1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
|
/*
* Copyright 2008 The Android Open Source Project
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "SkCanvas.h"
#include "SkBitmapDevice.h"
#include "SkBounder.h"
#include "SkDeviceImageFilterProxy.h"
#include "SkDraw.h"
#include "SkDrawFilter.h"
#include "SkDrawLooper.h"
#include "SkMetaData.h"
#include "SkPathOps.h"
#include "SkPicture.h"
#include "SkRasterClip.h"
#include "SkRRect.h"
#include "SkSmallAllocator.h"
#include "SkSurface_Base.h"
#include "SkTemplates.h"
#include "SkTextFormatParams.h"
#include "SkTLazy.h"
#include "SkUtils.h"
#if SK_SUPPORT_GPU
#include "GrRenderTarget.h"
#endif
// experimental for faster tiled drawing...
//#define SK_ENABLE_CLIP_QUICKREJECT
//#define SK_TRACE_SAVERESTORE
#ifdef SK_TRACE_SAVERESTORE
static int gLayerCounter;
static void inc_layer() { ++gLayerCounter; printf("----- inc layer %d\n", gLayerCounter); }
static void dec_layer() { --gLayerCounter; printf("----- dec layer %d\n", gLayerCounter); }
static int gRecCounter;
static void inc_rec() { ++gRecCounter; printf("----- inc rec %d\n", gRecCounter); }
static void dec_rec() { --gRecCounter; printf("----- dec rec %d\n", gRecCounter); }
static int gCanvasCounter;
static void inc_canvas() { ++gCanvasCounter; printf("----- inc canvas %d\n", gCanvasCounter); }
static void dec_canvas() { --gCanvasCounter; printf("----- dec canvas %d\n", gCanvasCounter); }
#else
#define inc_layer()
#define dec_layer()
#define inc_rec()
#define dec_rec()
#define inc_canvas()
#define dec_canvas()
#endif
#ifdef SK_DEBUG
#include "SkPixelRef.h"
/*
* Some pixelref subclasses can support being "locked" from another thread
* during the lock-scope of skia calling them. In these instances, this balance
* check will fail, but may not be indicative of a problem, so we allow a build
* flag to disable this check.
*
* Potentially another fix would be to have a (debug-only) virtual or flag on
* pixelref, which could tell us at runtime if this check is valid. That would
* eliminate the need for this heavy-handed build check.
*/
#ifdef SK_DISABLE_PIXELREF_LOCKCOUNT_BALANCE_CHECK
class AutoCheckLockCountBalance {
public:
AutoCheckLockCountBalance(const SkBitmap&) { /* do nothing */ }
};
#else
class AutoCheckLockCountBalance {
public:
AutoCheckLockCountBalance(const SkBitmap& bm) : fPixelRef(bm.pixelRef()) {
fLockCount = fPixelRef ? fPixelRef->getLockCount() : 0;
}
~AutoCheckLockCountBalance() {
const int count = fPixelRef ? fPixelRef->getLockCount() : 0;
SkASSERT(count == fLockCount);
}
private:
const SkPixelRef* fPixelRef;
int fLockCount;
};
#endif
#define CHECK_LOCKCOUNT_BALANCE(bitmap) AutoCheckLockCountBalance clcb(bitmap)
#else
#define CHECK_LOCKCOUNT_BALANCE(bitmap)
#endif
typedef SkTLazy<SkPaint> SkLazyPaint;
void SkCanvas::predrawNotify() {
if (fSurfaceBase) {
fSurfaceBase->aboutToDraw(SkSurface::kRetain_ContentChangeMode);
}
}
///////////////////////////////////////////////////////////////////////////////
/* This is the record we keep for each SkBaseDevice that the user installs.
The clip/matrix/proc are fields that reflect the top of the save/restore
stack. Whenever the canvas changes, it marks a dirty flag, and then before
these are used (assuming we're not on a layer) we rebuild these cache
values: they reflect the top of the save stack, but translated and clipped
by the device's XY offset and bitmap-bounds.
*/
struct DeviceCM {
DeviceCM* fNext;
SkBaseDevice* fDevice;
SkRasterClip fClip;
const SkMatrix* fMatrix;
SkPaint* fPaint; // may be null (in the future)
DeviceCM(SkBaseDevice* device, int x, int y, const SkPaint* paint, SkCanvas* canvas)
: fNext(NULL) {
if (NULL != device) {
device->ref();
device->onAttachToCanvas(canvas);
}
fDevice = device;
fPaint = paint ? SkNEW_ARGS(SkPaint, (*paint)) : NULL;
}
~DeviceCM() {
if (NULL != fDevice) {
fDevice->onDetachFromCanvas();
fDevice->unref();
}
SkDELETE(fPaint);
}
void updateMC(const SkMatrix& totalMatrix, const SkRasterClip& totalClip,
const SkClipStack& clipStack, SkRasterClip* updateClip) {
int x = fDevice->getOrigin().x();
int y = fDevice->getOrigin().y();
int width = fDevice->width();
int height = fDevice->height();
if ((x | y) == 0) {
fMatrix = &totalMatrix;
fClip = totalClip;
} else {
fMatrixStorage = totalMatrix;
fMatrixStorage.postTranslate(SkIntToScalar(-x),
SkIntToScalar(-y));
fMatrix = &fMatrixStorage;
totalClip.translate(-x, -y, &fClip);
}
fClip.op(SkIRect::MakeWH(width, height), SkRegion::kIntersect_Op);
// intersect clip, but don't translate it (yet)
if (updateClip) {
updateClip->op(SkIRect::MakeXYWH(x, y, width, height),
SkRegion::kDifference_Op);
}
fDevice->setMatrixClip(*fMatrix, fClip.forceGetBW(), clipStack);
#ifdef SK_DEBUG
if (!fClip.isEmpty()) {
SkIRect deviceR;
deviceR.set(0, 0, width, height);
SkASSERT(deviceR.contains(fClip.getBounds()));
}
#endif
}
private:
SkMatrix fMatrixStorage;
};
/* This is the record we keep for each save/restore level in the stack.
Since a level optionally copies the matrix and/or stack, we have pointers
for these fields. If the value is copied for this level, the copy is
stored in the ...Storage field, and the pointer points to that. If the
value is not copied for this level, we ignore ...Storage, and just point
at the corresponding value in the previous level in the stack.
*/
class SkCanvas::MCRec {
public:
int fFlags;
SkMatrix* fMatrix; // points to either fMatrixStorage or prev MCRec
SkRasterClip* fRasterClip; // points to either fRegionStorage or prev MCRec
SkDrawFilter* fFilter; // the current filter (or null)
DeviceCM* fLayer;
/* If there are any layers in the stack, this points to the top-most
one that is at or below this level in the stack (so we know what
bitmap/device to draw into from this level. This value is NOT
reference counted, since the real owner is either our fLayer field,
or a previous one in a lower level.)
*/
DeviceCM* fTopLayer;
MCRec(const MCRec* prev, int flags) : fFlags(flags) {
if (NULL != prev) {
if (flags & SkCanvas::kMatrix_SaveFlag) {
fMatrixStorage = *prev->fMatrix;
fMatrix = &fMatrixStorage;
} else {
fMatrix = prev->fMatrix;
}
if (flags & SkCanvas::kClip_SaveFlag) {
fRasterClipStorage = *prev->fRasterClip;
fRasterClip = &fRasterClipStorage;
} else {
fRasterClip = prev->fRasterClip;
}
fFilter = prev->fFilter;
SkSafeRef(fFilter);
fTopLayer = prev->fTopLayer;
} else { // no prev
fMatrixStorage.reset();
fMatrix = &fMatrixStorage;
fRasterClip = &fRasterClipStorage;
fFilter = NULL;
fTopLayer = NULL;
}
fLayer = NULL;
// don't bother initializing fNext
inc_rec();
}
~MCRec() {
SkSafeUnref(fFilter);
SkDELETE(fLayer);
dec_rec();
}
private:
SkMatrix fMatrixStorage;
SkRasterClip fRasterClipStorage;
};
class SkDrawIter : public SkDraw {
public:
SkDrawIter(SkCanvas* canvas, bool skipEmptyClips = true) {
canvas = canvas->canvasForDrawIter();
fCanvas = canvas;
canvas->updateDeviceCMCache();
fClipStack = &canvas->fClipStack;
fBounder = canvas->getBounder();
fCurrLayer = canvas->fMCRec->fTopLayer;
fSkipEmptyClips = skipEmptyClips;
}
bool next() {
// skip over recs with empty clips
if (fSkipEmptyClips) {
while (fCurrLayer && fCurrLayer->fClip.isEmpty()) {
fCurrLayer = fCurrLayer->fNext;
}
}
const DeviceCM* rec = fCurrLayer;
if (rec && rec->fDevice) {
fMatrix = rec->fMatrix;
fClip = &((SkRasterClip*)&rec->fClip)->forceGetBW();
fRC = &rec->fClip;
fDevice = rec->fDevice;
fBitmap = &fDevice->accessBitmap(true);
fPaint = rec->fPaint;
SkDEBUGCODE(this->validate();)
fCurrLayer = rec->fNext;
if (fBounder) {
fBounder->setClip(fClip);
}
// fCurrLayer may be NULL now
return true;
}
return false;
}
SkBaseDevice* getDevice() const { return fDevice; }
int getX() const { return fDevice->getOrigin().x(); }
int getY() const { return fDevice->getOrigin().y(); }
const SkMatrix& getMatrix() const { return *fMatrix; }
const SkRegion& getClip() const { return *fClip; }
const SkPaint* getPaint() const { return fPaint; }
private:
SkCanvas* fCanvas;
const DeviceCM* fCurrLayer;
const SkPaint* fPaint; // May be null.
