aboutsummaryrefslogtreecommitdiffhomepage
path: root/src/core/Sk4x4f.h
blob: 0fd6b38ef715bf8a6067f3b546735760b9b6733e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
/*
 * Copyright 2016 Google Inc.
 *
 * Use of this source code is governed by a BSD-style license that can be
 * found in the LICENSE file.
 */

#ifndef Sk4x4f_DEFINED
#define Sk4x4f_DEFINED

#include "SkNx.h"

namespace {

struct Sk4x4f {
    Sk4f r,g,b,a;

    static Sk4x4f Transpose(const Sk4f&, const Sk4f&, const Sk4f&, const Sk4f&);
    static Sk4x4f Transpose(const   float[16]);
    static Sk4x4f Transpose(const uint8_t[16]);

    void transpose(Sk4f* x, Sk4f* y, Sk4f* z, Sk4f* w) const {
        auto t = Transpose(r,g,b,a);
        *x = t.r;
        *y = t.g;
        *z = t.b;
        *w = t.a;
    }
    void transpose(  float[16]) const;
    void transpose(uint8_t[16]) const;
};

#if 1 && !defined(SKNX_NO_SIMD) && SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SSE2

inline Sk4x4f Sk4x4f::Transpose(const Sk4f& x, const Sk4f& y, const Sk4f& z, const Sk4f& w) {
    auto r = x.fVec,
         g = y.fVec,
         b = z.fVec,
         a = w.fVec;
    _MM_TRANSPOSE4_PS(r,g,b,a);
    return { r,g,b,a };
}

inline Sk4x4f Sk4x4f::Transpose(const float fs[16]) {
    return Transpose(Sk4f::Load(fs+0), Sk4f::Load(fs+4), Sk4f::Load(fs+8), Sk4f::Load(fs+12));
}

inline Sk4x4f Sk4x4f::Transpose(const uint8_t bs[16]) {
    auto b16 = _mm_loadu_si128((const __m128i*)bs);

    auto mask = _mm_set1_epi32(0xFF);
    auto r = _mm_cvtepi32_ps(_mm_and_si128(mask,               (b16    ))),
         g = _mm_cvtepi32_ps(_mm_and_si128(mask, _mm_srli_epi32(b16,  8))),
         b = _mm_cvtepi32_ps(_mm_and_si128(mask, _mm_srli_epi32(b16, 16))),
         a = _mm_cvtepi32_ps(                    _mm_srli_epi32(b16, 24));
    return { r,g,b,a };
}

inline void Sk4x4f::transpose(float fs[16]) const {
    Sk4f x,y,z,w;
    this->transpose(&x,&y,&z,&w);
    x.store(fs+ 0);
    y.store(fs+ 4);
    z.store(fs+ 8);
    w.store(fs+12);
}

inline void Sk4x4f::transpose(uint8_t bs[16]) const {
    auto R =                _mm_cvttps_epi32(r.fVec),
         G = _mm_slli_epi32(_mm_cvttps_epi32(g.fVec),  8),
         B = _mm_slli_epi32(_mm_cvttps_epi32(b.fVec), 16),
         A = _mm_slli_epi32(_mm_cvttps_epi32(a.fVec), 24);
    _mm_storeu_si128((__m128i*)bs, _mm_or_si128(A, _mm_or_si128(B, _mm_or_si128(G, R))));
}

#elif defined(SK_ARM_HAS_NEON)

inline Sk4x4f Sk4x4f::Transpose(const Sk4f& x, const Sk4f& y, const Sk4f& z, const Sk4f& w) {
    float32x4x2_t xy = vuzpq_f32(x.fVec, y.fVec),
                  zw = vuzpq_f32(z.fVec, w.fVec),
                  rb = vuzpq_f32(xy.val[0], zw.val[0]),
                  ga = vuzpq_f32(xy.val[1], zw.val[1]);
    return { rb.val[0], ga.val[0], rb.val[1], ga.val[1] };
}

inline Sk4x4f Sk4x4f::Transpose(const float fs[16]) {
    float32x4x4_t v = vld4q_f32(fs);
    return { v.val[0], v.val[1], v.val[2], v.val[3] };
}

