aboutsummaryrefslogtreecommitdiffhomepage
path: root/src/core/SkImageFilter.cpp
blob: 2be66e787c5c6efba9148de9884c3e26a85b012f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
/*
 * Copyright 2012 The Android Open Source Project
 *
 * Use of this source code is governed by a BSD-style license that can be
 * found in the LICENSE file.
 */

#include "SkImageFilter.h"

#include "SkBitmap.h"
#include "SkDevice.h"
#include "SkReadBuffer.h"
#include "SkWriteBuffer.h"
#include "SkRect.h"
#include "SkValidationUtils.h"
#if SK_SUPPORT_GPU
#include "GrContext.h"
#include "SkGrPixelRef.h"
#include "SkGr.h"
#endif

SkImageFilter::SkImageFilter(int inputCount, SkImageFilter** inputs, const CropRect* cropRect)
  : fInputCount(inputCount),
    fInputs(new SkImageFilter*[inputCount]),
    fCropRect(cropRect ? *cropRect : CropRect(SkRect(), 0x0)) {
    for (int i = 0; i < inputCount; ++i) {
        fInputs[i] = inputs[i];
        SkSafeRef(fInputs[i]);
    }
}

SkImageFilter::SkImageFilter(SkImageFilter* input, const CropRect* cropRect)
  : fInputCount(1),
    fInputs(new SkImageFilter*[1]),
    fCropRect(cropRect ? *cropRect : CropRect(SkRect(), 0x0)) {
    fInputs[0] = input;
    SkSafeRef(fInputs[0]);
}

SkImageFilter::SkImageFilter(SkImageFilter* input1, SkImageFilter* input2, const CropRect* cropRect)
  : fInputCount(2), fInputs(new SkImageFilter*[2]),
    fCropRect(cropRect ? *cropRect : CropRect(SkRect(), 0x0)) {
    fInputs[0] = input1;
    fInputs[1] = input2;
    SkSafeRef(fInputs[0]);
    SkSafeRef(fInputs[1]);
}

SkImageFilter::~SkImageFilter() {
    for (int i = 0; i < fInputCount; i++) {
        SkSafeUnref(fInputs[i]);
    }
    delete[] fInputs;
}

SkImageFilter::SkImageFilter(int inputCount, SkReadBuffer& buffer) {
    fInputCount = buffer.readInt();
    if (buffer.validate((fInputCount >= 0) && ((inputCount < 0) || (fInputCount == inputCount)))) {
        fInputs = new SkImageFilter*[fInputCount];
        for (int i = 0; i < fInputCount; i++) {
            if (buffer.readBool()) {
                fInputs[i] = buffer.readImageFilter();
            } else {
                fInputs[i] = NULL;
            }
            if (!buffer.isValid()) {
                fInputCount = i; // Do not use fInputs past that point in the destructor
                break;
            }
        }
        SkRect rect;
        buffer.readRect(&rect);
        if (buffer.isValid() && buffer.validate(SkIsValidRect(rect))) {
            uint32_t flags = buffer.readUInt();
            fCropRect = CropRect(rect, flags);
        }
    } else {
        fInputCount = 0;
        fInputs = NULL;
    }
}

void SkImageFilter::flatten(SkWriteBuffer& buffer) const {
    buffer.writeInt(fInputCount);
    for (int i = 0; i < fInputCount; i++) {
        SkImageFilter* input = getInput(i);
        buffer.writeBool(input != NULL);
        if (input != NULL) {
            buffer.writeFlattenable(input);
        }
    }
    buffer.writeRect(fCropRect.rect());
    buffer.writeUInt(fCropRect.flags());
}

bool SkImageFilter::filterImage(Proxy* proxy, const SkBitmap& src,
                                const Context& context,
                                SkBitmap* result, SkIPoint* offset) const {
    SkASSERT(result);
    SkASSERT(offset);
    /*
     *  Give the proxy first shot at the filter. If it returns false, ask
     *  the filter to do it.
     */
    return (proxy && proxy->filterImage(this, src, context, result, offset)) ||
           this->onFilterImage(proxy, src, context, result, offset);
}

bool SkImageFilter::filterBounds(const SkIRect& src, const SkMatrix& ctm,
                                 SkIRect* dst) const {
    SkASSERT(&src);
    SkASSERT(dst);
    return this->onFilterBounds(src, ctm, dst);
}