SkBool8 fSkipEmptyClips;
typedef SkDraw INHERITED;
};
/////////////////////////////////////////////////////////////////////////////
class AutoDrawLooper {
public:
AutoDrawLooper(SkCanvas* canvas, const SkPaint& paint,
bool skipLayerForImageFilter = false,
const SkRect* bounds = NULL) : fOrigPaint(paint) {
fCanvas = canvas;
fFilter = canvas->getDrawFilter();
fPaint = NULL;
fSaveCount = canvas->getSaveCount();
fDoClearImageFilter = false;
fDone = false;
if (!skipLayerForImageFilter && fOrigPaint.getImageFilter()) {
SkPaint tmp;
tmp.setImageFilter(fOrigPaint.getImageFilter());
(void)canvas->internalSaveLayer(bounds, &tmp, SkCanvas::kARGB_ClipLayer_SaveFlag,
true, SkCanvas::kFullLayer_SaveLayerStrategy);
// we'll clear the imageFilter for the actual draws in next(), so
// it will only be applied during the restore().
fDoClearImageFilter = true;
}
if (SkDrawLooper* looper = paint.getLooper()) {
void* buffer = fLooperContextAllocator.reserveT<SkDrawLooper::Context>(
looper->contextSize());
fLooperContext = looper->createContext(canvas, buffer);
fIsSimple = false;
} else {
fLooperContext = NULL;
// can we be marked as simple?
fIsSimple = !fFilter && !fDoClearImageFilter;
}
}
~AutoDrawLooper() {
if (fDoClearImageFilter) {
fCanvas->internalRestore();
}
SkASSERT(fCanvas->getSaveCount() == fSaveCount);
}
const SkPaint& paint() const {
SkASSERT(fPaint);
return *fPaint;
}
bool next(SkDrawFilter::Type drawType) {
if (fDone) {
return false;
} else if (fIsSimple) {
fDone = true;
fPaint = &fOrigPaint;
return !fPaint->nothingToDraw();
} else {
return this->doNext(drawType);
}
}
private:
SkLazyPaint fLazyPaint;
SkCanvas* fCanvas;
const SkPaint& fOrigPaint;
SkDrawFilter* fFilter;
const SkPaint* fPaint;
int fSaveCount;
bool fDoClearImageFilter;
bool fDone;
bool fIsSimple;
SkDrawLooper::Context* fLooperContext;
SkSmallAllocator<1, 32> fLooperContextAllocator;
bool doNext(SkDrawFilter::Type drawType);
};
bool AutoDrawLooper::doNext(SkDrawFilter::Type drawType) {
fPaint = NULL;
SkASSERT(!fIsSimple);
SkASSERT(fLooperContext || fFilter || fDoClearImageFilter);
SkPaint* paint = fLazyPaint.set(fOrigPaint);
if (fDoClearImageFilter) {
paint->setImageFilter(NULL);
}
if (fLooperContext && !fLooperContext->next(fCanvas, paint)) {
fDone = true;
return false;
}
if (fFilter) {
if (!fFilter->filter(paint, drawType)) {
fDone = true;
return false;
}
if (NULL == fLooperContext) {
// no looper means we only draw once
fDone = true;
}
}
fPaint = paint;
// if we only came in here for the imagefilter, mark us as done
if (!fLooperContext && !fFilter) {
fDone = true;
}
// call this after any possible paint modifiers
if (fPaint->nothingToDraw()) {
fPaint = NULL;
return false;
}
return true;
}
/* Stack helper for managing a SkBounder. In the destructor, if we were
given a bounder, we call its commit() method, signifying that we are
done accumulating bounds for that draw.
*/
class SkAutoBounderCommit {
public:
SkAutoBounderCommit(SkBounder* bounder) : fBounder(bounder) {}
~SkAutoBounderCommit() {
if (NULL != fBounder) {
fBounder->commit();
}
}
private:
SkBounder* fBounder;
};
#define SkAutoBounderCommit(...) SK_REQUIRE_LOCAL_VAR(SkAutoBounderCommit)
#include "SkColorPriv.h"
////////// macros to place around the internal draw calls //////////////////
#define LOOPER_BEGIN_DRAWDEVICE(paint, type) \
this->predrawNotify(); \
AutoDrawLooper looper(this, paint, true); \
while (looper.next(type)) { \
SkAutoBounderCommit ac(fBounder); \
SkDrawIter iter(this);
#define LOOPER_BEGIN(paint, type, bounds) \
this->predrawNotify(); \
AutoDrawLooper looper(this, paint, false, bounds); \
while (looper.next(type)) { \
SkAutoBounderCommit ac(fBounder); \
SkDrawIter iter(this);
#define LOOPER_END }
////////////////////////////////////////////////////////////////////////////
SkBaseDevice* SkCanvas::init(SkBaseDevice* device) {
fBounder = NULL;
fCachedLocalClipBounds.setEmpty();
fCachedLocalClipBoundsDirty = true;
fAllowSoftClip = true;
fAllowSimplifyClip = false;
fDeviceCMDirty = false;
fSaveLayerCount = 0;
fCullCount = 0;
fMetaData = NULL;
fMCRec = (MCRec*)fMCStack.push_back();
new (fMCRec) MCRec(NULL, 0);
fMCRec->fLayer = SkNEW_ARGS(DeviceCM, (NULL, 0, 0, NULL, NULL));
fMCRec->fTopLayer = fMCRec->fLayer;
fSurfaceBase = NULL;
return this->setRootDevice(device);
}
SkCanvas::SkCanvas()
: fMCStack(sizeof(MCRec), fMCRecStorage, sizeof(fMCRecStorage))
{
inc_canvas();
this->init(NULL);
}
SkCanvas::SkCanvas(int width, int height)
: fMCStack(sizeof(MCRec), fMCRecStorage, sizeof(fMCRecStorage))
{
inc_canvas();
SkBitmap bitmap;
bitmap.setConfig(SkImageInfo::MakeUnknown(width, height));
this->init(SkNEW_ARGS(SkBitmapDevice, (bitmap)))->unref();
}
SkCanvas::SkCanvas(SkBaseDevice* device)
: fMCStack(sizeof(MCRec), fMCRecStorage, sizeof(fMCRecStorage))
{
inc_canvas();
this->init(device);
}
SkCanvas::SkCanvas(const SkBitmap& bitmap)
: fMCStack(sizeof(MCRec), fMCRecStorage, sizeof(fMCRecStorage))
{
inc_canvas();
this->init(SkNEW_ARGS(SkBitmapDevice, (bitmap)))->unref();
}
SkCanvas::~SkCanvas() {
// free up the contents of our deque
this->restoreToCount(1); // restore everything but the last
SkASSERT(0 == fSaveLayerCount);
this->internalRestore(); // restore the last, since we're going away
SkSafeUnref(fBounder);
SkDELETE(fMetaData);
dec_canvas();
}
SkBounder* SkCanvas::setBounder(SkBounder* bounder) {
SkRefCnt_SafeAssign(fBounder, bounder);
return bounder;
}
SkDrawFilter* SkCanvas::getDrawFilter() const {
return fMCRec->fFilter;
}
SkDrawFilter* SkCanvas::setDrawFilter(SkDrawFilter* filter) {
SkRefCnt_SafeAssign(fMCRec->fFilter, filter);
return filter;
}
SkMetaData& SkCanvas::getMetaData() {
// metadata users are rare, so we lazily allocate it. If that changes we
// can decide to just make it a field in the device (rather than a ptr)
if (NULL == fMetaData) {
fMetaData = new SkMetaData;
}
return *fMetaData;
}
///////////////////////////////////////////////////////////////////////////////
void SkCanvas::flush() {
SkBaseDevice* device = this->getDevice();
if (device) {
device->flush();
}
}
SkISize SkCanvas::getTopLayerSize() const {
SkBaseDevice* d = this->getTopDevice();
return d ? SkISize::Make(d->width(), d->height()) : SkISize::Make(0, 0);
}
SkIPoint SkCanvas::getTopLayerOrigin() const {
SkBaseDevice* d = this->getTopDevice();
return d ? d->getOrigin() : SkIPoint::Make(0, 0);
}
SkISize SkCanvas::getBaseLayerSize() const {
SkBaseDevice* d = this->getDevice();
return d ? SkISize::Make(d->width(), d->height()) : SkISize::Make(0, 0);
}
SkBaseDevice* SkCanvas::getDevice() const {
// return root device
MCRec* rec = (MCRec*) fMCStack.front();
SkASSERT(rec && rec->fLayer);
return rec->fLayer->fDevice;
}
SkBaseDevice* SkCanvas::getTopDevice(bool updateMatrixClip) const {
if (updateMatrixClip) {
const_cast<SkCanvas*>(this)->updateDeviceCMCache();
}
return fMCRec->fTopLayer->fDevice;
}
SkBaseDevice* SkCanvas::setRootDevice(SkBaseDevice* device) {
// return root device
SkDeque::F2BIter iter(fMCStack);
MCRec* rec = (MCRec*)iter.next();
SkASSERT(rec && rec->fLayer);
SkBaseDevice* rootDevice = rec->fLayer->fDevice;
if (rootDevice == device) {
return device;
}
if (device) {
device->onAttachToCanvas(this);
}
if (rootDevice) {
rootDevice->onDetachFromCanvas();
}
SkRefCnt_SafeAssign(rec->fLayer->fDevice, device);
rootDevice = device;
fDeviceCMDirty = true;
/* Now we update our initial region to have the bounds of the new device,
and then intersect all of the clips in our stack with these bounds,
to ensure that we can't draw outside of the device's bounds (and trash
memory).
NOTE: this is only a partial-fix, since if the new device is larger than
the previous one, we don't know how to "enlarge" the clips in our stack,
so drawing may be artificially restricted. Without keeping a history of
all calls to canvas->clipRect() and canvas->clipPath(), we can't exactly
reconstruct the correct clips, so this approximation will have to do.
The caller really needs to restore() back to the base if they want to
accurately take advantage of the new device bounds.
