aboutsummaryrefslogtreecommitdiffhomepage
path: root/include/private/SkTHash.h
blob: 43234c5fe440a904598587273a445a7d9e5079ca (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
/*
 * Copyright 2015 Google Inc.
 *
 * Use of this source code is governed by a BSD-style license that can be
 * found in the LICENSE file.
 */

#ifndef SkTHash_DEFINED
#define SkTHash_DEFINED

#include "SkChecksum.h"
#include "SkTypes.h"
#include "SkTemplates.h"
#include <new>

// Before trying to use SkTHashTable, look below to see if SkTHashMap or SkTHashSet works for you.
// They're easier to use, usually perform the same, and have fewer sharp edges.

// T and K are treated as ordinary copyable C++ types.
// Traits must have:
//   - static K GetKey(T)
//   - static uint32_t Hash(K)
// If the key is large and stored inside T, you may want to make K a const&.
// Similarly, if T is large you might want it to be a pointer.
template <typename T, typename K, typename Traits = T>
class SkTHashTable {
public:
    SkTHashTable() : fCount(0), fCapacity(0) {}
    SkTHashTable(SkTHashTable&& other)
        : fCount(other.fCount)
        , fCapacity(other.fCapacity)
        , fSlots(std::move(other.fSlots)) { other.fCount = other.fCapacity = 0; }

    SkTHashTable& operator=(SkTHashTable&& other) {
        if (this != &other) {
            this->~SkTHashTable();
            new (this) SkTHashTable(std::move(other));
        }
        return *this;
    }

    // Clear the table.
    void reset() { *this = SkTHashTable(); }

    // How many entries are in the table?
    int count() const { return fCount; }

    // Approximately how many bytes of memory do we use beyond sizeof(*this)?
    size_t approxBytesUsed() const { return fCapacity * sizeof(Slot); }

    // !!!!!!!!!!!!!!!!!                 CAUTION                   !!!!!!!!!!!!!!!!!
    // set(), find() and foreach() all allow mutable access to table entries.
    // If you change an entry so that it no longer has the same key, all hell
    // will break loose.  Do not do that!
    //
    // Please prefer to use SkTHashMap or SkTHashSet, which do not have this danger.

    // The pointers returned by set() and find() are valid only until the next call to set().
    // The pointers you receive in foreach() are only valid for its duration.

    // Copy val into the hash table, returning a pointer to the copy now in the table.
    // If there already is an entry in the table with the same key, we overwrite it.
    T* set(T val) {
        if (4 * fCount >= 3 * fCapacity) {
            this->resize(fCapacity > 0 ? fCapacity * 2 : 4);
        }
        return this->uncheckedSet(std::move(val));
    }

    // If there is an entry in the table with this key, return a pointer to it.  If not, null.
    T* find(const K& key) const {
        uint32_t hash = Hash(key);
        int index = hash & (fCapacity-1);
        for (int n = 0; n < fCapacity; n++) {
            Slot& s = fSlots[index];
            if (s.empty()) {
                return nullptr;
            }
            if (hash == s.hash && key == Traits::GetKey(s.val)) {
                return &s.val;
            }
            index = this->next(index);
        }
        SkASSERT(fCapacity == 0);
        return nullptr;
    }

    // Remove the value with this key from the hash table.
    void remove(const K& key) {
        SkASSERT(this->find(key));

        uint32_t hash = Hash(key);
        int index = hash & (fCapacity-1);
        for (int n = 0; n < fCapacity; n++) {
            Slot& s = fSlots[index];
            SkASSERT(!s.empty());
            if (hash == s.hash && key == Traits::GetKey(s.val)) {
                fCount--;
                break;
            }
            index = this->next(index);
        }

