aboutsummaryrefslogtreecommitdiffhomepage
path: root/src/core/SkLinearBitmapPipeline_sample.h
diff options
context:
space:
mode:
Diffstat (limited to 'src/core/SkLinearBitmapPipeline_sample.h')
-rw-r--r--src/core/SkLinearBitmapPipeline_sample.h1041
1 files changed, 1041 insertions, 0 deletions
diff --git a/src/core/SkLinearBitmapPipeline_sample.h b/src/core/SkLinearBitmapPipeline_sample.h
new file mode 100644
index 0000000000..a7f5d7383e
--- /dev/null
+++ b/src/core/SkLinearBitmapPipeline_sample.h
@@ -0,0 +1,1041 @@
+/*
+ * Copyright 2016 Google Inc.
+ *
+ * Use of this source code is governed by a BSD-style license that can be
+ * found in the LICENSE file.
+ */
+
+#ifndef SkLinearBitmapPipeline_sampler_DEFINED
+#define SkLinearBitmapPipeline_sampler_DEFINED
+
+#include <tuple>
+
+#include "SkAutoMalloc.h"
+#include "SkColor.h"
+#include "SkColorPriv.h"
+#include "SkFixed.h" // for SkFixed1 only. Don't use SkFixed in this file.
+#include "SkHalf.h"
+#include "SkLinearBitmapPipeline_core.h"
+#include "SkNx.h"
+#include "SkPM4fPriv.h"
+
+namespace {
+// Explaination of the math:
+// 1 - x x
+// +--------+--------+
+// | | |
+// 1 - y | px00 | px10 |
+// | | |
+// +--------+--------+
+// | | |
+// y | px01 | px11 |
+// | | |
+// +--------+--------+
+//
+//
+// Given a pixelxy each is multiplied by a different factor derived from the fractional part of x
+// and y:
+// * px00 -> (1 - x)(1 - y) = 1 - x - y + xy
+// * px10 -> x(1 - y) = x - xy
+// * px01 -> (1 - x)y = y - xy
+// * px11 -> xy
+// So x * y is calculated first and then used to calculate all the other factors.
+static Sk4s SK_VECTORCALL bilerp4(Sk4s xs, Sk4s ys, Sk4f px00, Sk4f px10,
+ Sk4f px01, Sk4f px11) {
+ // Calculate fractional xs and ys.
+ Sk4s fxs = xs - xs.floor();
+ Sk4s fys = ys - ys.floor();
+ Sk4s fxys{fxs * fys};
+ Sk4f sum = px11 * fxys;
+ sum = sum + px01 * (fys - fxys);
+ sum = sum + px10 * (fxs - fxys);
+ sum = sum + px00 * (Sk4f{1.0f} - fxs - fys + fxys);
+ return sum;
+}
+
+////////////////////////////////////////////////////////////////////////////////////////////////////
+// PixelGetter is the lowest level interface to the source data. There is a PixelConverter for each
+// of the different SkColorTypes.
+template <SkColorType, SkGammaType> class PixelConverter;
+
+// Alpha handling:
+// The alpha from the paint (tintColor) is used in the blend part of the pipeline to modulate
+// the entire bitmap. So, the tint color is given an alpha of 1.0 so that the later alpha can
+// modulate this color later.