*/
SkIRect bounds;
if (device) {
bounds.set(0, 0, device->width(), device->height());
} else {
bounds.setEmpty();
}
// now jam our 1st clip to be bounds, and intersect the rest with that
rec->fRasterClip->setRect(bounds);
while ((rec = (MCRec*)iter.next()) != NULL) {
(void)rec->fRasterClip->op(bounds, SkRegion::kIntersect_Op);
}
return device;
}
bool SkCanvas::readPixels(SkBitmap* bitmap, int x, int y) {
if (kUnknown_SkColorType == bitmap->colorType() || bitmap->getTexture()) {
return false;
}
bool weAllocated = false;
if (NULL == bitmap->pixelRef()) {
if (!bitmap->allocPixels()) {
return false;
}
weAllocated = true;
}
SkBitmap bm(*bitmap);
bm.lockPixels();
if (bm.getPixels() && this->readPixels(bm.info(), bm.getPixels(), bm.rowBytes(), x, y)) {
return true;
}
if (weAllocated) {
bitmap->setPixelRef(NULL);
}
return false;
}
bool SkCanvas::readPixels(const SkIRect& srcRect, SkBitmap* bitmap) {
SkIRect r = srcRect;
const SkISize size = this->getBaseLayerSize();
if (!r.intersect(0, 0, size.width(), size.height())) {
bitmap->reset();
return false;
}
if (!bitmap->allocN32Pixels(r.width(), r.height())) {
// bitmap will already be reset.
return false;
}
if (!this->readPixels(bitmap->info(), bitmap->getPixels(), bitmap->rowBytes(), r.x(), r.y())) {
bitmap->reset();
return false;
}
return true;
}
bool SkCanvas::readPixels(const SkImageInfo& origInfo, void* dstP, size_t rowBytes, int x, int y) {
switch (origInfo.colorType()) {
case kUnknown_SkColorType:
case kIndex_8_SkColorType:
return false;
default:
break;
}
if (NULL == dstP || rowBytes < origInfo.minRowBytes()) {
return false;
}
if (0 == origInfo.width() || 0 == origInfo.height()) {
return false;
}
SkBaseDevice* device = this->getDevice();
if (!device) {
return false;
}
const SkISize size = this->getBaseLayerSize();
SkIRect srcR = SkIRect::MakeXYWH(x, y, origInfo.width(), origInfo.height());
if (!srcR.intersect(0, 0, size.width(), size.height())) {
return false;
}
SkImageInfo info = origInfo;
// the intersect may have shrunk info's logical size
info.fWidth = srcR.width();
info.fHeight = srcR.height();
// if x or y are negative, then we have to adjust pixels
if (x > 0) {
x = 0;
}
if (y > 0) {
y = 0;
}
// here x,y are either 0 or negative
dstP = ((char*)dstP - y * rowBytes - x * info.bytesPerPixel());
// The device can assert that the requested area is always contained in its bounds
return device->readPixels(info, dstP, rowBytes, srcR.x(), srcR.y());
}
bool SkCanvas::writePixels(const SkBitmap& bitmap, int x, int y) {
if (bitmap.getTexture()) {
return false;
}
SkBitmap bm(bitmap);
bm.lockPixels();
if (bm.getPixels()) {
return this->writePixels(bm.info(), bm.getPixels(), bm.rowBytes(), x, y);
}
return false;
}
bool SkCanvas::writePixels(const SkImageInfo& origInfo, const void* pixels, size_t rowBytes,
int x, int y) {
switch (origInfo.colorType()) {
case kUnknown_SkColorType:
case kIndex_8_SkColorType:
return false;
default:
break;
}
if (NULL == pixels || rowBytes < origInfo.minRowBytes()) {
return false;
}
const SkISize size = this->getBaseLayerSize();
SkIRect target = SkIRect::MakeXYWH(x, y, origInfo.width(), origInfo.height());
if (!target.intersect(0, 0, size.width(), size.height())) {
return false;
}
SkBaseDevice* device = this->getDevice();
if (!device) {
return false;
}
SkImageInfo info = origInfo;
// the intersect may have shrunk info's logical size
info.fWidth = target.width();
info.fHeight = target.height();
// if x or y are negative, then we have to adjust pixels
if (x > 0) {
x = 0;
}
if (y > 0) {
y = 0;
}
// here x,y are either 0 or negative
pixels = ((const char*)pixels - y * rowBytes - x * info.bytesPerPixel());
// The device can assert that the requested area is always contained in its bounds
return device->writePixels(info, pixels, rowBytes, target.x(), target.y());
}
SkCanvas* SkCanvas::canvasForDrawIter() {
return this;
}
//////////////////////////////////////////////////////////////////////////////
void SkCanvas::updateDeviceCMCache() {
if (fDeviceCMDirty) {
const SkMatrix& totalMatrix = this->getTotalMatrix();
const SkRasterClip& totalClip = *fMCRec->fRasterClip;
DeviceCM* layer = fMCRec->fTopLayer;
if (NULL == layer->fNext) { // only one layer
layer->updateMC(totalMatrix, totalClip, fClipStack, NULL);
} else {
SkRasterClip clip(totalClip);
do {
layer->updateMC(totalMatrix, clip, fClipStack, &clip);
} while ((layer = layer->fNext) != NULL);
}
fDeviceCMDirty = false;
}
}
///////////////////////////////////////////////////////////////////////////////
int SkCanvas::internalSave(SaveFlags flags) {
int saveCount = this->getSaveCount(); // record this before the actual save
MCRec* newTop = (MCRec*)fMCStack.push_back();
new (newTop) MCRec(fMCRec, flags); // balanced in restore()
fMCRec = newTop;
if (SkCanvas::kClip_SaveFlag & flags) {
fClipStack.save();
}
return saveCount;
}
int SkCanvas::save() {
this->willSave(kMatrixClip_SaveFlag);
return this->internalSave(kMatrixClip_SaveFlag);
}
int SkCanvas::save(SaveFlags flags) {
this->willSave(flags);
// call shared impl
return this->internalSave(flags);
}
static bool bounds_affects_clip(SkCanvas::SaveFlags flags) {
#ifdef SK_SUPPORT_LEGACY_CLIPTOLAYERFLAG
return (flags & SkCanvas::kClipToLayer_SaveFlag) != 0;
#else
return true;
#endif
}
bool SkCanvas::clipRectBounds(const SkRect* bounds, SaveFlags flags,
SkIRect* intersection, const SkImageFilter* imageFilter) {
SkIRect clipBounds;
SkRegion::Op op = SkRegion::kIntersect_Op;
if (!this->getClipDeviceBounds(&clipBounds)) {
return false;
}
if (imageFilter) {
imageFilter->filterBounds(clipBounds, *fMCRec->fMatrix, &clipBounds);
// Filters may grow the bounds beyond the device bounds.
op = SkRegion::kReplace_Op;
}
SkIRect ir;
if (NULL != bounds) {
SkRect r;
this->getTotalMatrix().mapRect(&r, *bounds);
r.roundOut(&ir);
// early exit if the layer's bounds are clipped out
if (!ir.intersect(clipBounds)) {
if (bounds_affects_clip(flags)) {
fMCRec->fRasterClip->setEmpty();
}
return false;
}
} else { // no user bounds, so just use the clip
ir = clipBounds;
}
if (bounds_affects_clip(flags)) {
fClipStack.clipDevRect(ir, op);
// early exit if the clip is now empty
if (!fMCRec->fRasterClip->op(ir, op)) {
return false;
}
}
if (intersection) {
*intersection = ir;
}
return true;
}
int SkCanvas::saveLayer(const SkRect* bounds, const SkPaint* paint) {
SaveLayerStrategy strategy = this->willSaveLayer(bounds, paint, kARGB_ClipLayer_SaveFlag);
return this->internalSaveLayer(bounds, paint, kARGB_ClipLayer_SaveFlag, false, strategy);
}
int SkCanvas::saveLayer(const SkRect* bounds, const SkPaint* paint,
SaveFlags flags) {
SaveLayerStrategy strategy = this->willSaveLayer(bounds, paint, flags);
return this->internalSaveLayer(bounds, paint, flags, false, strategy);
}
static SkBaseDevice* create_compatible_device(SkCanvas* canvas,
const SkImageInfo& info) {
SkBaseDevice* device = canvas->getDevice();
return device ? device->createCompatibleDevice(info) : NULL;
}
int SkCanvas::internalSaveLayer(const SkRect* bounds, const SkPaint* paint, SaveFlags flags,
bool justForImageFilter, SaveLayerStrategy strategy) {
#ifndef SK_SUPPORT_LEGACY_CLIPTOLAYERFLAG
flags = (SaveFlags)(flags | kClipToLayer_SaveFlag);
#endif
// do this before we create the layer. We don't call the public save() since
// that would invoke a possibly overridden virtual
int count = this->internalSave(flags);
fDeviceCMDirty = true;
SkIRect ir;
if (!this->clipRectBounds(bounds, flags, &ir, paint ? paint->getImageFilter() : NULL)) {
return count;
}
// FIXME: do willSaveLayer() overriders returning kNoLayer_SaveLayerStrategy really care about
// the clipRectBounds() call above?
if (kNoLayer_SaveLayerStrategy == strategy) {
return count;
}
// Kill the imagefilter if our device doesn't allow it
SkLazyPaint lazyP;
if (paint && paint->getImageFilter()) {
if (!this->getTopDevice()->allowImageFilter(paint->getImageFilter())) {
if (justForImageFilter) {
// early exit if the layer was just for the imageFilter
return count;
}
SkPaint* p = lazyP.set(*paint);
p->setImageFilter(NULL);
paint = p;
}
}
bool isOpaque = !SkToBool(flags & kHasAlphaLayer_SaveFlag);
SkImageInfo info = SkImageInfo::MakeN32(ir.width(), ir.height(),
isOpaque ? kOpaque_SkAlphaType : kPremul_SkAlphaType);
SkBaseDevice* device;
if (paint && paint->getImageFilter()) {
device = create_compatible_device(this, info);
} else {
device = this->createLayerDevice(info);
}
if (NULL == device) {
SkDebugf("Unable to create device for layer.");
return count;
}
device->setOrigin(ir.fLeft, ir.fTop);
DeviceCM* layer = SkNEW_ARGS(DeviceCM, (device, ir.fLeft, ir.fTop, paint, this));
device->unref();
layer->fNext = fMCRec->fTopLayer;
fMCRec->fLayer = layer;
fMCRec->fTopLayer = layer; // this field is NOT an owner of layer
fSaveLayerCount += 1;
return count;
}
int SkCanvas::saveLayerAlpha(const SkRect* bounds, U8CPU alpha) {
return this->saveLayerAlpha(bounds, alpha, kARGB_ClipLayer_SaveFlag);
}
int SkCanvas::saveLayerAlpha(const SkRect* bounds, U8CPU alpha,
SaveFlags flags) {
if (0xFF == alpha) {
return this->saveLayer(bounds, NULL, flags);
} else {
SkPaint tmpPaint;
tmpPaint.setAlpha(alpha);
return this->saveLayer(bounds, &tmpPaint, flags);
}
}
void SkCanvas::restore() {
// check for underflow
if (fMCStack.count() > 1) {
this->willRestore();
this->internalRestore();
}
}
void SkCanvas::internalRestore() {
SkASSERT(fMCStack.count() != 0);
fDeviceCMDirty = true;
fCachedLocalClipBoundsDirty = true;
if (SkCanvas::kClip_SaveFlag & fMCRec->fFlags) {
fClipStack.restore();
}
// reserve our layer (if any)
DeviceCM* layer = fMCRec->fLayer; // may be null
// now detach it from fMCRec so we can pop(). Gets freed after its drawn
fMCRec->fLayer = NULL;
// now do the normal restore()
fMCRec->~MCRec(); // balanced in save()
fMCStack.pop_back();
fMCRec = (MCRec*)fMCStack.back();
/* Time to draw the layer's offscreen. We can't call the public drawSprite,
since if we're being recorded, we don't want to record this (the
recorder will have already recorded the restore).