void SkImageFilter::computeFastBounds(const SkRect& src, SkRect* dst) const {
    if (0 == fInputCount) {
        *dst = src;
        return;
    }
    if (this->getInput(0)) {
        this->getInput(0)->computeFastBounds(src, dst);
    } else {
        *dst = src;
    }
    for (int i = 1; i < fInputCount; i++) {
        SkImageFilter* input = this->getInput(i);
        if (input) {
            SkRect bounds;
            input->computeFastBounds(src, &bounds);
            dst->join(bounds);
        } else {
            dst->join(src);
        }
    }
}

bool SkImageFilter::onFilterImage(Proxy*, const SkBitmap&, const Context&,
                                  SkBitmap*, SkIPoint*) const {
    return false;
}

bool SkImageFilter::canFilterImageGPU() const {
    return this->asNewEffect(NULL, NULL, SkMatrix::I(), SkIRect());
}

bool SkImageFilter::filterImageGPU(Proxy* proxy, const SkBitmap& src, const Context& ctx,
                                   SkBitmap* result, SkIPoint* offset) const {
#if SK_SUPPORT_GPU
    SkBitmap input = src;
    SkASSERT(fInputCount == 1);
    SkIPoint srcOffset = SkIPoint::Make(0, 0);
    if (this->getInput(0) &&
        !this->getInput(0)->getInputResultGPU(proxy, src, ctx, &input, &srcOffset)) {
        return false;
    }
    GrTexture* srcTexture = input.getTexture();
    SkIRect bounds;
    if (!this->applyCropRect(ctx, proxy, input, &srcOffset, &bounds, &input)) {
        return false;
    }
    SkRect srcRect = SkRect::Make(bounds);
    SkRect dstRect = SkRect::MakeWH(srcRect.width(), srcRect.height());
    GrContext* context = srcTexture->getContext();

    GrTextureDesc desc;
    desc.fFlags = kRenderTarget_GrTextureFlagBit,
    desc.fWidth = bounds.width();
    desc.fHeight = bounds.height();
    desc.fConfig = kRGBA_8888_GrPixelConfig;

    GrAutoScratchTexture dst(context, desc);
    GrContext::AutoMatrix am;
    am.setIdentity(context);
    GrContext::AutoRenderTarget art(context, dst.texture()->asRenderTarget());
    GrContext::AutoClip acs(context, dstRect);
    GrEffectRef* effect;
    offset->fX = bounds.left();
    offset->fY = bounds.top();
    bounds.offset(-srcOffset);
    SkMatrix matrix(ctx.ctm());
    matrix.postTranslate(SkIntToScalar(-bounds.left()), SkIntToScalar(-bounds.top()));
    this->asNewEffect(&effect, srcTexture, matrix, bounds);
    SkASSERT(effect);
    SkAutoUnref effectRef(effect);
    GrPaint paint;
    paint.addColorEffect(effect);
    context->drawRectToRect(paint, dstRect, srcRect);

    SkAutoTUnref<GrTexture> resultTex(dst.detach());
    WrapTexture(resultTex, bounds.width(), bounds.height(), result);
    return true;
#else
    return false;
#endif
}

bool SkImageFilter::applyCropRect(const Context& ctx, const SkBitmap& src,
                                  const SkIPoint& srcOffset, SkIRect* bounds) const {
    SkIRect srcBounds;
    src.getBounds(&srcBounds);
    srcBounds.offset(srcOffset);
    SkRect cropRect;
    ctx.ctm().mapRect(&cropRect, fCropRect.rect());
    SkIRect cropRectI;
    cropRect.roundOut(&cropRectI);
    uint32_t flags = fCropRect.flags();
    if (flags & CropRect::kHasLeft_CropEdge) srcBounds.fLeft = cropRectI.fLeft;
    if (flags & CropRect::kHasTop_CropEdge) srcBounds.fTop = cropRectI.fTop;
    if (flags & CropRect::kHasRight_CropEdge) srcBounds.fRight = cropRectI.fRight;
    if (flags & CropRect::kHasBottom_CropEdge) srcBounds.fBottom = cropRectI.fBottom;
    if (!srcBounds.intersect(ctx.clipBounds())) {
        return false;
    }
    *bounds = srcBounds;
    return true;
}

