aboutsummaryrefslogtreecommitdiffhomepage
path: root/src/gpu/ccpr/GrCCPRQuadraticProcessor.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'src/gpu/ccpr/GrCCPRQuadraticProcessor.cpp')
-rw-r--r--src/gpu/ccpr/GrCCPRQuadraticProcessor.cpp78
1 files changed, 39 insertions, 39 deletions
diff --git a/src/gpu/ccpr/GrCCPRQuadraticProcessor.cpp b/src/gpu/ccpr/GrCCPRQuadraticProcessor.cpp
index ced5be1f70..73d0d1e3d0 100644
--- a/src/gpu/ccpr/GrCCPRQuadraticProcessor.cpp
+++ b/src/gpu/ccpr/GrCCPRQuadraticProcessor.cpp
@@ -16,18 +16,18 @@ void GrCCPRQuadraticProcessor::onEmitVertexShader(const GrCCPRCoverageProcessor&
const TexelBufferHandle& pointsBuffer,
const char* atlasOffset, const char* rtAdjust,
GrGPArgs* gpArgs) const {
- v->codeAppend ("highfloat2 self = ");
+ v->codeAppend ("highp float2 self = ");
v->appendTexelFetch(pointsBuffer,
SkStringPrintf("%s.x + sk_VertexID", proc.instanceAttrib()).c_str());
v->codeAppendf(".xy + %s;", atlasOffset);
- gpArgs->fPositionVar.set(kHighFloat2_GrSLType, "self");
+ gpArgs->fPositionVar.set(kVec2f_GrSLType, "self");
}
void GrCCPRQuadraticProcessor::emitWind(GrGLSLGeometryBuilder* g, const char* rtAdjust,
const char* outputWind) const {
// We will define bezierpts in onEmitGeometryShader.
- g->codeAppend ("highfloat area_times_2 = "
- "determinant(highfloat2x2(bezierpts[1] - bezierpts[0], "
+ g->codeAppend ("highp float area_times_2 = "
+ "determinant(float2x2(bezierpts[1] - bezierpts[0], "
"bezierpts[2] - bezierpts[0]));");
// Drop curves that are nearly flat, in favor of the higher quality triangle antialiasing.
g->codeAppendf("if (2 * abs(area_times_2) < length((bezierpts[2] - bezierpts[0]) * %s.zx)) {",
@@ -46,26 +46,26 @@ void GrCCPRQuadraticProcessor::onEmitGeometryShader(GrGLSLGeometryBuilder* g,
const char* emitVertexFn, const char* wind,
const char* rtAdjust) const {
// Prepend bezierpts at the start of the shader.
- g->codePrependf("highfloat3x2 bezierpts = highfloat3x2(sk_in[0].gl_Position.xy, "
- "sk_in[1].gl_Position.xy, "
- "sk_in[2].gl_Position.xy);");
+ g->codePrependf("highp float3x2 bezierpts = float3x2(sk_in[0].gl_Position.xy, "
+ "sk_in[1].gl_Position.xy, "
+ "sk_in[2].gl_Position.xy);");
g->declareGlobal(fCanonicalMatrix);
- g->codeAppendf("%s = highfloat3x3(0.0, 0, 1, "
- "0.5, 0, 1, "
- "1.0, 1, 1) * "
- "inverse(highfloat3x3(bezierpts[0], 1, "
- "bezierpts[1], 1, "
- "bezierpts[2], 1));",
+ g->codeAppendf("%s = float3x3(0.0, 0, 1, "
+ "0.5, 0, 1, "
+ "1.0, 1, 1) * "
+ "inverse(float3x3(bezierpts[0], 1, "
+ "bezierpts[1], 1, "
+ "bezierpts[2], 1));",
fCanonicalMatrix.c_str());
g->declareGlobal(fCanonicalDerivatives);
- g->codeAppendf("%s = highfloat2x2(%s) * highfloat2x2(%s.x, 0, 0, %s.z);",
+ g->codeAppendf("%s = float2x2(%s) * float2x2(%s.x, 0, 0, %s.z);",
fCanonicalDerivatives.c_str(), fCanonicalMatrix.c_str(), rtAdjust, rtAdjust);
g->declareGlobal(fEdgeDistanceEquation);
- g->codeAppendf("highfloat2 edgept0 = bezierpts[%s > 0 ? 2 : 0];", wind);
- g->codeAppendf("highfloat2 edgept1 = bezierpts[%s > 0 ? 0 : 2];", wind);
+ g->codeAppendf("highp float2 edgept0 = bezierpts[%s > 0 ? 2 : 0];", wind);
+ g->codeAppendf("highp float2 edgept1 = bezierpts[%s > 0 ? 0 : 2];", wind);
