags,
                                                           bool opaqueVertexColors,
                                                           uint8_t coverage) {
    return DefaultGeoProc::Create(color, coverage, gpTypeFlags, opaqueVertexColors);
}