        // Rearrange elements to restore the invariants for linear probing.
        for (;;) {
            Slot& emptySlot = fSlots[index];
            int emptyIndex = index;
            int originalIndex;
            // Look for an element that can be moved into the empty slot.
            // If the empty slot is in between where an element landed, and its native slot, then
            // move it to the empty slot. Don't move it if its native slot is in between where
            // the element landed and the empty slot.
            // [native] <= [empty] < [candidate] == GOOD, can move candidate to empty slot
            // [empty] < [native] < [candidate] == BAD, need to leave candidate where it is
            do {
                index = this->next(index);
                Slot& s = fSlots[index];
                if (s.empty()) {
                    // We're done shuffling elements around.  Clear the last empty slot.
                    emptySlot = Slot();
                    return;
                }
                originalIndex = s.hash & (fCapacity - 1);
            } while ((index <= originalIndex && originalIndex < emptyIndex)
                     || (originalIndex < emptyIndex && emptyIndex < index)
                     || (emptyIndex < index && index <= originalIndex));
            // Move the element to the empty slot.
            Slot& moveFrom = fSlots[index];
            emptySlot = std::move(moveFrom);
        }
    }

    // Call fn on every entry in the table.  You may mutate the entries, but be very careful.
    template <typename Fn>  // f(T*)
    void foreach(Fn&& fn) {
        for (int i = 0; i < fCapacity; i++) {
            if (!fSlots[i].empty()) {
                fn(&fSlots[i].val);
            }
        }
    }

    // Call fn on every entry in the table.  You may not mutate anything.
    template <typename Fn>  // f(T) or f(const T&)
    void foreach(Fn&& fn) const {
        for (int i = 0; i < fCapacity; i++) {
            if (!fSlots[i].empty()) {
                fn(fSlots[i].val);
            }
        }
    }

private:
    T* uncheckedSet(T&& val) {
        const K& key = Traits::GetKey(val);
        uint32_t hash = Hash(key);
        int index = hash & (fCapacity-1);
        for (int n = 0; n < fCapacity; n++) {
            Slot& s = fSlots[index];
            if (s.empty()) {
                // New entry.
                s.val  = std::move(val);
                s.hash = hash;
                fCount++;
                return &s.val;
            }
            if (hash == s.hash && key == Traits::GetKey(s.val)) {
                // Overwrite previous entry.
                // Note: this triggers extra copies when adding the same value repeatedly.
                s.val = std::move(val);
                return &s.val;
            }

            index = this->next(index);
        }
        SkASSERT(false);
        return nullptr;
    }

    void resize(int capacity) {
        int oldCapacity = fCapacity;
        SkDEBUGCODE(int oldCount = fCount);

        fCount = 0;
        fCapacity = capacity;
        SkAutoTArray<Slot> oldSlots = std::move(fSlots);
        fSlots = SkAutoTArray<Slot>(capacity);

        for (int i = 0; i < oldCapacity; i++) {
            Slot& s = oldSlots[i];
            if (!s.empty()) {
                this->uncheckedSet(std::move(s.val));
            }
        }
        SkASSERT(fCount == oldCount);
    }

    int next(int index) const {
        index--;
        if (index < 0) { index += fCapacity; }
        return index;
    }

    static uint32_t Hash(const K& key) {
        uint32_t hash = Traits::Hash(key);
        return hash ? hash : 1;  // We reserve hash 0 to mark empty.
    }

    struct Slot {
        Slot() : hash(0) {}
        Slot(T&& v, uint32_t h) : val(std::move(v)), hash(h) {}
        Slot(Slot&& o) { *this = std::move(o); }
        Slot& operator=(Slot&& o) {
            val  = std::move(o.val);
            hash = o.hash;
            return *this;
        }

        bool empty() const { return this->hash == 0; }

        T        val;
        uint32_t hash;
    };

    int fCount, fCapacity;
    SkAutoTArray<Slot> fSlots;

    SkTHashTable(const SkTHashTable&) = delete;
    SkTHashTable& operator=(const SkTHashTable&) = delete;
};

