aboutsummaryrefslogtreecommitdiffhomepage
path: root/src/utils/SkDashPath.cpp
blob: cbfc8f216865efeeab3ed4634b9c9a306b66e299 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
/*
 * Copyright 2014 Google Inc.
 *
 * Use of this source code is governed by a BSD-style license that can be
 * found in the LICENSE file.
 */

#include "SkDashPathPriv.h"
#include "SkPathMeasure.h"
#include "SkPointPriv.h"
#include "SkStrokeRec.h"

static inline int is_even(int x) {
    return !(x & 1);
}

static SkScalar find_first_interval(const SkScalar intervals[], SkScalar phase,
                                    int32_t* index, int count) {
    for (int i = 0; i < count; ++i) {
        SkScalar gap = intervals[i];
        if (phase > gap || (phase == gap && gap)) {
            phase -= gap;
        } else {
            *index = i;
            return gap - phase;
        }
    }
    // If we get here, phase "appears" to be larger than our length. This
    // shouldn't happen with perfect precision, but we can accumulate errors
    // during the initial length computation (rounding can make our sum be too
    // big or too small. In that event, we just have to eat the error here.
    *index = 0;
    return intervals[0];
}

void SkDashPath::CalcDashParameters(SkScalar phase, const SkScalar intervals[], int32_t count,
                                    SkScalar* initialDashLength, int32_t* initialDashIndex,
                                    SkScalar* intervalLength, SkScalar* adjustedPhase) {
    SkScalar len = 0;
    for (int i = 0; i < count; i++) {
        len += intervals[i];
    }
    *intervalLength = len;
    // Adjust phase to be between 0 and len, "flipping" phase if negative.
    // e.g., if len is 100, then phase of -20 (or -120) is equivalent to 80
    if (adjustedPhase) {
        if (phase < 0) {
            phase = -phase;
            if (phase > len) {
                phase = SkScalarMod(phase, len);
            }
            phase = len - phase;

            // Due to finite precision, it's possible that phase == len,
            // even after the subtract (if len >>> phase), so fix that here.
            // This fixes http://crbug.com/124652 .
            SkASSERT(phase <= len);
            if (phase == len) {
                phase = 0;
            }
        } else if (phase >= len) {
            phase = SkScalarMod(phase, len);
        }
        *adjustedPhase = phase;
    }
    SkASSERT(phase >= 0 && phase < len);

    *initialDashLength = find_first_interval(intervals, phase,
                                            initialDashIndex, count);

    SkASSERT(*initialDashLength >= 0);
    SkASSERT(*initialDashIndex >= 0 && *initialDashIndex < count);
}

static void outset_for_stroke(SkRect* rect, const SkStrokeRec& rec) {
    SkScalar radius = SkScalarHalf(rec.getWidth());
    if (0 == radius) {
        radius = SK_Scalar1;    // hairlines
    }
    if (SkPaint::kMiter_Join == rec.getJoin()) {
        radius *= rec.getMiter();
    }
    rect->outset(radius, radius);
}

// Only handles lines for now. If returns true, dstPath is the new (smaller)
// path. If returns false, then dstPath parameter is ignored.
static bool cull_path(const SkPath& srcPath, const SkStrokeRec& rec,
                      const SkRect* cullRect, SkScalar intervalLength,
                      SkPath* dstPath) {
    if (nullptr == cullRect) {
        return false;
    }

    SkPoint pts[2];
    if (!srcPath.isLine(pts)) {
        return false;
    }

    SkRect bounds = *cullRect;
    outset_for_stroke(&bounds, rec);

    SkScalar dx = pts[1].x() - pts[0].x();
    SkScalar dy = pts[1].y() - pts[0].y();

    // just do horizontal lines for now (lazy)
    if (dy) {
        return false;
    }

    SkScalar minX = pts[0].fX;
    SkScalar maxX = pts[1].fX;

    if (dx < 0) {
        SkTSwap(minX, maxX);
    }

    SkASSERT(minX <= maxX);
    if (maxX < bounds.fLeft || minX > bounds.fRight) {
        return false;
    }

    // Now we actually perform the chop, removing the excess to the left and
    // right of the bounds (keeping our new line "in phase" with the dash,
    // hence the (mod intervalLength).