*/
if (NULL != layer) {
if (layer->fNext) {
const SkIPoint& origin = layer->fDevice->getOrigin();
this->internalDrawDevice(layer->fDevice, origin.x(), origin.y(),
layer->fPaint);
// reset this, since internalDrawDevice will have set it to true
fDeviceCMDirty = true;
SkASSERT(fSaveLayerCount > 0);
fSaveLayerCount -= 1;
}
SkDELETE(layer);
}
}
int SkCanvas::getSaveCount() const {
return fMCStack.count();
}
void SkCanvas::restoreToCount(int count) {
// sanity check
if (count < 1) {
count = 1;
}
int n = this->getSaveCount() - count;
for (int i = 0; i < n; ++i) {
this->restore();
}
}
bool SkCanvas::isDrawingToLayer() const {
return fSaveLayerCount > 0;
}
SkSurface* SkCanvas::newSurface(const SkImageInfo& info) {
return this->onNewSurface(info);
}
SkSurface* SkCanvas::onNewSurface(const SkImageInfo& info) {
SkBaseDevice* dev = this->getDevice();
return dev ? dev->newSurface(info) : NULL;
}
SkImageInfo SkCanvas::imageInfo() const {
SkBaseDevice* dev = this->getDevice();
if (dev) {
return dev->imageInfo();
} else {
return SkImageInfo::MakeUnknown(0, 0);
}
}
const void* SkCanvas::peekPixels(SkImageInfo* info, size_t* rowBytes) {
return this->onPeekPixels(info, rowBytes);
}
const void* SkCanvas::onPeekPixels(SkImageInfo* info, size_t* rowBytes) {
SkBaseDevice* dev = this->getDevice();
return dev ? dev->peekPixels(info, rowBytes) : NULL;
}
void* SkCanvas::accessTopLayerPixels(SkImageInfo* info, size_t* rowBytes, SkIPoint* origin) {
void* pixels = this->onAccessTopLayerPixels(info, rowBytes);
if (pixels && origin) {
*origin = this->getTopDevice(false)->getOrigin();
}
return pixels;
}
void* SkCanvas::onAccessTopLayerPixels(SkImageInfo* info, size_t* rowBytes) {
SkBaseDevice* dev = this->getTopDevice();
return dev ? dev->accessPixels(info, rowBytes) : NULL;
}
SkAutoROCanvasPixels::SkAutoROCanvasPixels(SkCanvas* canvas) {
fAddr = canvas->peekPixels(&fInfo, &fRowBytes);
if (NULL == fAddr) {
fInfo = canvas->imageInfo();
if (kUnknown_SkColorType == fInfo.colorType() || !fBitmap.allocPixels(fInfo)) {
return; // failure, fAddr is NULL
}
if (!canvas->readPixels(&fBitmap, 0, 0)) {
return; // failure, fAddr is NULL
}
fAddr = fBitmap.getPixels();
fRowBytes = fBitmap.rowBytes();
}
SkASSERT(fAddr); // success
}
bool SkAutoROCanvasPixels::asROBitmap(SkBitmap* bitmap) const {
if (fAddr) {
return bitmap->installPixels(fInfo, const_cast<void*>(fAddr), fRowBytes);
} else {
bitmap->reset();
return false;
}
}
void SkCanvas::onPushCull(const SkRect& cullRect) {
// do nothing. Subclasses may do something
}
void SkCanvas::onPopCull() {
// do nothing. Subclasses may do something
}
/////////////////////////////////////////////////////////////////////////////
#ifdef SK_DEBUG
// Ensure that cull rects are monotonically nested in device space.
void SkCanvas::validateCull(const SkIRect& devCull) {
if (fCullStack.isEmpty()
|| devCull.isEmpty()
|| fCullStack.top().contains(devCull)) {
return;
}
SkDEBUGF(("Invalid cull: [%d %d %d %d] (previous cull: [%d %d %d %d])\n",
devCull.x(), devCull.y(), devCull.right(), devCull.bottom(),
fCullStack.top().x(), fCullStack.top().y(),
fCullStack.top().right(), fCullStack.top().bottom()));
#ifdef ASSERT_NESTED_CULLING
SkDEBUGFAIL("Invalid cull.");
#endif
}
#endif
void SkCanvas::pushCull(const SkRect& cullRect) {
++fCullCount;
this->onPushCull(cullRect);
#ifdef SK_DEBUG
// Map the cull rect into device space.
SkRect mappedCull;
this->getTotalMatrix().mapRect(&mappedCull, cullRect);
// Take clipping into account.
SkIRect devClip, devCull;
mappedCull.roundOut(&devCull);
this->getClipDeviceBounds(&devClip);
if (!devCull.intersect(devClip)) {
devCull.setEmpty();
}
this->validateCull(devCull);
fCullStack.push(devCull); // balanced in popCull
#endif
}
void SkCanvas::popCull() {
SkASSERT(fCullStack.count() == fCullCount);
if (fCullCount > 0) {
--fCullCount;
this->onPopCull();
SkDEBUGCODE(fCullStack.pop());
}
}
/////////////////////////////////////////////////////////////////////////////
void SkCanvas::internalDrawBitmap(const SkBitmap& bitmap,
const SkMatrix& matrix, const SkPaint* paint) {
if (bitmap.drawsNothing()) {
return;
}
SkLazyPaint lazy;
if (NULL == paint) {
paint = lazy.init();
}
SkDEBUGCODE(bitmap.validate();)
CHECK_LOCKCOUNT_BALANCE(bitmap);
SkRect storage;
const SkRect* bounds = NULL;
if (paint && paint->canComputeFastBounds()) {
bitmap.getBounds(&storage);
matrix.mapRect(&storage);
bounds = &paint->computeFastBounds(storage, &storage);
}
LOOPER_BEGIN(*paint, SkDrawFilter::kBitmap_Type, bounds)
while (iter.next()) {
iter.fDevice->drawBitmap(iter, bitmap, matrix, looper.paint());
}
LOOPER_END
}
void SkCanvas::internalDrawDevice(SkBaseDevice* srcDev, int x, int y,
const SkPaint* paint) {
SkPaint tmp;
if (NULL == paint) {
tmp.setDither(true);
paint = &tmp;
}
LOOPER_BEGIN_DRAWDEVICE(*paint, SkDrawFilter::kBitmap_Type)
while (iter.next()) {
SkBaseDevice* dstDev = iter.fDevice;
paint = &looper.paint();
SkImageFilter* filter = paint->getImageFilter();
SkIPoint pos = { x - iter.getX(), y - iter.getY() };
if (filter && !dstDev->canHandleImageFilter(filter)) {
SkDeviceImageFilterProxy proxy(dstDev);
SkBitmap dst;
SkIPoint offset = SkIPoint::Make(0, 0);
const SkBitmap& src = srcDev->accessBitmap(false);
SkMatrix matrix = *iter.fMatrix;
matrix.postTranslate(SkIntToScalar(-pos.x()), SkIntToScalar(-pos.y()));
SkIRect clipBounds = SkIRect::MakeWH(srcDev->width(), srcDev->height());
SkImageFilter::Cache* cache = SkImageFilter::GetExternalCache();
SkAutoUnref aur(NULL);
if (!cache) {
cache = SkImageFilter::Cache::Create();
aur.reset(cache);
}
SkImageFilter::Context ctx(matrix, clipBounds, cache);
if (filter->filterImage(&proxy, src, ctx, &dst, &offset)) {
SkPaint tmpUnfiltered(*paint);
tmpUnfiltered.setImageFilter(NULL);
dstDev->drawSprite(iter, dst, pos.x() + offset.x(), pos.y() + offset.y(),
tmpUnfiltered);
}
} else {
dstDev->drawDevice(iter, srcDev, pos.x(), pos.y(), *paint);
}
}
LOOPER_END
}
void SkCanvas::drawSprite(const SkBitmap& bitmap, int x, int y,
const SkPaint* paint) {
if (bitmap.drawsNothing()) {
return;
}
SkDEBUGCODE(bitmap.validate();)
CHECK_LOCKCOUNT_BALANCE(bitmap);
SkPaint tmp;
if (NULL == paint) {
paint = &tmp;
}
LOOPER_BEGIN_DRAWDEVICE(*paint, SkDrawFilter::kBitmap_Type)
while (iter.next()) {
paint = &looper.paint();
SkImageFilter* filter = paint->getImageFilter();
SkIPoint pos = { x - iter.getX(), y - iter.getY() };
if (filter && !iter.fDevice->canHandleImageFilter(filter)) {
SkDeviceImageFilterProxy proxy(iter.fDevice);
SkBitmap dst;
SkIPoint offset = SkIPoint::Make(0, 0);
SkMatrix matrix = *iter.fMatrix;
matrix.postTranslate(SkIntToScalar(-pos.x()), SkIntToScalar(-pos.y()));
SkIRect clipBounds = SkIRect::MakeWH(bitmap.width(), bitmap.height());
SkImageFilter::Cache* cache = SkImageFilter::GetExternalCache();
SkAutoUnref aur(NULL);
if (!cache) {
cache = SkImageFilter::Cache::Create();
aur.reset(cache);
}
SkImageFilter::Context ctx(matrix, clipBounds, cache);
if (filter->filterImage(&proxy, bitmap, ctx, &dst, &offset)) {
SkPaint tmpUnfiltered(*paint);
tmpUnfiltered.setImageFilter(NULL);
iter.fDevice->drawSprite(iter, dst, pos.x() + offset.x(), pos.y() + offset.y(),
tmpUnfiltered);
}
} else {
iter.fDevice->drawSprite(iter, bitmap, pos.x(), pos.y(), *paint);
}
}
LOOPER_END
}
/////////////////////////////////////////////////////////////////////////////
void SkCanvas::translate(SkScalar dx, SkScalar dy) {
SkMatrix m;
m.setTranslate(dx, dy);
this->concat(m);
}
void SkCanvas::scale(SkScalar sx, SkScalar sy) {
SkMatrix m;
m.setScale(sx, sy);
this->concat(m);
}
void SkCanvas::rotate(SkScalar degrees) {
SkMatrix m;
m.setRotate(degrees);
this->concat(m);
}
void SkCanvas::skew(SkScalar sx, SkScalar sy) {
SkMatrix m;
m.setSkew(sx, sy);
this->concat(m);
}
void SkCanvas::concat(const SkMatrix& matrix) {
if (matrix.isIdentity()) {
return;
}
fDeviceCMDirty = true;
fCachedLocalClipBoundsDirty = true;
fMCRec->fMatrix->preConcat(matrix);
this->didConcat(matrix);
}
void SkCanvas::setMatrix(const SkMatrix& matrix) {
fDeviceCMDirty = true;
fCachedLocalClipBoundsDirty = true;
*fMCRec->fMatrix = matrix;
this->didSetMatrix(matrix);
}
void SkCanvas::resetMatrix() {
SkMatrix matrix;
matrix.reset();
this->setMatrix(matrix);
}
//////////////////////////////////////////////////////////////////////////////
void SkCanvas::clipRect(const SkRect& rect, SkRegion::Op op, bool doAA) {
ClipEdgeStyle edgeStyle = doAA ? kSoft_ClipEdgeStyle : kHard_ClipEdgeStyle;
this->onClipRect(rect, op, edgeStyle);
}
void SkCanvas::onClipRect(const SkRect& rect, SkRegion::Op op, ClipEdgeStyle edgeStyle) {
#ifdef SK_ENABLE_CLIP_QUICKREJECT
if (SkRegion::kIntersect_Op == op) {
if (fMCRec->fRasterClip->isEmpty()) {
return false;
}
if (this->quickReject(rect)) {
fDeviceCMDirty = true;
fCachedLocalClipBoundsDirty = true;
fClipStack.clipEmpty();
return fMCRec->fRasterClip->setEmpty();
}
}
#endif
AutoValidateClip avc(this);
fDeviceCMDirty = true;
fCachedLocalClipBoundsDirty = true;
if (!fAllowSoftClip) {
edgeStyle = kHard_ClipEdgeStyle;
}
if (fMCRec->fMatrix->rectStaysRect()) {
// for these simpler matrices, we can stay a rect even after applying
// the matrix. This means we don't have to a) make a path, and b) tell
// the region code to scan-convert the path, only to discover that it
// is really just a rect.