this->emitEdgeDistanceEquation(g, "edgept0", "edgept1", fEdgeDistanceEquation.c_str());
this->emitQuadraticGeometry(g, emitVertexFn, rtAdjust);
@@ -74,7 +74,7 @@ void GrCCPRQuadraticProcessor::onEmitGeometryShader(GrGLSLGeometryBuilder* g,
void GrCCPRQuadraticProcessor::emitPerVertexGeometryCode(SkString* fnBody, const char* position,
const char* /*coverage*/,
const char* /*wind*/) const {
- fnBody->appendf("%s.xy = (%s * highfloat3(%s, 1)).xy;",
+ fnBody->appendf("%s.xy = (%s * float3(%s, 1)).xy;",
fXYD.gsOut(), fCanonicalMatrix.c_str(), position);
fnBody->appendf("%s.z = dot(%s.xy, %s) + %s.z;",
fXYD.gsOut(), fEdgeDistanceEquation.c_str(), position,
@@ -87,18 +87,18 @@ void GrCCPRQuadraticHullProcessor::emitQuadraticGeometry(GrGLSLGeometryBuilder*
const char* /*rtAdjust*/) const {
// Find the t value whose tangent is halfway between the tangents at the endpionts.
// (We defined bezierpts in onEmitGeometryShader.)
- g->codeAppend ("highfloat2 tan0 = bezierpts[1] - bezierpts[0];");
- g->codeAppend ("highfloat2 tan1 = bezierpts[2] - bezierpts[1];");
- g->codeAppend ("highfloat2 midnorm = normalize(tan0) - normalize(tan1);");
- g->codeAppend ("highfloat2 T = midnorm * highfloat2x2(tan0 - tan1, tan0);");
- g->codeAppend ("highfloat t = clamp(T.t / T.s, 0, 1);"); // T.s=0 is weeded out by this point.
+ g->codeAppend ("highp float2 tan0 = bezierpts[1] - bezierpts[0];");
+ g->codeAppend ("highp float2 tan1 = bezierpts[2] - bezierpts[1];");
+ g->codeAppend ("highp float2 midnorm = normalize(tan0) - normalize(tan1);");
+ g->codeAppend ("highp float2 T = midnorm * float2x2(tan0 - tan1, tan0);");
+ g->codeAppend ("highp float t = clamp(T.t / T.s, 0, 1);"); // T.s=0 is weeded out by this point.
// Clip the bezier triangle by the tangent at our new t value. This is a simple application for
// De Casteljau's algorithm.
- g->codeAppendf("highfloat4x2 quadratic_hull = highfloat4x2(bezierpts[0], "
- "bezierpts[0] + tan0 * t, "
- "bezierpts[1] + tan1 * t, "
- "bezierpts[2]);");
+ g->codeAppendf("highp float4x2 quadratic_hull = float4x2(bezierpts[0], "
+ "bezierpts[0] + tan0 * t, "
+ "bezierpts[1] + tan1 * t, "
+ "bezierpts[2]);");
int maxVerts = this->emitHullGeometry(g, emitVertexFn, "quadratic_hull", 4, "sk_InvocationID");
@@ -108,13 +108,13 @@ void GrCCPRQuadraticHullProcessor::emitQuadraticGeometry(GrGLSLGeometryBuilder*
}
void GrCCPRQuadraticHullProcessor::onEmitPerVertexGeometryCode(SkString* fnBody) const {
- fnBody->appendf("%s = highfloat2(2 * %s.x, -1) * %s;",
+ fnBody->appendf("%s = float2(2 * %s.x, -1) * %s;",
fGradXY.gsOut(), fXYD.gsOut(), fCanonicalDerivatives.c_str());
}
void GrCCPRQuadraticHullProcessor::emitShaderCoverage(GrGLSLFragmentBuilder* f,
const char* outputCoverage) const {
- f->codeAppendf("highfloat d = (%s.x * %s.x - %s.y) * inversesqrt(dot(%s, %s));",
+ f->codeAppendf("highp float d = (%s.x * %s.x - %s.y) * inversesqrt(dot(%s, %s));",
fXYD.fsIn(), fXYD.fsIn(), fXYD.fsIn(), fGradXY.fsIn(), fGradXY.fsIn());
f->codeAppendf("%s = clamp(0.5 - d, 0, 1);", outputCoverage);
f->codeAppendf("%s += min(%s.z, 0);", outputCoverage, fXYD.fsIn()); // Flat closing edge.