    if (minX < bounds.fLeft) {
        minX = bounds.fLeft - SkScalarMod(bounds.fLeft - minX,
                                          intervalLength);
    }
    if (maxX > bounds.fRight) {
        maxX = bounds.fRight + SkScalarMod(maxX - bounds.fRight,
                                           intervalLength);
    }

    SkASSERT(maxX >= minX);
    if (dx < 0) {
        SkTSwap(minX, maxX);
    }
    pts[0].fX = minX;
    pts[1].fX = maxX;

    // If line is zero-length, bump out the end by a tiny amount
    // to draw endcaps. The bump factor is sized so that
    // SkPoint::Distance() computes a non-zero length.
    if (minX == maxX) {
        pts[1].fX += maxX * FLT_EPSILON * 32;  // 16 instead of 32 does not draw; length stays zero
    }
    dstPath->moveTo(pts[0]);
    dstPath->lineTo(pts[1]);
    return true;
}

class SpecialLineRec {
public:
    bool init(const SkPath& src, SkPath* dst, SkStrokeRec* rec,
              int intervalCount, SkScalar intervalLength) {
        if (rec->isHairlineStyle() || !src.isLine(fPts)) {
            return false;
        }

        // can relax this in the future, if we handle square and round caps
        if (SkPaint::kButt_Cap != rec->getCap()) {
            return false;
        }

        SkScalar pathLength = SkPoint::Distance(fPts[0], fPts[1]);

        fTangent = fPts[1] - fPts[0];
        if (fTangent.isZero()) {
            return false;
        }

        fPathLength = pathLength;
        fTangent.scale(SkScalarInvert(pathLength));
        SkPointPriv::RotateCCW(fTangent, &fNormal);
        fNormal.scale(SkScalarHalf(rec->getWidth()));

        // now estimate how many quads will be added to the path
        //     resulting segments = pathLen * intervalCount / intervalLen
        //     resulting points = 4 * segments

        SkScalar ptCount = pathLength * intervalCount / (float)intervalLength;
        ptCount = SkTMin(ptCount, SkDashPath::kMaxDashCount);
        int n = SkScalarCeilToInt(ptCount) << 2;
        dst->incReserve(n);

        // we will take care of the stroking
        rec->setFillStyle();
        return true;
    }

    void addSegment(SkScalar d0, SkScalar d1, SkPath* path) const {
        SkASSERT(d0 <= fPathLength);
        // clamp the segment to our length
        if (d1 > fPathLength) {
            d1 = fPathLength;
        }

        SkScalar x0 = fPts[0].fX + fTangent.fX * d0;
        SkScalar x1 = fPts[0].fX + fTangent.fX * d1;
        SkScalar y0 = fPts[0].fY + fTangent.fY * d0;
        SkScalar y1 = fPts[0].fY + fTangent.fY * d1;

        SkPoint pts[4];
        pts[0].set(x0 + fNormal.fX, y0 + fNormal.fY);   // moveTo
        pts[1].set(x1 + fNormal.fX, y1 + fNormal.fY);   // lineTo
        pts[2].set(x1 - fNormal.fX, y1 - fNormal.fY);   // lineTo
        pts[3].set(x0 - fNormal.fX, y0 - fNormal.fY);   // lineTo

        path->addPoly(pts, SK_ARRAY_COUNT(pts), false);
    }

private:
    SkPoint fPts[2];
    SkVector fTangent;
    SkVector fNormal;
    SkScalar fPathLength;
};


bool SkDashPath::InternalFilter(SkPath* dst, const SkPath& src, SkStrokeRec* rec,
                                const SkRect* cullRect, const SkScalar aIntervals[],
                                int32_t count, SkScalar initialDashLength, int32_t initialDashIndex,
                                SkScalar intervalLength,
                                StrokeRecApplication strokeRecApplication) {

    // we do nothing if the src wants to be filled
    SkStrokeRec::Style style = rec->getStyle();
    if (SkStrokeRec::kFill_Style == style || SkStrokeRec::kStrokeAndFill_Style == style) {
        return false;
    }

    const SkScalar* intervals = aIntervals;
    SkScalar        dashCount = 0;
    int             segCount = 0;