+template <>
+class PixelConverter<kAlpha_8_SkColorType, kLinear_SkGammaType> {
+public:
+ using Element = uint8_t;
+ PixelConverter(const SkPixmap& srcPixmap, SkColor tintColor) {
+ fTintColor = SkColor4f::FromColor(tintColor);
+ fTintColor.fA = 1.0f;
+ }
+
+ Sk4f toSk4f(const Element pixel) const {
+ return Sk4f::Load(&fTintColor) * (pixel * (1.0f/255.0f));
+ }
+
+private:
+ SkColor4f fTintColor;
+};
+
+template <SkGammaType gammaType>
+static inline Sk4f pmcolor_to_rgba(SkPMColor pixel) {
+ return swizzle_rb_if_bgra(
+ (gammaType == kSRGB_SkGammaType) ? Sk4f_fromS32(pixel)
+ : Sk4f_fromL32(pixel));
+}
+
+template <SkGammaType gammaType>
+class PixelConverter<kRGB_565_SkColorType, gammaType> {
+public:
+ using Element = uint16_t;
+ PixelConverter(const SkPixmap& srcPixmap) { }
+
+ Sk4f toSk4f(Element pixel) const {
+ return pmcolor_to_rgba<gammaType>(SkPixel16ToPixel32(pixel));
+ }
+};
+
+template <SkGammaType gammaType>
+class PixelConverter<kARGB_4444_SkColorType, gammaType> {
+public:
+ using Element = uint16_t;
+ PixelConverter(const SkPixmap& srcPixmap) { }
+
+ Sk4f toSk4f(Element pixel) const {
+ return pmcolor_to_rgba<gammaType>(SkPixel4444ToPixel32(pixel));
+ }
+};
+
+template <SkGammaType gammaType>
+class PixelConverter<kRGBA_8888_SkColorType, gammaType> {
+public:
+ using Element = uint32_t;
+ PixelConverter(const SkPixmap& srcPixmap) { }
+
+ Sk4f toSk4f(Element pixel) const {
+ return gammaType == kSRGB_SkGammaType
+ ? Sk4f_fromS32(pixel)
+ : Sk4f_fromL32(pixel);
+ }
+};
+
+template <SkGammaType gammaType>
+class PixelConverter<kBGRA_8888_SkColorType, gammaType> {
+public:
+ using Element = uint32_t;
+ PixelConverter(const SkPixmap& srcPixmap) { }
+
+ Sk4f toSk4f(Element pixel) const {
+ return swizzle_rb(
+ gammaType == kSRGB_SkGammaType ? Sk4f_fromS32(pixel) : Sk4f_fromL32(pixel));
+ }
+};
+
+template <SkGammaType gammaType>
+class PixelConverter<kIndex_8_SkColorType, gammaType> {
+public:
+ using Element = uint8_t;
+ PixelConverter(const SkPixmap& srcPixmap)
+ : fColorTableSize(srcPixmap.ctable()->count()){
+ SkColorTable* skColorTable = srcPixmap.ctable();
+ SkASSERT(skColorTable != nullptr);
+
+ fColorTable = (Sk4f*)SkAlign16((intptr_t)fColorTableStorage.get());
+ for (int i = 0; i < fColorTableSize; i++) {
+ fColorTable[i] = pmcolor_to_rgba<gammaType>((*skColorTable)[i]);
+ }
+ }
+
+ PixelConverter(const PixelConverter& strategy)
+ : fColorTableSize{strategy.fColorTableSize}{
+ fColorTable = (Sk4f*)SkAlign16((intptr_t)fColorTableStorage.get());
+ for (int i = 0; i < fColorTableSize; i++) {
+ fColorTable[i] = strategy.fColorTable[i];
+ }
+ }
+
+ Sk4f toSk4f(Element index) const {
+ return fColorTable[index];
+ }
+
+private:
+ static const size_t kColorTableSize = sizeof(Sk4f[256]) + 12;
+ const int fColorTableSize;
+ SkAutoMalloc fColorTableStorage{kColorTableSize};
+ Sk4f* fColorTable;
+};
+
+template <SkGammaType gammaType>
+class PixelConverter<kGray_8_SkColorType, gammaType> {
+public:
+ using Element = uint8_t;
+ PixelConverter(const SkPixmap& srcPixmap) { }
+
+ Sk4f toSk4f(Element pixel) const {
+ float gray = (gammaType == kSRGB_SkGammaType)
+ ? sk_linear_from_srgb[pixel]
+ : pixel * (1/255.0f);
+ return {gray, gray, gray, 1.0f};
+ }
+};
+
+template <>
+class PixelConverter<kRGBA_F16_SkColorType, kLinear_SkGammaType> {
+public:
+ using Element = uint64_t;
+ PixelConverter(const SkPixmap& srcPixmap) { }
+