SkRect r;
fMCRec->fMatrix->mapRect(&r, rect);
fClipStack.clipDevRect(r, op, kSoft_ClipEdgeStyle == edgeStyle);
fMCRec->fRasterClip->op(r, op, kSoft_ClipEdgeStyle == edgeStyle);
} else {
// since we're rotated or some such thing, we convert the rect to a path
// and clip against that, since it can handle any matrix. However, to
// avoid recursion in the case where we are subclassed (e.g. Pictures)
// we explicitly call "our" version of clipPath.
SkPath path;
path.addRect(rect);
this->SkCanvas::onClipPath(path, op, edgeStyle);
}
}
static void clip_path_helper(const SkCanvas* canvas, SkRasterClip* currClip,
const SkPath& devPath, SkRegion::Op op, bool doAA) {
// base is used to limit the size (and therefore memory allocation) of the
// region that results from scan converting devPath.
SkRegion base;
if (SkRegion::kIntersect_Op == op) {
// since we are intersect, we can do better (tighter) with currRgn's
// bounds, than just using the device. However, if currRgn is complex,
// our region blitter may hork, so we do that case in two steps.
if (currClip->isRect()) {
// FIXME: we should also be able to do this when currClip->isBW(),
// but relaxing the test above triggers GM asserts in
// SkRgnBuilder::blitH(). We need to investigate what's going on.
currClip->setPath(devPath, currClip->bwRgn(), doAA);
} else {
base.setRect(currClip->getBounds());
SkRasterClip clip;
clip.setPath(devPath, base, doAA);
currClip->op(clip, op);
}
} else {
const SkBaseDevice* device = canvas->getDevice();
if (!device) {
currClip->setEmpty();
return;
}
base.setRect(0, 0, device->width(), device->height());
if (SkRegion::kReplace_Op == op) {
currClip->setPath(devPath, base, doAA);
} else {
SkRasterClip clip;
clip.setPath(devPath, base, doAA);
currClip->op(clip, op);
}
}
}
void SkCanvas::clipRRect(const SkRRect& rrect, SkRegion::Op op, bool doAA) {
ClipEdgeStyle edgeStyle = doAA ? kSoft_ClipEdgeStyle : kHard_ClipEdgeStyle;
if (rrect.isRect()) {
this->onClipRect(rrect.getBounds(), op, edgeStyle);
} else {
this->onClipRRect(rrect, op, edgeStyle);
}
}
void SkCanvas::onClipRRect(const SkRRect& rrect, SkRegion::Op op, ClipEdgeStyle edgeStyle) {
SkRRect transformedRRect;
if (rrect.transform(*fMCRec->fMatrix, &transformedRRect)) {
AutoValidateClip avc(this);
fDeviceCMDirty = true;
fCachedLocalClipBoundsDirty = true;
if (!fAllowSoftClip) {
edgeStyle = kHard_ClipEdgeStyle;
}
fClipStack.clipDevRRect(transformedRRect, op, kSoft_ClipEdgeStyle == edgeStyle);
SkPath devPath;
devPath.addRRect(transformedRRect);
clip_path_helper(this, fMCRec->fRasterClip, devPath, op, kSoft_ClipEdgeStyle == edgeStyle);
return;
}
SkPath path;
path.addRRect(rrect);
// call the non-virtual version
this->SkCanvas::onClipPath(path, op, edgeStyle);
}
void SkCanvas::clipPath(const SkPath& path, SkRegion::Op op, bool doAA) {
ClipEdgeStyle edgeStyle = doAA ? kSoft_ClipEdgeStyle : kHard_ClipEdgeStyle;
SkRect r;
if (!path.isInverseFillType() && path.isRect(&r)) {
this->onClipRect(r, op, edgeStyle);
} else {
this->onClipPath(path, op, edgeStyle);
}
}
void SkCanvas::onClipPath(const SkPath& path, SkRegion::Op op, ClipEdgeStyle edgeStyle) {
#ifdef SK_ENABLE_CLIP_QUICKREJECT
if (SkRegion::kIntersect_Op == op && !path.isInverseFillType()) {
if (fMCRec->fRasterClip->isEmpty()) {
return false;
}
if (this->quickReject(path.getBounds())) {
fDeviceCMDirty = true;
fCachedLocalClipBoundsDirty = true;
fClipStack.clipEmpty();
return fMCRec->fRasterClip->setEmpty();
}
}
#endif
AutoValidateClip avc(this);
fDeviceCMDirty = true;
fCachedLocalClipBoundsDirty = true;
if (!fAllowSoftClip) {
edgeStyle = kHard_ClipEdgeStyle;
}
SkPath devPath;
path.transform(*fMCRec->fMatrix, &devPath);
// Check if the transfomation, or the original path itself
// made us empty. Note this can also happen if we contained NaN
// values. computing the bounds detects this, and will set our
// bounds to empty if that is the case. (see SkRect::set(pts, count))
if (devPath.getBounds().isEmpty()) {
// resetting the path will remove any NaN or other wanky values
// that might upset our scan converter.
devPath.reset();
}
// if we called path.swap() we could avoid a deep copy of this path
fClipStack.clipDevPath(devPath, op, kSoft_ClipEdgeStyle == edgeStyle);
if (fAllowSimplifyClip) {
devPath.reset();
devPath.setFillType(SkPath::kInverseEvenOdd_FillType);
const SkClipStack* clipStack = getClipStack();
SkClipStack::Iter iter(*clipStack, SkClipStack::Iter::kBottom_IterStart);
const SkClipStack::Element* element;
while ((element = iter.next())) {
SkClipStack::Element::Type type = element->getType();
SkPath operand;
if (type != SkClipStack::Element::kEmpty_Type) {
element->asPath(&operand);
}
SkRegion::Op elementOp = element->getOp();
if (elementOp == SkRegion::kReplace_Op) {
devPath = operand;
} else {
Op(devPath, operand, (SkPathOp) elementOp, &devPath);
}
// if the prev and curr clips disagree about aa -vs- not, favor the aa request.
// perhaps we need an API change to avoid this sort of mixed-signals about
// clipping.
if (element->isAA()) {
edgeStyle = kSoft_ClipEdgeStyle;
}
}
op = SkRegion::kReplace_Op;
}
clip_path_helper(this, fMCRec->fRasterClip, devPath, op, edgeStyle);
}
void SkCanvas::updateClipConservativelyUsingBounds(const SkRect& bounds, SkRegion::Op op,
bool inverseFilled) {
// This is for updating the clip conservatively using only bounds
// information.
// Contract:
// The current clip must contain the true clip. The true
// clip is the clip that would have normally been computed
// by calls to clipPath and clipRRect
// Objective:
// Keep the current clip as small as possible without
// breaking the contract, using only clip bounding rectangles
// (for performance).
// N.B.: This *never* calls back through a virtual on canvas, so subclasses
// don't have to worry about getting caught in a loop. Thus anywhere
// we call a virtual method, we explicitly prefix it with
// SkCanvas:: to be sure to call the base-class.
if (inverseFilled) {
switch (op) {
case SkRegion::kIntersect_Op:
case SkRegion::kDifference_Op:
// These ops can only shrink the current clip. So leaving
// the clip unchanged conservatively respects the contract.
break;
case SkRegion::kUnion_Op:
case SkRegion::kReplace_Op:
case SkRegion::kReverseDifference_Op:
case SkRegion::kXOR_Op: {
// These ops can grow the current clip up to the extents of
// the input clip, which is inverse filled, so we just set
// the current clip to the device bounds.
SkRect deviceBounds;
SkIRect deviceIBounds;
this->getDevice()->getGlobalBounds(&deviceIBounds);
deviceBounds = SkRect::Make(deviceIBounds);
// set the clip in device space
SkMatrix savedMatrix = this->getTotalMatrix();
this->SkCanvas::setMatrix(SkMatrix::I());
this->SkCanvas::onClipRect(deviceBounds, SkRegion::kReplace_Op,
kHard_ClipEdgeStyle);
this->setMatrix(savedMatrix);
break;
}
default:
SkASSERT(0); // unhandled op?
