aboutsummaryrefslogtreecommitdiffhomepage
path: root/src/core/SkGeometry.h
blob: 91b4d2d895737fb7100ccd0f8f1e8a4ebebab552 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
/*
 * Copyright 2006 The Android Open Source Project
 *
 * Use of this source code is governed by a BSD-style license that can be
 * found in the LICENSE file.
 */

#ifndef SkGeometry_DEFINED
#define SkGeometry_DEFINED

#include "SkMatrix.h"
#include "SkNx.h"

static inline Sk2s from_point(const SkPoint& point) {
    return Sk2s::Load(&point);
}

static inline SkPoint to_point(const Sk2s& x) {
    SkPoint point;
    x.store(&point);
    return point;
}

static Sk2s times_2(const Sk2s& value) {
    return value + value;
}

/** Given a quadratic equation Ax^2 + Bx + C = 0, return 0, 1, 2 roots for the
    equation.
*/
int SkFindUnitQuadRoots(SkScalar A, SkScalar B, SkScalar C, SkScalar roots[2]);

///////////////////////////////////////////////////////////////////////////////

SkPoint SkEvalQuadAt(const SkPoint src[3], SkScalar t);
SkPoint SkEvalQuadTangentAt(const SkPoint src[3], SkScalar t);

/** Set pt to the point on the src quadratic specified by t. t must be
    0 <= t <= 1.0
*/
void SkEvalQuadAt(const SkPoint src[3], SkScalar t, SkPoint* pt, SkVector* tangent = nullptr);

/** Given a src quadratic bezier, chop it at the specified t value,
    where 0 < t < 1, and return the two new quadratics in dst:
    dst[0..2] and dst[2..4]
*/
void SkChopQuadAt(const SkPoint src[3], SkPoint dst[5], SkScalar t);

/** Given a src quadratic bezier, chop it at the specified t == 1/2,
    The new quads are returned in dst[0..2] and dst[2..4]
*/
void SkChopQuadAtHalf(const SkPoint src[3], SkPoint dst[5]);

/** Given the 3 coefficients for a quadratic bezier (either X or Y values), look
    for extrema, and return the number of t-values that are found that represent
    these extrema. If the quadratic has no extrema betwee (0..1) exclusive, the
    function returns 0.
    Returned count      tValues[]
    0                   ignored
    1                   0 < tValues[0] < 1
*/
int SkFindQuadExtrema(SkScalar a, SkScalar b, SkScalar c, SkScalar tValues[1]);

/** Given 3 points on a quadratic bezier, chop it into 1, 2 beziers such that
    the resulting beziers are monotonic in Y. This is called by the scan converter.
    Depending on what is returned, dst[] is treated as follows
    0   dst[0..2] is the original quad
    1   dst[0..2] and dst[2..4] are the two new quads
*/
int SkChopQuadAtYExtrema(const SkPoint src[3], SkPoint dst[5]);
int SkChopQuadAtXExtrema(const SkPoint src[3], SkPoint dst[5]);

/** Given 3 points on a quadratic bezier, if the point of maximum
    curvature exists on the segment, returns the t value for this
    point along the curve. Otherwise it will return a value of 0.
*/
SkScalar SkFindQuadMaxCurvature(const SkPoint src[3]);

/** Given 3 points on a quadratic bezier, divide it into 2 quadratics
    if the point of maximum curvature exists on the quad segment.
    Depending on what is returned, dst[] is treated as follows
    1   dst[0..2] is the original quad
    2   dst[0..2] and dst[2..4] are the two new quads
    If dst == null, it is ignored and only the count is returned.
*/
int SkChopQuadAtMaxCurvature(const SkPoint src[3], SkPoint dst[5]);

/** Given 3 points on a quadratic bezier, use degree elevation to
    convert it into the cubic fitting the same curve. The new cubic
    curve is returned in dst[0..3].
*/
SK_API void SkConvertQuadToCubic(const SkPoint src[3], SkPoint dst[4]);