inline Sk4x4f Sk4x4f::Transpose(const uint8_t bs[16]) {
    auto b16 = vreinterpretq_u32_u8(vld1q_u8(bs));
    auto r =   vcvtq_f32_u32(vandq_u32(vdupq_n_u32(0x000000FF), b16)    ),
         g = vcvtq_n_f32_u32(vandq_u32(vdupq_n_u32(0x0000FF00), b16),  8),
         b = vcvtq_n_f32_u32(vandq_u32(vdupq_n_u32(0x00FF0000), b16), 16),
         a = vcvtq_n_f32_u32(vandq_u32(vdupq_n_u32(0xFF000000), b16), 24);
    return { r,g,b,a };
}

inline void Sk4x4f::transpose(float fs[16]) const {
    float32x4x4_t v = {{ r.fVec, g.fVec, b.fVec, a.fVec }};
    vst4q_f32(fs, v);
}

inline void Sk4x4f::transpose(uint8_t bs[16]) const {
    auto R = vandq_u32(vdupq_n_u32(0x000000FF),   vcvtq_u32_f32(r.fVec    )),
         G = vandq_u32(vdupq_n_u32(0x0000FF00), vcvtq_n_u32_f32(g.fVec,  8)),
         B = vandq_u32(vdupq_n_u32(0x00FF0000), vcvtq_n_u32_f32(b.fVec, 16)),
         A = vandq_u32(vdupq_n_u32(0xFF000000), vcvtq_n_u32_f32(a.fVec, 24));
    vst1q_u8(bs, vreinterpretq_u8_u32(vorrq_u32(A, vorrq_u32(B, vorrq_u32(G, R)))));
}

#else

inline Sk4x4f Sk4x4f::Transpose(const Sk4f& x, const Sk4f& y, const Sk4f& z, const Sk4f& w) {
    return {
        { x[0], y[0], z[0], w[0] },
        { x[1], y[1], z[1], w[1] },
        { x[2], y[2], z[2], w[2] },
        { x[3], y[3], z[3], w[3] },
    };
}

inline Sk4x4f Sk4x4f::Transpose(const float fs[16]) {
    return Transpose(Sk4f::Load(fs+0), Sk4f::Load(fs+4), Sk4f::Load(fs+8), Sk4f::Load(fs+12));
}

inline Sk4x4f Sk4x4f::Transpose(const uint8_t bs[16]) {
    return {
        { (float)bs[0], (float)bs[4], (float)bs[ 8], (float)bs[12] },
        { (float)bs[1], (float)bs[5], (float)bs[ 9], (float)bs[13] },
        { (float)bs[2], (float)bs[6], (float)bs[10], (float)bs[14] },
        { (float)bs[3], (float)bs[7], (float)bs[11], (float)bs[15] },
    };
}

inline void Sk4x4f::transpose(float fs[16]) const {
    Sk4f x,y,z,w;
    this->transpose(&x,&y,&z,&w);
    x.store(fs+ 0);
    y.store(fs+ 4);
    z.store(fs+ 8);
    w.store(fs+12);
}

inline void Sk4x4f::transpose(uint8_t bs[16]) const {
    bs[ 0] = (uint8_t)r[0]; bs[ 1] = (uint8_t)g[0]; bs[ 2] = (uint8_t)b[0]; bs[ 3] = (uint8_t)a[0];
    bs[ 4] = (uint8_t)r[1]; bs[ 5] = (uint8_t)g[1]; bs[ 6] = (uint8_t)b[1]; bs[ 7] = (uint8_t)a[1];
    bs[ 8] = (uint8_t)r[2]; bs[ 9] = (uint8_t)g[2]; bs[10] = (uint8_t)b[2]; bs[11] = (uint8_t)a[2];
    bs[12] = (uint8_t)r[3]; bs[13] = (uint8_t)g[3]; bs[14] = (uint8_t)b[3]; bs[15] = (uint8_t)a[3];
}

#endif

}  // namespace

#endif//Sk4x4f_DEFINED