}
} else {
// Not inverse filled
switch (op) {
case SkRegion::kIntersect_Op:
case SkRegion::kUnion_Op:
case SkRegion::kReplace_Op:
this->SkCanvas::onClipRect(bounds, op, kHard_ClipEdgeStyle);
break;
case SkRegion::kDifference_Op:
// Difference can only shrink the current clip.
// Leaving clip unchanged conservatively fullfills the contract.
break;
case SkRegion::kReverseDifference_Op:
// To reverse, we swap in the bounds with a replace op.
// As with difference, leave it unchanged.
this->SkCanvas::onClipRect(bounds, SkRegion::kReplace_Op, kHard_ClipEdgeStyle);
break;
case SkRegion::kXOR_Op:
// Be conservative, based on (A XOR B) always included in (A union B),
// which is always included in (bounds(A) union bounds(B))
this->SkCanvas::onClipRect(bounds, SkRegion::kUnion_Op, kHard_ClipEdgeStyle);
break;
default:
SkASSERT(0); // unhandled op?
}
}
}
void SkCanvas::clipRegion(const SkRegion& rgn, SkRegion::Op op) {
this->onClipRegion(rgn, op);
}
void SkCanvas::onClipRegion(const SkRegion& rgn, SkRegion::Op op) {
AutoValidateClip avc(this);
fDeviceCMDirty = true;
fCachedLocalClipBoundsDirty = true;
// todo: signal fClipStack that we have a region, and therefore (I guess)
// we have to ignore it, and use the region directly?
fClipStack.clipDevRect(rgn.getBounds(), op);
fMCRec->fRasterClip->op(rgn, op);
}
#ifdef SK_DEBUG
void SkCanvas::validateClip() const {
// construct clipRgn from the clipstack
const SkBaseDevice* device = this->getDevice();
if (!device) {
SkASSERT(this->isClipEmpty());
return;
}
SkIRect ir;
ir.set(0, 0, device->width(), device->height());
SkRasterClip tmpClip(ir);
SkClipStack::B2TIter iter(fClipStack);
const SkClipStack::Element* element;
while ((element = iter.next()) != NULL) {
switch (element->getType()) {
case SkClipStack::Element::kRect_Type:
element->getRect().round(&ir);
tmpClip.op(ir, element->getOp());
break;
case SkClipStack::Element::kEmpty_Type:
tmpClip.setEmpty();
break;
default: {
SkPath path;
element->asPath(&path);
clip_path_helper(this, &tmpClip, path, element->getOp(), element->isAA());
break;
}
}
}
}
#endif
void SkCanvas::replayClips(ClipVisitor* visitor) const {
SkClipStack::B2TIter iter(fClipStack);
const SkClipStack::Element* element;
static const SkRect kEmpty = { 0, 0, 0, 0 };
while ((element = iter.next()) != NULL) {
switch (element->getType()) {
case SkClipStack::Element::kPath_Type:
visitor->clipPath(element->getPath(), element->getOp(), element->isAA());
break;
case SkClipStack::Element::kRRect_Type:
visitor->clipRRect(element->getRRect(), element->getOp(), element->isAA());
break;
case SkClipStack::Element::kRect_Type:
visitor->clipRect(element->getRect(), element->getOp(), element->isAA());
break;
case SkClipStack::Element::kEmpty_Type:
visitor->clipRect(kEmpty, SkRegion::kIntersect_Op, false);
break;
}
}
}
///////////////////////////////////////////////////////////////////////////////
bool SkCanvas::isClipEmpty() const {
return fMCRec->fRasterClip->isEmpty();
}
bool SkCanvas::isClipRect() const {
return fMCRec->fRasterClip->isRect();
}
bool SkCanvas::quickReject(const SkRect& rect) const {
if (!rect.isFinite())
return true;
if (fMCRec->fRasterClip->isEmpty()) {
return true;
}
if (fMCRec->fMatrix->hasPerspective()) {
SkRect dst;
fMCRec->fMatrix->mapRect(&dst, rect);
SkIRect idst;
dst.roundOut(&idst);
return !SkIRect::Intersects(idst, fMCRec->fRasterClip->getBounds());
} else {
const SkRect& clipR = this->getLocalClipBounds();
// for speed, do the most likely reject compares first
// TODO: should we use | instead, or compare all 4 at once?
if (rect.fTop >= clipR.fBottom || rect.fBottom <= clipR.fTop) {
return true;
}
if (rect.fLeft >= clipR.fRight || rect.fRight <= clipR.fLeft) {
return true;
}
return false;
}
}
bool SkCanvas::quickReject(const SkPath& path) const {
return path.isEmpty() || this->quickReject(path.getBounds());
}
bool SkCanvas::getClipBounds(SkRect* bounds) const {
SkIRect ibounds;
if (!this->getClipDeviceBounds(&ibounds)) {
return false;
}
SkMatrix inverse;
// if we can't invert the CTM, we can't return local clip bounds
if (!fMCRec->fMatrix->invert(&inverse)) {
if (bounds) {
bounds->setEmpty();
}
return false;
}
if (NULL != bounds) {
SkRect r;
// adjust it outwards in case we are antialiasing
const int inset = 1;
r.iset(ibounds.fLeft - inset, ibounds.fTop - inset,
ibounds.fRight + inset, ibounds.fBottom + inset);
inverse.mapRect(bounds, r);
}
return true;
}
bool SkCanvas::getClipDeviceBounds(SkIRect* bounds) const {
const SkRasterClip& clip = *fMCRec->fRasterClip;
if (clip.isEmpty()) {
if (bounds) {
bounds->setEmpty();
}
return false;
}
if (NULL != bounds) {
*bounds = clip.getBounds();
}
return true;
}
const SkMatrix& SkCanvas::getTotalMatrix() const {
return *fMCRec->fMatrix;
}
#ifdef SK_SUPPORT_LEGACY_GETCLIPTYPE
SkCanvas::ClipType SkCanvas::getClipType() const {
if (fMCRec->fRasterClip->isEmpty()) {
return kEmpty_ClipType;
}
if (fMCRec->fRasterClip->isRect()) {
return kRect_ClipType;
}
return kComplex_ClipType;
}
#endif
#ifdef SK_SUPPORT_LEGACY_GETTOTALCLIP
const SkRegion& SkCanvas::getTotalClip() const {
return fMCRec->fRasterClip->forceGetBW();
}
#endif
const SkRegion& SkCanvas::internal_private_getTotalClip() const {
return fMCRec->fRasterClip->forceGetBW();
}
void SkCanvas::internal_private_getTotalClipAsPath(SkPath* path) const {
path->reset();
const SkRegion& rgn = fMCRec->fRasterClip->forceGetBW();
if (rgn.isEmpty()) {
return;
}
(void)rgn.getBoundaryPath(path);
}
GrRenderTarget* SkCanvas::internal_private_accessTopLayerRenderTarget() {
SkBaseDevice* dev = this->getTopDevice();
return dev ? dev->accessRenderTarget() : NULL;
}
SkBaseDevice* SkCanvas::createLayerDevice(const SkImageInfo& info) {
SkBaseDevice* device = this->getTopDevice();
return device ? device->createCompatibleDeviceForSaveLayer(info) : NULL;
}
GrContext* SkCanvas::getGrContext() {
#if SK_SUPPORT_GPU
SkBaseDevice* device = this->getTopDevice();
if (NULL != device) {
GrRenderTarget* renderTarget = device->accessRenderTarget();
if (NULL != renderTarget) {
return renderTarget->getContext();
}
}
#endif
return NULL;
}
void SkCanvas::drawDRRect(const SkRRect& outer, const SkRRect& inner,
const SkPaint& paint) {
if (outer.isEmpty()) {
return;
}
if (inner.isEmpty()) {
this->drawRRect(outer, paint);
return;
}
// We don't have this method (yet), but technically this is what we should
// be able to assert...