///////////////////////////////////////////////////////////////////////////////

/** Set pt to the point on the src cubic specified by t. t must be
    0 <= t <= 1.0
*/
void SkEvalCubicAt(const SkPoint src[4], SkScalar t, SkPoint* locOrNull,
                   SkVector* tangentOrNull, SkVector* curvatureOrNull);

/** Given a src cubic bezier, chop it at the specified t value,
    where 0 < t < 1, and return the two new cubics in dst:
    dst[0..3] and dst[3..6]
*/
void SkChopCubicAt(const SkPoint src[4], SkPoint dst[7], SkScalar t);

/** Given a src cubic bezier, chop it at the specified t values,
    where 0 < t < 1, and return the new cubics in dst:
    dst[0..3],dst[3..6],...,dst[3*t_count..3*(t_count+1)]
*/
void SkChopCubicAt(const SkPoint src[4], SkPoint dst[], const SkScalar t[],
                   int t_count);

/** Given a src cubic bezier, chop it at the specified t == 1/2,
    The new cubics are returned in dst[0..3] and dst[3..6]
*/
void SkChopCubicAtHalf(const SkPoint src[4], SkPoint dst[7]);

/** Given the 4 coefficients for a cubic bezier (either X or Y values), look
    for extrema, and return the number of t-values that are found that represent
    these extrema. If the cubic has no extrema betwee (0..1) exclusive, the
    function returns 0.
    Returned count      tValues[]
    0                   ignored
    1                   0 < tValues[0] < 1
    2                   0 < tValues[0] < tValues[1] < 1
*/
int SkFindCubicExtrema(SkScalar a, SkScalar b, SkScalar c, SkScalar d,
                       SkScalar tValues[2]);

/** Given 4 points on a cubic bezier, chop it into 1, 2, 3 beziers such that
    the resulting beziers are monotonic in Y. This is called by the scan converter.
    Depending on what is returned, dst[] is treated as follows
    0   dst[0..3] is the original cubic
    1   dst[0..3] and dst[3..6] are the two new cubics
    2   dst[0..3], dst[3..6], dst[6..9] are the three new cubics
    If dst == null, it is ignored and only the count is returned.
*/
int SkChopCubicAtYExtrema(const SkPoint src[4], SkPoint dst[10]);
int SkChopCubicAtXExtrema(const SkPoint src[4], SkPoint dst[10]);

/** Given a cubic bezier, return 0, 1, or 2 t-values that represent the
    inflection points.
*/
int SkFindCubicInflections(const SkPoint src[4], SkScalar tValues[2]);

/** Return 1 for no chop, 2 for having chopped the cubic at a single
    inflection point, 3 for having chopped at 2 inflection points.
    dst will hold the resulting 1, 2, or 3 cubics.
*/
int SkChopCubicAtInflections(const SkPoint src[4], SkPoint dst[10]);

int SkFindCubicMaxCurvature(const SkPoint src[4], SkScalar tValues[3]);
int SkChopCubicAtMaxCurvature(const SkPoint src[4], SkPoint dst[13],
                              SkScalar tValues[3] = nullptr);

bool SkChopMonoCubicAtX(SkPoint src[4], SkScalar y, SkPoint dst[7]);
bool SkChopMonoCubicAtY(SkPoint src[4], SkScalar x, SkPoint dst[7]);

enum class SkCubicType {
    kSerpentine,
    kLoop,
    kLocalCusp,     // Cusp at a non-infinite parameter value with an inflection at t=infinity.
    kInfiniteCusp,  // Cusp with a cusp at t=infinity and a local inflection.
    kQuadratic,
    kLineOrPoint
};

/** Returns the cubic classification.

    d[] is filled with the cubic inflection function coefficients. Furthermore, since d0 is always
    zero for integral curves, if the cubic type is kSerpentine, kLoop, or kLocalCusp then d[0] will
    instead contain the cubic discriminant: 3*d2^2 - 4*d1*d3.

