1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
|
/*
* Copyright 2011 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "SkClampRange.h"
#include "SkMathPriv.h"
static int SkCLZ64(uint64_t value) {
int count = 0;
if (value >> 32) {
value >>= 32;
} else {
count += 32;
}
return count + SkCLZ(SkToU32(value));
}
static bool sk_64_smul_check(int64_t count, int64_t dx, int64_t* result) {
// Do it the slow way until we have some assembly.
if (dx == std::numeric_limits<int64_t>::min()) {
return false; // SkTAbs overflow
}
SkASSERT(count >= 0);
uint64_t ucount = static_cast<uint64_t>(count);
uint64_t udx = static_cast<uint64_t>(SkTAbs(dx));
int zeros = SkCLZ64(ucount) + SkCLZ64(udx);
// this is a conservative check: it may return false when in fact it would not have overflowed.
// Hackers Delight uses 34 as its convervative check, but that is for 32x32 multiplies.
// Since we are looking at 64x64 muls, we add 32 to the check.
if (zeros < (32 + 34)) {
return false;
}
*result = count * dx;
return true;
}
/*
* returns [0..count] for the number of steps (<= count) for which x0 <= edge
* given each step is followed by x0 += dx
*/
static int chop(int64_t x0, SkGradFixed edge, int64_t x1, int64_t dx, int count) {
SkASSERT(dx > 0);
SkASSERT(count >= 0);
if (x0 >= edge) {
return 0;
}
if (x1 <= edge) {
return count;
}
int64_t n = (edge - x0 + dx - 1) / dx;
SkASSERT(n >= 0);
SkASSERT(n <= count);
return (int)n;
}
void SkClampRange::initFor1(SkGradFixed fx) {
fCount0 = fCount1 = fCount2 = 0;
if (fx <= 0) {
fCount0 = 1;
} else if (fx < kFracMax_SkGradFixed) {
fCount1 = 1;
fFx1 = fx;
} else {
fCount2 = 1;
}
}
void SkClampRange::init(SkGradFixed fx0, SkGradFixed dx0, int count, int v0, int v1) {
SkASSERT(count > 0);
fV0 = v0;
fV1 = v1;
// special case 1 == count, as it is slightly common for skia
// and avoids us ever calling divide or 64bit multiply
if (1 == count) {
this->initFor1(fx0);
return;
}
int64_t fx = fx0;
int64_t dx = dx0;
// start with ex equal to the last computed value
int64_t count_times_dx;
if (!sk_64_smul_check(count - 1, dx, &count_times_dx)) {
// we can't represent the computed end in 32.32, so just draw something (first color)
fCount1 = fCount2 = 0;
fCount0 = count;
return;
}
int64_t ex = fx + (count - 1) * dx;
if ((uint64_t)(fx | ex) <= kFracMax_SkGradFixed) {
fCount0 = fCount2 = 0;
fCount1 = count;
fFx1 = fx0;
return;
}
if (fx <= 0 && ex <= 0) {
fCount1 = fCount2 = 0;
fCount0 = count;
return;
}
if (fx >= kFracMax_SkGradFixed && ex >= kFracMax_SkGradFixed) {
fCount0 = fCount1 = 0;
fCount2 = count;
return;
}
// now make ex be 1 past the last computed value
ex += dx;
bool doSwap = dx < 0;
if (doSwap) {
ex -= dx;
fx -= dx;
SkTSwap(fx, ex);
dx = -dx;
}
fCount0 = chop(fx, 0, ex, dx, count);
SkASSERT(fCount0 >= 0);
SkASSERT(fCount0 <= count);
count -= fCount0;
fx += fCount0 * dx;
SkASSERT(fx >= 0);
SkASSERT(fCount0 == 0 || (fx - dx) < 0);
fCount1 = chop(fx, kFracMax_SkGradFixed, ex, dx, count);
SkASSERT(fCount1 >= 0);
SkASSERT(fCount1 <= count);
count -= fCount1;
fCount2 = count;
#ifdef SK_DEBUG
fx += fCount1 * dx;
SkASSERT(fx <= ex);
if (fCount2 > 0) {
SkASSERT(fx >= kFracMax_SkGradFixed);
if (fCount1 > 0) {
SkASSERT(fx - dx < kFracMax_SkGradFixed);
}
}
#endif
if (doSwap) {
SkTSwap(fCount0, fCount2);
SkTSwap(fV0, fV1);
dx = -dx;
}
if (fCount1 > 0) {
fFx1 = fx0 + fCount0 * dx;
}
}
|