// SkASSERT(outer.contains(inner));
//
// For now at least check for containment of bounds
SkASSERT(outer.getBounds().contains(inner.getBounds()));
this->onDrawDRRect(outer, inner, paint);
}
//////////////////////////////////////////////////////////////////////////////
// These are the virtual drawing methods
//////////////////////////////////////////////////////////////////////////////
void SkCanvas::clear(SkColor color) {
SkDrawIter iter(this);
this->predrawNotify();
while (iter.next()) {
iter.fDevice->clear(color);
}
}
void SkCanvas::onDiscard() {
if (NULL != fSurfaceBase) {
fSurfaceBase->aboutToDraw(SkSurface::kDiscard_ContentChangeMode);
}
}
void SkCanvas::drawPaint(const SkPaint& paint) {
this->internalDrawPaint(paint);
}
void SkCanvas::internalDrawPaint(const SkPaint& paint) {
LOOPER_BEGIN(paint, SkDrawFilter::kPaint_Type, NULL)
while (iter.next()) {
iter.fDevice->drawPaint(iter, looper.paint());
}
LOOPER_END
}
void SkCanvas::drawPoints(PointMode mode, size_t count, const SkPoint pts[],
const SkPaint& paint) {
if ((long)count <= 0) {
return;
}
SkRect r, storage;
const SkRect* bounds = NULL;
if (paint.canComputeFastBounds()) {
// special-case 2 points (common for drawing a single line)
if (2 == count) {
r.set(pts[0], pts[1]);
} else {
r.set(pts, SkToInt(count));
}
bounds = &paint.computeFastStrokeBounds(r, &storage);
if (this->quickReject(*bounds)) {
return;
}
}
SkASSERT(pts != NULL);
LOOPER_BEGIN(paint, SkDrawFilter::kPoint_Type, bounds)
while (iter.next()) {
iter.fDevice->drawPoints(iter, mode, count, pts, looper.paint());
}
LOOPER_END
}
void SkCanvas::drawRect(const SkRect& r, const SkPaint& paint) {
SkRect storage;
const SkRect* bounds = NULL;
if (paint.canComputeFastBounds()) {
bounds = &paint.computeFastBounds(r, &storage);
if (this->quickReject(*bounds)) {
return;
}
}
LOOPER_BEGIN(paint, SkDrawFilter::kRect_Type, bounds)
while (iter.next()) {
iter.fDevice->drawRect(iter, r, looper.paint());
}
LOOPER_END
}
void SkCanvas::drawOval(const SkRect& oval, const SkPaint& paint) {
SkRect storage;
const SkRect* bounds = NULL;
if (paint.canComputeFastBounds()) {
bounds = &paint.computeFastBounds(oval, &storage);
if (this->quickReject(*bounds)) {
return;
}
}
LOOPER_BEGIN(paint, SkDrawFilter::kOval_Type, bounds)
while (iter.next()) {
iter.fDevice->drawOval(iter, oval, looper.paint());
}
LOOPER_END
}
void SkCanvas::drawRRect(const SkRRect& rrect, const SkPaint& paint) {
SkRect storage;
const SkRect* bounds = NULL;
if (paint.canComputeFastBounds()) {
bounds = &paint.computeFastBounds(rrect.getBounds(), &storage);
if (this->quickReject(*bounds)) {
return;
}
}
if (rrect.isRect()) {
// call the non-virtual version
this->SkCanvas::drawRect(rrect.getBounds(), paint);
return;
} else if (rrect.isOval()) {
// call the non-virtual version
this->SkCanvas::drawOval(rrect.getBounds(), paint);
return;
}
LOOPER_BEGIN(paint, SkDrawFilter::kRRect_Type, bounds)
while (iter.next()) {
iter.fDevice->drawRRect(iter, rrect, looper.paint());
}
LOOPER_END
}
void SkCanvas::onDrawDRRect(const SkRRect& outer, const SkRRect& inner,
const SkPaint& paint) {
SkRect storage;
const SkRect* bounds = NULL;
if (paint.canComputeFastBounds()) {
bounds = &paint.computeFastBounds(outer.getBounds(), &storage);
if (this->quickReject(*bounds)) {
return;
}
}
LOOPER_BEGIN(paint, SkDrawFilter::kRRect_Type, bounds)
while (iter.next()) {
iter.fDevice->drawDRRect(iter, outer, inner, looper.paint());
}
LOOPER_END
}
void SkCanvas::drawPath(const SkPath& path, const SkPaint& paint) {
if (!path.isFinite()) {
return;
}
SkRect storage;
const SkRect* bounds = NULL;
if (!path.isInverseFillType() && paint.canComputeFastBounds()) {
const SkRect& pathBounds = path.getBounds();
bounds = &paint.computeFastBounds(pathBounds, &storage);
if (this->quickReject(*bounds)) {
return;
}
}
const SkRect& r = path.getBounds();
if (r.width() <= 0 && r.height() <= 0) {
if (path.isInverseFillType()) {
this->internalDrawPaint(paint);
}
return;
}
LOOPER_BEGIN(paint, SkDrawFilter::kPath_Type, bounds)
while (iter.next()) {
iter.fDevice->drawPath(iter, path, looper.paint());
}
LOOPER_END
}
void SkCanvas::drawBitmap(const SkBitmap& bitmap, SkScalar x, SkScalar y,
const SkPaint* paint) {
SkDEBUGCODE(bitmap.validate();)
if (NULL == paint || paint->canComputeFastBounds()) {
SkRect bounds = {
x, y,
x + SkIntToScalar(bitmap.width()),
y + SkIntToScalar(bitmap.height())
};
if (paint) {
(void)paint->computeFastBounds(bounds, &bounds);
}
if (this->quickReject(bounds)) {
return;
}
}
SkMatrix matrix;
matrix.setTranslate(x, y);
this->internalDrawBitmap(bitmap, matrix, paint);
}
// this one is non-virtual, so it can be called safely by other canvas apis
void SkCanvas::internalDrawBitmapRect(const SkBitmap& bitmap, const SkRect* src,
const SkRect& dst, const SkPaint* paint,
DrawBitmapRectFlags flags) {
if (bitmap.drawsNothing() || dst.isEmpty()) {
return;
}
CHECK_LOCKCOUNT_BALANCE(bitmap);
SkRect storage;
const SkRect* bounds = &dst;
if (NULL == paint || paint->canComputeFastBounds()) {
if (paint) {
bounds = &paint->computeFastBounds(dst, &storage);
}
if (this->quickReject(*bounds)) {
return;
}
}
SkLazyPaint lazy;
if (NULL == paint) {
paint = lazy.init();
}
LOOPER_BEGIN(*paint, SkDrawFilter::kBitmap_Type, bounds)
while (iter.next()) {
iter.fDevice->drawBitmapRect(iter, bitmap, src, dst, looper.paint(), flags);
}
LOOPER_END
}
void SkCanvas::drawBitmapRectToRect(const SkBitmap& bitmap, const SkRect* src,
const SkRect& dst, const SkPaint* paint,
DrawBitmapRectFlags flags) {
SkDEBUGCODE(bitmap.validate();)
this->internalDrawBitmapRect(bitmap, src, dst, paint, flags);
}
void SkCanvas::drawBitmapMatrix(const SkBitmap& bitmap, const SkMatrix& matrix,
const SkPaint* paint) {
SkDEBUGCODE(bitmap.validate();)
this->internalDrawBitmap(bitmap, matrix, paint);
}
void SkCanvas::internalDrawBitmapNine(const SkBitmap& bitmap,
const SkIRect& center, const SkRect& dst,
const SkPaint* paint) {
if (bitmap.drawsNothing()) {
return;
}
if (NULL == paint || paint->canComputeFastBounds()) {
SkRect storage;
const SkRect* bounds = &dst;
if (paint) {
bounds = &paint->computeFastBounds(dst, &storage);
}
if (this->quickReject(*bounds)) {
return;
}
}
const int32_t w = bitmap.width();
const int32_t h = bitmap.height();
SkIRect c = center;
// pin center to the bounds of the bitmap
c.fLeft = SkMax32(0, center.fLeft);
c.fTop = SkMax32(0, center.fTop);
c.fRight = SkPin32(center.fRight, c.fLeft, w);
c.fBottom = SkPin32(center.fBottom, c.fTop, h);
const SkScalar srcX[4] = {
0, SkIntToScalar(c.fLeft), SkIntToScalar(c.fRight), SkIntToScalar(w)
};
const SkScalar srcY[4] = {
0, SkIntToScalar(c.fTop), SkIntToScalar(c.fBottom), SkIntToScalar(h)
};
SkScalar dstX[4] = {
dst.fLeft, dst.fLeft + SkIntToScalar(c.fLeft),
dst.fRight - SkIntToScalar(w - c.fRight), dst.fRight
};
SkScalar dstY[4] = {
dst.fTop, dst.fTop + SkIntToScalar(c.fTop),
dst.fBottom - SkIntToScalar(h - c.fBottom), dst.fBottom
};
if (dstX[1] > dstX[2]) {
dstX[1] = dstX[0] + (dstX[3] - dstX[0]) * c.fLeft / (w - c.width());
dstX[2] = dstX[1];
}
if (dstY[1] > dstY[2]) {
dstY[1] = dstY[0] + (dstY[3] - dstY[0]) * c.fTop / (h - c.height());
dstY[2] = dstY[1];
}
for (int y = 0; y < 3; y++) {
SkRect s, d;
s.fTop = srcY[y];
s.fBottom = srcY[y+1];
d.fTop = dstY[y];
d.fBottom = dstY[y+1];
for (int x = 0; x < 3; x++) {
s.fLeft = srcX[x];
s.fRight = srcX[x+1];
d.fLeft = dstX[x];
d.fRight = dstX[x+1];
this->internalDrawBitmapRect(bitmap, &s, d, paint,
kNone_DrawBitmapRectFlag);
}
}
}
void SkCanvas::drawBitmapNine(const SkBitmap& bitmap, const SkIRect& center,
const SkRect& dst, const SkPaint* paint) {
SkDEBUGCODE(bitmap.validate();)
// Need a device entry-point, so gpu can use a mesh
this->internalDrawBitmapNine(bitmap, center, dst, paint);
}
class SkDeviceFilteredPaint {
public:
SkDeviceFilteredPaint(SkBaseDevice* device, const SkPaint& paint) {
SkBaseDevice::TextFlags flags;
if (device->filterTextFlags(paint, &flags)) {
SkPaint* newPaint = fLazy.set(paint);
newPaint->setFlags(flags.fFlags);
newPaint->setHinting(flags.fHinting);
fPaint = newPaint;
} else {
fPaint = &paint;
}
}
const SkPaint& paint() const { return *fPaint; }
private:
const SkPaint* fPaint;
SkLazyPaint fLazy;
};
void SkCanvas::DrawRect(const SkDraw& draw, const SkPaint& paint,
const SkRect& r, SkScalar textSize) {
if (paint.getStyle() == SkPaint::kFill_Style) {
draw.fDevice->drawRect(draw, r, paint);
} else {
SkPaint p(paint);
p.setStrokeWidth(SkScalarMul(textSize, paint.getStrokeWidth()));
draw.fDevice->drawRect(draw, r, p);
}
}
void SkCanvas::DrawTextDecorations(const SkDraw& draw, const SkPaint& paint,
const char text[], size_t byteLength,
SkScalar x, SkScalar y) {
SkASSERT(byteLength == 0 || text != NULL);
// nothing to draw
if (text == NULL || byteLength == 0 ||
draw.fClip->isEmpty() ||
(paint.getAlpha() == 0 && paint.getXfermode() == NULL)) {
return;
}
SkScalar width = 0;
SkPoint start;
start.set(0, 0); // to avoid warning
if (paint.getFlags() & (SkPaint::kUnderlineText_Flag |
SkPaint::kStrikeThruText_Flag)) {
width = paint.measureText(text, byteLength);
SkScalar offsetX = 0;
if (paint.getTextAlign() == SkPaint::kCenter_Align) {
