aboutsummaryrefslogtreecommitdiffhomepage
path: root/src/utils/SkDashPath.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'src/utils/SkDashPath.cpp')
-rw-r--r--src/utils/SkDashPath.cpp131
1 files changed, 131 insertions, 0 deletions
diff --git a/src/utils/SkDashPath.cpp b/src/utils/SkDashPath.cpp
index cbfc8f2168..8d6c3cf567 100644
--- a/src/utils/SkDashPath.cpp
+++ b/src/utils/SkDashPath.cpp
@@ -83,11 +83,95 @@ static void outset_for_stroke(SkRect* rect, const SkStrokeRec& rec) {
rect->outset(radius, radius);
}
+#ifndef SK_SUPPORT_LEGACY_DASH_CULL_PATH
+// If line is zero-length, bump out the end by a tiny amount
+// to draw endcaps. The bump factor is sized so that
+// SkPoint::Distance() computes a non-zero length.
+// Offsets SK_ScalarNearlyZero or smaller create empty paths when Iter measures length.
+// Large values are scaled by SK_ScalarNearlyZero so significant bits change.
+static void adjust_zero_length_line(SkPoint pts[2]) {
+ SkASSERT(pts[0] == pts[1]);
+ pts[1].fX += SkTMax(1.001f, pts[1].fX) * SK_ScalarNearlyZero;
+}
+
+static bool clip_line(SkPoint pts[2], const SkRect& bounds, SkScalar intervalLength,
+ SkScalar priorPhase) {
+ SkVector dxy = pts[1] - pts[0];
+
+ // only horizontal or vertical lines
+ if (dxy.fX && dxy.fY) {
+ return false;
+ }
+ int xyOffset = SkToBool(dxy.fY); // 0 to adjust horizontal, 1 to adjust vertical
+
+ SkScalar minXY = (&pts[0].fX)[xyOffset];
+ SkScalar maxXY = (&pts[1].fX)[xyOffset];
+ bool swapped = maxXY < minXY;
+ if (swapped) {
+ SkTSwap(minXY, maxXY);
+ }
+
+ SkASSERT(minXY <= maxXY);
+ SkScalar leftTop = (&bounds.fLeft)[xyOffset];
+ SkScalar rightBottom = (&bounds.fRight)[xyOffset];
+ if (maxXY < leftTop || minXY > rightBottom) {
+ return false;
+ }
+
+ // Now we actually perform the chop, removing the excess to the left/top and
+ // right/bottom of the bounds (keeping our new line "in phase" with the dash,
+ // hence the (mod intervalLength).
+
+ if (minXY < leftTop) {
+ minXY = leftTop - SkScalarMod(leftTop - minXY, intervalLength);
+ if (!swapped) {
+ minXY -= priorPhase; // for rectangles, adjust by prior phase
+ }
+ }
+ if (maxXY > rightBottom) {
+ maxXY = rightBottom + SkScalarMod(maxXY - rightBottom, intervalLength);
+ if (swapped) {
+ maxXY += priorPhase; // for rectangles, adjust by prior phase
+ }
+ }
+
+ SkASSERT(maxXY >= minXY);
+ if (swapped) {
+ SkTSwap(minXY, maxXY);
+ }
+ (&pts[0].fX)[xyOffset] = minXY;
+ (&pts[1].fX)[xyOffset] = maxXY;
+
+ if (minXY == maxXY) {
+ adjust_zero_length_line(pts);
+ }
+ return true;
+}
+
+static bool contains_inclusive(const SkRect& rect, const SkPoint& pt) {
+ return rect.fLeft <= pt.fX && pt.fX <= rect.fRight &&
+ rect.fTop <= pt.fY && pt.fY <= rect.fBottom;
+}
+
+// Returns true is b is between a and c, that is: a <= b <= c, or a >= b >= c.
+// Can perform this test with one branch by observing that, relative to b,
+// the condition is true only if one side is positive and one side is negative.
+// If the numbers are very small, the optimization may return the wrong result
+// because the multiply may generate a zero where the simple compare does not.
+// For this reason the assert does not fire when all three numbers are near zero.
+static bool between(SkScalar a, SkScalar b, SkScalar c) {
+ SkASSERT(((a <= b && b <= c) || (a >= b && b >= c)) == ((a - b) * (c - b) <= 0)
+ || (SkScalarNearlyZero(a) && SkScalarNearlyZero(b) && SkScalarNearlyZero(c)));
+ return (a - b) * (c - b) <= 0;
+}
+#endif
+
// Only handles lines for now. If returns true, dstPath is the new (smaller)
// path. If returns false, then dstPath parameter is ignored.
static bool cull_path(const SkPath& srcPath, const SkStrokeRec& rec,
const SkRect* cullRect, SkScalar intervalLength,
SkPath* dstPath) {
+#ifdef SK_SUPPORT_LEGACY_DASH_CULL_PATH
if (nullptr == cullRect) {
return false;
}
@@ -146,6 +230,53 @@ static bool cull_path(const SkPath& srcPath, const SkStrokeRec& rec,
if (minX == maxX) {
pts[1].fX += maxX * FLT_EPSILON * 32; // 16 instead of 32 does not draw; length stays zero
}
+#else // !SK_SUPPORT_LEGACY_DASH_CULL_PATH
+ SkPoint pts[4];
+ if (nullptr == cullRect) {
+ if (srcPath.isLine(pts) && pts[0] == pts[1]) {
+ adjust_zero_length_line(pts);
+ } else {
+ return false;
+ }
+ } else {
+ SkRect bounds;
+ bool isLine = srcPath.isLine(pts);
+ bool isRect = !isLine && srcPath.isRect(nullptr);
+ if (!isLine && !isRect) {
+ return false;
+ }
+ bounds = *cullRect;
+ outset_for_stroke(&bounds, rec);
+ if (isRect) {
+ // break rect into four lines, and call each one separately
+ SkPath::Iter iter(srcPath, false);
+ SkAssertResult(SkPath::kMove_Verb == iter.next(pts));
+ SkScalar priorLength = 0;
+ while (SkPath::kLine_Verb == iter.next(pts)) {
+ SkVector v = pts[1] - pts[0];
+ // if line is entirely outside clip rect, skip it
+ if (v.fX ? between(bounds.fTop, pts[0].fY, bounds.fBottom) :
+ between(bounds.fLeft, pts[0].fX, bounds.fRight)) {
+ bool skipMoveTo = contains_inclusive(bounds, pts[0]);
+ if (clip_line(pts, bounds, intervalLength,
+ SkScalarMod(priorLength, intervalLength))) {
+ if (0 == priorLength || !skipMoveTo) {
+ dstPath->moveTo(pts[0]);
+ }
+ dstPath->lineTo(pts[1]);
+ }
+ }
+ // keep track of all prior lengths to set phase of next line
+ priorLength += SkScalarAbs(v.fX ? v.fX : v.fY);
+ }
+ return !dstPath->isEmpty();
+ }
+ SkASSERT(isLine);
+ if (!clip_line(pts, bounds, intervalLength, 0)) {
+ return false;
+ }
+ }
+#endif
dstPath->moveTo(pts[0]);
dstPath->lineTo(pts[1]);
return true;