bool SkImageFilter::applyCropRect(const Context& ctx, Proxy* proxy, const SkBitmap& src,
                                  SkIPoint* srcOffset, SkIRect* bounds, SkBitmap* dst) const {
    SkIRect srcBounds;
    src.getBounds(&srcBounds);
    srcBounds.offset(*srcOffset);
    SkRect cropRect;
    ctx.ctm().mapRect(&cropRect, fCropRect.rect());
    SkIRect cropRectI;
    cropRect.roundOut(&cropRectI);
    uint32_t flags = fCropRect.flags();
    *bounds = srcBounds;
    if (flags & CropRect::kHasLeft_CropEdge) bounds->fLeft = cropRectI.fLeft;
    if (flags & CropRect::kHasTop_CropEdge) bounds->fTop = cropRectI.fTop;
    if (flags & CropRect::kHasRight_CropEdge) bounds->fRight = cropRectI.fRight;
    if (flags & CropRect::kHasBottom_CropEdge) bounds->fBottom = cropRectI.fBottom;
    if (!bounds->intersect(ctx.clipBounds())) {
        return false;
    }
    if (srcBounds.contains(*bounds)) {
        *dst = src;
        return true;
    } else {
        SkAutoTUnref<SkBaseDevice> device(proxy->createDevice(bounds->width(), bounds->height()));
        if (!device) {
            return false;
        }
        SkCanvas canvas(device);
        canvas.clear(0x00000000);
        canvas.drawBitmap(src, srcOffset->x() - bounds->x(), srcOffset->y() - bounds->y());
        *srcOffset = SkIPoint::Make(bounds->x(), bounds->y());
        *dst = device->accessBitmap(false);
        return true;
    }
}

bool SkImageFilter::onFilterBounds(const SkIRect& src, const SkMatrix& ctm,
                                   SkIRect* dst) const {
    if (fInputCount < 1) {
        return false;
    }

    SkIRect bounds;
    for (int i = 0; i < fInputCount; ++i) {
        SkImageFilter* filter = this->getInput(i);
        SkIRect rect = src;
        if (filter && !filter->filterBounds(src, ctm, &rect)) {
            return false;
        }
        if (0 == i) {
            bounds = rect;
        } else {
            bounds.join(rect);
        }
    }

    // don't modify dst until now, so we don't accidentally change it in the
    // loop, but then return false on the next filter.
    *dst = bounds;
    return true;
}

bool SkImageFilter::asNewEffect(GrEffectRef**, GrTexture*, const SkMatrix&, const SkIRect&) const {
    return false;
}

bool SkImageFilter::asColorFilter(SkColorFilter**) const {
    return false;
}

#if SK_SUPPORT_GPU

void SkImageFilter::WrapTexture(GrTexture* texture, int width, int height, SkBitmap* result) {
    SkImageInfo info = SkImageInfo::MakeN32Premul(width, height);
    result->setConfig(info);
    result->setPixelRef(SkNEW_ARGS(SkGrPixelRef, (info, texture)))->unref();
}

bool SkImageFilter::getInputResultGPU(SkImageFilter::Proxy* proxy,
                                      const SkBitmap& src, const Context& ctx,
                                      SkBitmap* result, SkIPoint* offset) const {
    // Ensure that GrContext calls under filterImage and filterImageGPU below will see an identity
    // matrix with no clip and that the matrix, clip, and render target set before this function was
    // called are restored before we return to the caller.
    GrContext* context = src.getTexture()->getContext();
    GrContext::AutoWideOpenIdentityDraw awoid(context, NULL);
    if (this->canFilterImageGPU()) {
        return this->filterImageGPU(proxy, src, ctx, result, offset);
    } else {
        if (this->filterImage(proxy, src, ctx, result, offset)) {
            if (!result->getTexture()) {
                SkImageInfo info;
                if (!result->asImageInfo(&info)) {
                    return false;
                }
                GrTexture* resultTex = GrLockAndRefCachedBitmapTexture(context, *result, NULL);
                result->setPixelRef(new SkGrPixelRef(info, resultTex))->unref();
                GrUnlockAndUnrefCachedBitmapTexture(resultTex);
            }
            return true;
        } else {
            return false;
        }
    }
}
#endif