offsetX = SkScalarHalf(width);
} else if (paint.getTextAlign() == SkPaint::kRight_Align) {
offsetX = width;
}
start.set(x - offsetX, y);
}
if (0 == width) {
return;
}
uint32_t flags = paint.getFlags();
if (flags & (SkPaint::kUnderlineText_Flag |
SkPaint::kStrikeThruText_Flag)) {
SkScalar textSize = paint.getTextSize();
SkScalar height = SkScalarMul(textSize, kStdUnderline_Thickness);
SkRect r;
r.fLeft = start.fX;
r.fRight = start.fX + width;
if (flags & SkPaint::kUnderlineText_Flag) {
SkScalar offset = SkScalarMulAdd(textSize, kStdUnderline_Offset,
start.fY);
r.fTop = offset;
r.fBottom = offset + height;
DrawRect(draw, paint, r, textSize);
}
if (flags & SkPaint::kStrikeThruText_Flag) {
SkScalar offset = SkScalarMulAdd(textSize, kStdStrikeThru_Offset,
start.fY);
r.fTop = offset;
r.fBottom = offset + height;
DrawRect(draw, paint, r, textSize);
}
}
}
void SkCanvas::onDrawText(const void* text, size_t byteLength, SkScalar x, SkScalar y,
const SkPaint& paint) {
LOOPER_BEGIN(paint, SkDrawFilter::kText_Type, NULL)
while (iter.next()) {
SkDeviceFilteredPaint dfp(iter.fDevice, looper.paint());
iter.fDevice->drawText(iter, text, byteLength, x, y, dfp.paint());
DrawTextDecorations(iter, dfp.paint(),
static_cast<const char*>(text), byteLength, x, y);
}
LOOPER_END
}
void SkCanvas::onDrawPosText(const void* text, size_t byteLength, const SkPoint pos[],
const SkPaint& paint) {
LOOPER_BEGIN(paint, SkDrawFilter::kText_Type, NULL)
while (iter.next()) {
SkDeviceFilteredPaint dfp(iter.fDevice, looper.paint());
iter.fDevice->drawPosText(iter, text, byteLength, &pos->fX, 0, 2,
dfp.paint());
}
LOOPER_END
}
void SkCanvas::onDrawPosTextH(const void* text, size_t byteLength, const SkScalar xpos[],
SkScalar constY, const SkPaint& paint) {
LOOPER_BEGIN(paint, SkDrawFilter::kText_Type, NULL)
while (iter.next()) {
SkDeviceFilteredPaint dfp(iter.fDevice, looper.paint());
iter.fDevice->drawPosText(iter, text, byteLength, xpos, constY, 1,
dfp.paint());
}
LOOPER_END
}
void SkCanvas::onDrawTextOnPath(const void* text, size_t byteLength, const SkPath& path,
const SkMatrix* matrix, const SkPaint& paint) {
LOOPER_BEGIN(paint, SkDrawFilter::kText_Type, NULL)
while (iter.next()) {
iter.fDevice->drawTextOnPath(iter, text, byteLength, path,
matrix, looper.paint());
}
LOOPER_END
}
// These will become non-virtual, so they always call the (virtual) onDraw... method
void SkCanvas::drawText(const void* text, size_t byteLength, SkScalar x, SkScalar y,
const SkPaint& paint) {
this->onDrawText(text, byteLength, x, y, paint);
}
void SkCanvas::drawPosText(const void* text, size_t byteLength, const SkPoint pos[],
const SkPaint& paint) {
this->onDrawPosText(text, byteLength, pos, paint);
}
void SkCanvas::drawPosTextH(const void* text, size_t byteLength, const SkScalar xpos[],
SkScalar constY, const SkPaint& paint) {
this->onDrawPosTextH(text, byteLength, xpos, constY, paint);
}
void SkCanvas::drawTextOnPath(const void* text, size_t byteLength, const SkPath& path,
const SkMatrix* matrix, const SkPaint& paint) {
this->onDrawTextOnPath(text, byteLength, path, matrix, paint);
}
void SkCanvas::drawVertices(VertexMode vmode, int vertexCount,
const SkPoint verts[], const SkPoint texs[],
const SkColor colors[], SkXfermode* xmode,
const uint16_t indices[], int indexCount,
const SkPaint& paint) {
LOOPER_BEGIN(paint, SkDrawFilter::kPath_Type, NULL)
while (iter.next()) {
iter.fDevice->drawVertices(iter, vmode, vertexCount, verts, texs,
colors, xmode, indices, indexCount,
looper.paint());
}
LOOPER_END
}
//////////////////////////////////////////////////////////////////////////////
// These methods are NOT virtual, and therefore must call back into virtual
// methods, rather than actually drawing themselves.
//////////////////////////////////////////////////////////////////////////////
void SkCanvas::drawARGB(U8CPU a, U8CPU r, U8CPU g, U8CPU b,
SkXfermode::Mode mode) {
SkPaint paint;
paint.setARGB(a, r, g, b);
if (SkXfermode::kSrcOver_Mode != mode) {
paint.setXfermodeMode(mode);
}
this->drawPaint(paint);
}
void SkCanvas::drawColor(SkColor c, SkXfermode::Mode mode) {
SkPaint paint;
paint.setColor(c);
if (SkXfermode::kSrcOver_Mode != mode) {
paint.setXfermodeMode(mode);
}
this->drawPaint(paint);
}
void SkCanvas::drawPoint(SkScalar x, SkScalar y, const SkPaint& paint) {
SkPoint pt;
pt.set(x, y);
this->drawPoints(kPoints_PointMode, 1, &pt, paint);
}
void SkCanvas::drawPoint(SkScalar x, SkScalar y, SkColor color) {
SkPoint pt;
SkPaint paint;
pt.set(x, y);
paint.setColor(color);
this->drawPoints(kPoints_PointMode, 1, &pt, paint);
}
void SkCanvas::drawLine(SkScalar x0, SkScalar y0, SkScalar x1, SkScalar y1,
const SkPaint& paint) {
SkPoint pts[2];
pts[0].set(x0, y0);
pts[1].set(x1, y1);
this->drawPoints(kLines_PointMode, 2, pts, paint);
}
void SkCanvas::drawRectCoords(SkScalar left, SkScalar top,
SkScalar right, SkScalar bottom,
const SkPaint& paint) {
SkRect r;
r.set(left, top, right, bottom);
this->drawRect(r, paint);
}
void SkCanvas::drawCircle(SkScalar cx, SkScalar cy, SkScalar radius,
const SkPaint& paint) {
if (radius < 0) {
radius = 0;
}
SkRect r;
r.set(cx - radius, cy - radius, cx + radius, cy + radius);
this->drawOval(r, paint);
}
void SkCanvas::drawRoundRect(const SkRect& r, SkScalar rx, SkScalar ry,
const SkPaint& paint) {
if (rx > 0 && ry > 0) {
if (paint.canComputeFastBounds()) {
SkRect storage;
if (this->quickReject(paint.computeFastBounds(r, &storage))) {
return;
}
}
SkRRect rrect;
rrect.setRectXY(r, rx, ry);
this->drawRRect(rrect, paint);
} else {
this->drawRect(r, paint);
}
}
void SkCanvas::drawArc(const SkRect& oval, SkScalar startAngle,
SkScalar sweepAngle, bool useCenter,
const SkPaint& paint) {
if (SkScalarAbs(sweepAngle) >= SkIntToScalar(360)) {
this->drawOval(oval, paint);
} else {
SkPath path;
if (useCenter) {
path.moveTo(oval.centerX(), oval.centerY());
}
path.arcTo(oval, startAngle, sweepAngle, !useCenter);
if (useCenter) {
path.close();
}
this->drawPath(path, paint);
}
}
void SkCanvas::drawTextOnPathHV(const void* text, size_t byteLength,
const SkPath& path, SkScalar hOffset,
SkScalar vOffset, const SkPaint& paint) {
SkMatrix matrix;
matrix.setTranslate(hOffset, vOffset);
this->drawTextOnPath(text, byteLength, path, &matrix, paint);
}
///////////////////////////////////////////////////////////////////////////////
void SkCanvas::EXPERIMENTAL_optimize(SkPicture* picture) {
SkBaseDevice* device = this->getDevice();
if (NULL != device) {
device->EXPERIMENTAL_optimize(picture);
}
}
void SkCanvas::EXPERIMENTAL_purge(SkPicture* picture) {
SkBaseDevice* device = this->getTopDevice();
if (NULL != device) {
device->EXPERIMENTAL_purge(picture);
}
}
void SkCanvas::drawPicture(SkPicture& picture) {
SkBaseDevice* device = this->getTopDevice();
if (NULL != device) {
// Canvas has to first give the device the opportunity to render
// the picture itself.
if (device->EXPERIMENTAL_drawPicture(this, &picture)) {
return; // the device has rendered the entire picture
}
}
picture.draw(this);
}
///////////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////
SkCanvas::LayerIter::LayerIter(SkCanvas* canvas, bool skipEmptyClips) {
SK_COMPILE_ASSERT(sizeof(fStorage) >= sizeof(SkDrawIter), fStorage_too_small);
SkASSERT(canvas);
fImpl = new (fStorage) SkDrawIter(canvas, skipEmptyClips);
fDone = !fImpl->next();
}
SkCanvas::LayerIter::~LayerIter() {
fImpl->~SkDrawIter();
}
void SkCanvas::LayerIter::next() {
fDone = !fImpl->next();
}
SkBaseDevice* SkCanvas::LayerIter::device() const {
return fImpl->getDevice();
}
const SkMatrix& SkCanvas::LayerIter::matrix() const {
return fImpl->getMatrix();
}
const SkPaint& SkCanvas::LayerIter::paint() const {
const SkPaint* paint = fImpl->getPaint();
if (NULL == paint) {
paint = &fDefaultPaint;
}
return *paint;
}
const SkRegion& SkCanvas::LayerIter::clip() const { return fImpl->getClip(); }
int SkCanvas::LayerIter::x() const { return fImpl->getX(); }
int SkCanvas::LayerIter::y() const { return fImpl->getY(); }
///////////////////////////////////////////////////////////////////////////////
SkCanvas::ClipVisitor::~ClipVisitor() { }
///////////////////////////////////////////////////////////////////////////////
static bool supported_for_raster_canvas(const SkImageInfo& info) {
switch (info.alphaType()) {
case kPremul_SkAlphaType:
case kOpaque_SkAlphaType:
break;
default:
return false;
}
switch (info.colorType()) {
case kAlpha_8_SkColorType:
case kRGB_565_SkColorType:
case kN32_SkColorType:
break;
default:
return false;
}
return true;
}
SkCanvas* SkCanvas::NewRaster(const SkImageInfo& info) {
if (!supported_for_raster_canvas(info)) {
return NULL;
}
SkBitmap bitmap;
if (!bitmap.allocPixels(info)) {
return NULL;
}
// should this functionality be moved into allocPixels()?
if (!bitmap.info().isOpaque()) {
bitmap.eraseColor(0);
}
return SkNEW_ARGS(SkCanvas, (bitmap));
}
SkCanvas* SkCanvas::NewRasterDirect(const SkImageInfo& info, void* pixels, size_t rowBytes) {
if (!supported_for_raster_canvas(info)) {
return NULL;
}
SkBitmap bitmap;
if (!bitmap.installPixels(info, pixels, rowBytes)) {
return NULL;
}
return SkNEW_ARGS(SkCanvas, (bitmap));
}
|