// Maps K->V.  A more user-friendly wrapper around SkTHashTable, suitable for most use cases.
// K and V are treated as ordinary copyable C++ types, with no assumed relationship between the two.
template <typename K, typename V, typename HashK = SkGoodHash>
class SkTHashMap {
public:
    SkTHashMap() {}
    SkTHashMap(SkTHashMap&&) = default;
    SkTHashMap& operator=(SkTHashMap&&) = default;

    // Clear the map.
    void reset() { fTable.reset(); }

    // How many key/value pairs are in the table?
    int count() const { return fTable.count(); }

    // Approximately how many bytes of memory do we use beyond sizeof(*this)?
    size_t approxBytesUsed() const { return fTable.approxBytesUsed(); }

    // N.B. The pointers returned by set() and find() are valid only until the next call to set().

    // Set key to val in the table, replacing any previous value with the same key.
    // We copy both key and val, and return a pointer to the value copy now in the table.
    V* set(K key, V val) {
        Pair* out = fTable.set({std::move(key), std::move(val)});
        return &out->val;
    }

    // If there is key/value entry in the table with this key, return a pointer to the value.
    // If not, return null.
    V* find(const K& key) const {
        if (Pair* p = fTable.find(key)) {
            return &p->val;
        }
        return nullptr;
    }

    // Remove the key/value entry in the table with this key.
    void remove(const K& key) {
        SkASSERT(this->find(key));
        fTable.remove(key);
    }

    // Call fn on every key/value pair in the table.  You may mutate the value but not the key.
    template <typename Fn>  // f(K, V*) or f(const K&, V*)
    void foreach(Fn&& fn) {
        fTable.foreach([&fn](Pair* p){ fn(p->key, &p->val); });
    }

    // Call fn on every key/value pair in the table.  You may not mutate anything.
    template <typename Fn>  // f(K, V), f(const K&, V), f(K, const V&) or f(const K&, const V&).
    void foreach(Fn&& fn) const {
        fTable.foreach([&fn](const Pair& p){ fn(p.key, p.val); });
    }

private:
    struct Pair {
        K key;
        V val;
        static const K& GetKey(const Pair& p) { return p.key; }
        static uint32_t Hash(const K& key) { return HashK()(key); }
    };

    SkTHashTable<Pair, K> fTable;

    SkTHashMap(const SkTHashMap&) = delete;
    SkTHashMap& operator=(const SkTHashMap&) = delete;
};

// A set of T.  T is treated as an ordinary copyable C++ type.
template <typename T, typename HashT = SkGoodHash>
class SkTHashSet {
public:
    SkTHashSet() {}
    SkTHashSet(SkTHashSet&&) = default;
    SkTHashSet& operator=(SkTHashSet&&) = default;

    // Clear the set.
    void reset() { fTable.reset(); }

    // How many items are in the set?
    int count() const { return fTable.count(); }

    // Approximately how many bytes of memory do we use beyond sizeof(*this)?
    size_t approxBytesUsed() const { return fTable.approxBytesUsed(); }

    // Copy an item into the set.
    void add(T item) { fTable.set(std::move(item)); }

    // Is this item in the set?
    bool contains(const T& item) const { return SkToBool(this->find(item)); }

    // If an item equal to this is in the set, return a pointer to it, otherwise null.
    // This pointer remains valid until the next call to add().
    const T* find(const T& item) const { return fTable.find(item); }

    // Remove the item in the set equal to this.
    void remove(const T& item) {
        SkASSERT(this->contains(item));
        fTable.remove(item);
    }

    // Call fn on every item in the set.  You may not mutate anything.
    template <typename Fn>  // f(T), f(const T&)
    void foreach (Fn&& fn) const {
        fTable.foreach(fn);
    }

private:
    struct Traits {
        static const T& GetKey(const T& item) { return item; }
        static uint32_t Hash(const T& item) { return HashT()(item); }
    };
    SkTHashTable<T, T, Traits> fTable;

    SkTHashSet(const SkTHashSet&) = delete;
    SkTHashSet& operator=(const SkTHashSet&) = delete;
};

#endif//SkTHash_DEFINED