    See "Resolution Independent Curve Rendering using Programmable Graphics Hardware",
    4.2 Curve Categorization
    https://www.microsoft.com/en-us/research/wp-content/uploads/2005/01/p1000-loop.pdf
*/
SkCubicType SkClassifyCubic(const SkPoint p[4], SkScalar d[4]);

///////////////////////////////////////////////////////////////////////////////

enum SkRotationDirection {
    kCW_SkRotationDirection,
    kCCW_SkRotationDirection
};

struct SkConic {
    SkConic() {}
    SkConic(const SkPoint& p0, const SkPoint& p1, const SkPoint& p2, SkScalar w) {
        fPts[0] = p0;
        fPts[1] = p1;
        fPts[2] = p2;
        fW = w;
    }
    SkConic(const SkPoint pts[3], SkScalar w) {
        memcpy(fPts, pts, sizeof(fPts));
        fW = w;
    }

    SkPoint  fPts[3];
    SkScalar fW;

    void set(const SkPoint pts[3], SkScalar w) {
        memcpy(fPts, pts, 3 * sizeof(SkPoint));
        fW = w;
    }

    void set(const SkPoint& p0, const SkPoint& p1, const SkPoint& p2, SkScalar w) {
        fPts[0] = p0;
        fPts[1] = p1;
        fPts[2] = p2;
        fW = w;
    }

    /**
     *  Given a t-value [0...1] return its position and/or tangent.
     *  If pos is not null, return its position at the t-value.
     *  If tangent is not null, return its tangent at the t-value. NOTE the
     *  tangent value's length is arbitrary, and only its direction should
     *  be used.
     */
    void evalAt(SkScalar t, SkPoint* pos, SkVector* tangent = nullptr) const;
    bool SK_WARN_UNUSED_RESULT chopAt(SkScalar t, SkConic dst[2]) const;
    void chopAt(SkScalar t1, SkScalar t2, SkConic* dst) const;
    void chop(SkConic dst[2]) const;

    SkPoint evalAt(SkScalar t) const;
    SkVector evalTangentAt(SkScalar t) const;

    void computeAsQuadError(SkVector* err) const;
    bool asQuadTol(SkScalar tol) const;

    /**
     *  return the power-of-2 number of quads needed to approximate this conic
     *  with a sequence of quads. Will be >= 0.
     */
    int computeQuadPOW2(SkScalar tol) const;

    /**
     *  Chop this conic into N quads, stored continguously in pts[], where
     *  N = 1 << pow2. The amount of storage needed is (1 + 2 * N)
     */
    int SK_WARN_UNUSED_RESULT chopIntoQuadsPOW2(SkPoint pts[], int pow2) const;

    bool findXExtrema(SkScalar* t) const;
    bool findYExtrema(SkScalar* t) const;
    bool chopAtXExtrema(SkConic dst[2]) const;
    bool chopAtYExtrema(SkConic dst[2]) const;

    void computeTightBounds(SkRect* bounds) const;
    void computeFastBounds(SkRect* bounds) const;

    /** Find the parameter value where the conic takes on its maximum curvature.
     *
     *  @param t   output scalar for max curvature.  Will be unchanged if
     *             max curvature outside 0..1 range.
     *
     *  @return  true if max curvature found inside 0..1 range, false otherwise
     */
//    bool findMaxCurvature(SkScalar* t) const;  // unimplemented

    static SkScalar TransformW(const SkPoint[3], SkScalar w, const SkMatrix&);

    enum {
        kMaxConicsForArc = 5
    };
    static int BuildUnitArc(const SkVector& start, const SkVector& stop, SkRotationDirection,
                            const SkMatrix*, SkConic conics[kMaxConicsForArc]);
};

// inline helpers are contained in a namespace to avoid external leakage to fragile SkNx members
namespace {

/**
 *  use for : eval(t) == A * t^2 + B * t + C
 */
struct SkQuadCoeff {
    SkQuadCoeff() {}

    SkQuadCoeff(const Sk2s& A, const Sk2s& B, const Sk2s& C)
        : fA(A)
        , fB(B)
        , fC(C)
    {
    }