    SkPath cullPathStorage;
    const SkPath* srcPtr = &src;
    if (cull_path(src, *rec, cullRect, intervalLength, &cullPathStorage)) {
        srcPtr = &cullPathStorage;
    }

    SpecialLineRec lineRec;
    bool specialLine = (StrokeRecApplication::kAllow == strokeRecApplication) &&
                       lineRec.init(*srcPtr, dst, rec, count >> 1, intervalLength);

    SkPathMeasure   meas(*srcPtr, false, rec->getResScale());

    do {
        bool        skipFirstSegment = meas.isClosed();
        bool        addedSegment = false;
        SkScalar    length = meas.getLength();
        int         index = initialDashIndex;

        // Since the path length / dash length ratio may be arbitrarily large, we can exert
        // significant memory pressure while attempting to build the filtered path. To avoid this,
        // we simply give up dashing beyond a certain threshold.
        //
        // The original bug report (http://crbug.com/165432) is based on a path yielding more than
        // 90 million dash segments and crashing the memory allocator. A limit of 1 million
        // segments seems reasonable: at 2 verbs per segment * 9 bytes per verb, this caps the
        // maximum dash memory overhead at roughly 17MB per path.
        dashCount += length * (count >> 1) / intervalLength;
        if (dashCount > kMaxDashCount) {
            dst->reset();
            return false;
        }

        // Using double precision to avoid looping indefinitely due to single precision rounding
        // (for extreme path_length/dash_length ratios). See test_infinite_dash() unittest.
        double  distance = 0;
        double  dlen = initialDashLength;

        while (distance < length) {
            SkASSERT(dlen >= 0);
            addedSegment = false;
            if (is_even(index) && !skipFirstSegment) {
                addedSegment = true;
                ++segCount;

                if (specialLine) {
                    lineRec.addSegment(SkDoubleToScalar(distance),
                                       SkDoubleToScalar(distance + dlen),
                                       dst);
                } else {
                    meas.getSegment(SkDoubleToScalar(distance),
                                    SkDoubleToScalar(distance + dlen),
                                    dst, true);
                }
            }
            distance += dlen;

            // clear this so we only respect it the first time around
            skipFirstSegment = false;

            // wrap around our intervals array if necessary
            index += 1;
            SkASSERT(index <= count);
            if (index == count) {
                index = 0;
            }

            // fetch our next dlen
            dlen = intervals[index];
        }

        // extend if we ended on a segment and we need to join up with the (skipped) initial segment
        if (meas.isClosed() && is_even(initialDashIndex) &&
            initialDashLength >= 0) {
            meas.getSegment(0, initialDashLength, dst, !addedSegment);
            ++segCount;
        }
    } while (meas.nextContour());

    if (segCount > 1) {
        dst->setConvexity(SkPath::kConcave_Convexity);
    }

    return true;
}

bool SkDashPath::FilterDashPath(SkPath* dst, const SkPath& src, SkStrokeRec* rec,
                                const SkRect* cullRect, const SkPathEffect::DashInfo& info) {
    if (!ValidDashPath(info.fPhase, info.fIntervals, info.fCount)) {
        return false;
    }
    SkScalar initialDashLength = 0;
    int32_t initialDashIndex = 0;
    SkScalar intervalLength = 0;
    CalcDashParameters(info.fPhase, info.fIntervals, info.fCount,
                       &initialDashLength, &initialDashIndex, &intervalLength);
    return InternalFilter(dst, src, rec, cullRect, info.fIntervals, info.fCount, initialDashLength,
                          initialDashIndex, intervalLength);
}

bool SkDashPath::ValidDashPath(SkScalar phase, const SkScalar intervals[], int32_t count) {
    if (count < 2 || !SkIsAlign2(count)) {
        return false;
    }
    SkScalar length = 0;
    for (int i = 0; i < count; i++) {
        if (intervals[i] < 0) {
            return false;
        }
        length += intervals[i];
    }
    // watch out for values that might make us go out of bounds
    return length > 0 && SkScalarIsFinite(phase) && SkScalarIsFinite(length);
}