@@ -127,7 +127,7 @@ void GrCCPRQuadraticCornerProcessor::emitQuadraticGeometry(GrGLSLGeometryBuilder
g->codeAppendf("%s = %s.xy * %s.xz;",
fEdgeDistanceDerivatives.c_str(), fEdgeDistanceEquation.c_str(), rtAdjust);
- g->codeAppendf("highfloat2 corner = bezierpts[sk_InvocationID * 2];");
+ g->codeAppendf("highp float2 corner = bezierpts[sk_InvocationID * 2];");
int numVertices = this->emitCornerGeometry(g, emitVertexFn, "corner");
g->configure(GrGLSLGeometryBuilder::InputType::kTriangles,
@@ -135,35 +135,35 @@ void GrCCPRQuadraticCornerProcessor::emitQuadraticGeometry(GrGLSLGeometryBuilder
}
void GrCCPRQuadraticCornerProcessor::onEmitPerVertexGeometryCode(SkString* fnBody) const {
- fnBody->appendf("%s = highfloat3(%s[0].x, %s[0].y, %s.x);",
+ fnBody->appendf("%s = float3(%s[0].x, %s[0].y, %s.x);",
fdXYDdx.gsOut(), fCanonicalDerivatives.c_str(), fCanonicalDerivatives.c_str(),
fEdgeDistanceDerivatives.c_str());
- fnBody->appendf("%s = highfloat3(%s[1].x, %s[1].y, %s.y);",
+ fnBody->appendf("%s = float3(%s[1].x, %s[1].y, %s.y);",
fdXYDdy.gsOut(), fCanonicalDerivatives.c_str(), fCanonicalDerivatives.c_str(),
fEdgeDistanceDerivatives.c_str());
}
void GrCCPRQuadraticCornerProcessor::emitShaderCoverage(GrGLSLFragmentBuilder* f,
const char* outputCoverage) const {
- f->codeAppendf("highfloat x = %s.x, y = %s.y, d = %s.z;",
+ f->codeAppendf("highp float x = %s.x, y = %s.y, d = %s.z;",
fXYD.fsIn(), fXYD.fsIn(), fXYD.fsIn());
- f->codeAppendf("highfloat2x3 grad_xyd = highfloat2x3(%s, %s);", fdXYDdx.fsIn(), fdXYDdy.fsIn());
+ f->codeAppendf("highp float2x3 grad_xyd = float2x3(%s, %s);", fdXYDdx.fsIn(), fdXYDdy.fsIn());
// Erase what the previous hull shader wrote. We don't worry about the two corners falling on
// the same pixel because those cases should have been weeded out by this point.
- f->codeAppend ("highfloat f = x*x - y;");
- f->codeAppend ("highfloat2 grad_f = highfloat2(2*x, -1) * highfloat2x2(grad_xyd);");
+ f->codeAppend ("highp float f = x*x - y;");
+ f->codeAppend ("highp float2 grad_f = float2(2*x, -1) * float2x2(grad_xyd);");
f->codeAppendf("%s = -(0.5 - f * inversesqrt(dot(grad_f, grad_f)));", outputCoverage);
f->codeAppendf("%s -= d;", outputCoverage);
// Use software msaa to approximate coverage at the corner pixels.
int sampleCount = this->defineSoftSampleLocations(f, "samples");
- f->codeAppendf("highfloat3 xyd_center = highfloat3(%s.xy, %s.z + 0.5);",
+ f->codeAppendf("highp float3 xyd_center = float3(%s.xy, %s.z + 0.5);",
fXYD.fsIn(), fXYD.fsIn());
f->codeAppendf("for (int i = 0; i < %i; ++i) {", sampleCount);
- f->codeAppend ( "highfloat3 xyd = grad_xyd * samples[i] + xyd_center;");
- f->codeAppend ( "half f = xyd.y - xyd.x * xyd.x;"); // f > 0 -> inside curve.
- f->codeAppendf( "%s += all(greaterThan(highfloat2(f,xyd.z), highfloat2(0))) ? %f : 0;",
+ f->codeAppend ( "highp float3 xyd = grad_xyd * samples[i] + xyd_center;");
+ f->codeAppend ( "lowp float f = xyd.y - xyd.x * xyd.x;"); // f > 0 -> inside curve.
+ f->codeAppendf( "%s += all(greaterThan(float2(f,xyd.z), float2(0))) ? %f : 0;",
outputCoverage, 1.0 / sampleCount);
f->codeAppendf("}");
}