    SkQuadCoeff(const SkPoint src[3]) {
        fC = from_point(src[0]);
        Sk2s P1 = from_point(src[1]);
        Sk2s P2 = from_point(src[2]);
        fB = times_2(P1 - fC);
        fA = P2 - times_2(P1) + fC;
    }

    Sk2s eval(SkScalar t) {
        Sk2s tt(t);
        return eval(tt);
    }

    Sk2s eval(const Sk2s& tt) {
        return (fA * tt + fB) * tt + fC;
    }

    Sk2s fA;
    Sk2s fB;
    Sk2s fC;
};

struct SkConicCoeff {
    SkConicCoeff(const SkConic& conic) {
        Sk2s p0 = from_point(conic.fPts[0]);
        Sk2s p1 = from_point(conic.fPts[1]);
        Sk2s p2 = from_point(conic.fPts[2]);
        Sk2s ww(conic.fW);

        Sk2s p1w = p1 * ww;
        fNumer.fC = p0;
        fNumer.fA = p2 - times_2(p1w) + p0;
        fNumer.fB = times_2(p1w - p0);

        fDenom.fC = Sk2s(1);
        fDenom.fB = times_2(ww - fDenom.fC);
        fDenom.fA = Sk2s(0) - fDenom.fB;
    }

    Sk2s eval(SkScalar t) {
        Sk2s tt(t);
        Sk2s numer = fNumer.eval(tt);
        Sk2s denom = fDenom.eval(tt);
        return numer / denom;
    }

    SkQuadCoeff fNumer;
    SkQuadCoeff fDenom;
};

struct SkCubicCoeff {
    SkCubicCoeff(const SkPoint src[4]) {
        Sk2s P0 = from_point(src[0]);
        Sk2s P1 = from_point(src[1]);
        Sk2s P2 = from_point(src[2]);
        Sk2s P3 = from_point(src[3]);
        Sk2s three(3);
        fA = P3 + three * (P1 - P2) - P0;
        fB = three * (P2 - times_2(P1) + P0);
        fC = three * (P1 - P0);
        fD = P0;
    }

    Sk2s eval(SkScalar t) {
        Sk2s tt(t);
        return eval(tt);
    }

    Sk2s eval(const Sk2s& t) {
        return ((fA * t + fB) * t + fC) * t + fD;
    }

    Sk2s fA;
    Sk2s fB;
    Sk2s fC;
    Sk2s fD;
};

}

#include "SkTemplates.h"

/**
 *  Help class to allocate storage for approximating a conic with N quads.
 */
class SkAutoConicToQuads {
public:
    SkAutoConicToQuads() : fQuadCount(0) {}

    /**
     *  Given a conic and a tolerance, return the array of points for the
     *  approximating quad(s). Call countQuads() to know the number of quads
     *  represented in these points.
     *
     *  The quads are allocated to share end-points. e.g. if there are 4 quads,
     *  there will be 9 points allocated as follows
     *      quad[0] == pts[0..2]
     *      quad[1] == pts[2..4]
     *      quad[2] == pts[4..6]
     *      quad[3] == pts[6..8]
     */
    const SkPoint* computeQuads(const SkConic& conic, SkScalar tol) {
        int pow2 = conic.computeQuadPOW2(tol);
        fQuadCount = 1 << pow2;
        SkPoint* pts = fStorage.reset(1 + 2 * fQuadCount);
        fQuadCount = conic.chopIntoQuadsPOW2(pts, pow2);
        return pts;
    }

    const SkPoint* computeQuads(const SkPoint pts[3], SkScalar weight,
                                SkScalar tol) {
        SkConic conic;
        conic.set(pts, weight);
        return computeQuads(conic, tol);
    }

    int countQuads() const { return fQuadCount; }

private:
    enum {
        kQuadCount = 8, // should handle most conics
        kPointCount = 1 + 2 * kQuadCount,
    };
    SkAutoSTMalloc<kPointCount, SkPoint> fStorage;
    int fQuadCount; // #quads for current usage
};

#endif