+ Sk4f toSk4f(const Element pixel) const {
+ return SkHalfToFloat_finite_ftz(pixel);
+ }
+};
+
+class PixelAccessorShim {
+public:
+ explicit PixelAccessorShim(SkLinearBitmapPipeline::PixelAccessorInterface* accessor)
+ : fPixelAccessor(accessor) { }
+
+ void SK_VECTORCALL getFewPixels(
+ int n, Sk4i xs, Sk4i ys, Sk4f* px0, Sk4f* px1, Sk4f* px2) const {
+ fPixelAccessor->getFewPixels(n, xs, ys, px0, px1, px2);
+ }
+
+ void SK_VECTORCALL get4Pixels(
+ Sk4i xs, Sk4i ys, Sk4f* px0, Sk4f* px1, Sk4f* px2, Sk4f* px3) const {
+ fPixelAccessor->get4Pixels(xs, ys, px0, px1, px2, px3);
+ }
+
+ void get4Pixels(
+ const void* src, int index, Sk4f* px0, Sk4f* px1, Sk4f* px2, Sk4f* px3) const {
+ fPixelAccessor->get4Pixels(src, index, px0, px1, px2, px3);
+ }
+
+ Sk4f getPixelFromRow(const void* row, int index) const {
+ return fPixelAccessor->getPixelFromRow(row, index);
+ }
+
+ Sk4f getPixelAt(int index) const {
+ return fPixelAccessor->getPixelAt(index);
+ }
+
+ const void* row(int y) const {
+ return fPixelAccessor->row(y);
+ }
+
+private:
+ SkLinearBitmapPipeline::PixelAccessorInterface* const fPixelAccessor;
+};
+
+////////////////////////////////////////////////////////////////////////////////////////////////////
+// PixelAccessor handles all the same plumbing for all the PixelGetters.
+template <SkColorType colorType, SkGammaType gammaType>
+class PixelAccessor final : public SkLinearBitmapPipeline::PixelAccessorInterface {
+ using Element = typename PixelConverter<colorType, gammaType>::Element;
+public:
+ template <typename... Args>
+ PixelAccessor(const SkPixmap& srcPixmap, Args&&... args)
+ : fSrc{static_cast<const Element*>(srcPixmap.addr())}
+ , fWidth{srcPixmap.rowBytesAsPixels()}
+ , fConverter{srcPixmap, std::move<Args>(args)...} { }
+
+ void SK_VECTORCALL getFewPixels (
+ int n, Sk4i xs, Sk4i ys, Sk4f* px0, Sk4f* px1, Sk4f* px2) const override {
+ Sk4i bufferLoc = ys * fWidth + xs;
+ switch (n) {
+ case 3:
+ *px2 = this->getPixelAt(bufferLoc[2]);
+ case 2:
+ *px1 = this->getPixelAt(bufferLoc[1]);
+ case 1:
+ *px0 = this->getPixelAt(bufferLoc[0]);
+ default:
+ break;
+ }
+ }
+
+ void SK_VECTORCALL get4Pixels(
+ Sk4i xs, Sk4i ys, Sk4f* px0, Sk4f* px1, Sk4f* px2, Sk4f* px3) const override {
+ Sk4i bufferLoc = ys * fWidth + xs;
+ *px0 = this->getPixelAt(bufferLoc[0]);
+ *px1 = this->getPixelAt(bufferLoc[1]);
+ *px2 = this->getPixelAt(bufferLoc[2]);
+ *px3 = this->getPixelAt(bufferLoc[3]);
+ }
+
+ void get4Pixels(
+ const void* src, int index, Sk4f* px0, Sk4f* px1, Sk4f* px2, Sk4f* px3) const override {
+ *px0 = this->getPixelFromRow(src, index + 0);
+ *px1 = this->getPixelFromRow(src, index + 1);
+ *px2 = this->getPixelFromRow(src, index + 2);
+ *px3 = this->getPixelFromRow(src, index + 3);
+ }
+
+ Sk4f getPixelFromRow(const void* row, int index) const override {
+ const Element* src = static_cast<const Element*>(row);
+ return fConverter.toSk4f(src[index]);
+ }
+
+ Sk4f getPixelAt(int index) const override {
+ return this->getPixelFromRow(fSrc, index);
+ }
+
+ const void* row(int y) const override { return fSrc + y * fWidth; }
+
+private:
+ const Element* const fSrc;
+ const int fWidth;
+ PixelConverter<colorType, gammaType> fConverter;
+};
+
+// We're moving through source space at a rate of 1 source pixel per 1 dst pixel.
+// We'll never re-use pixels, but we can at least load contiguous pixels.
+template <typename Next, typename Strategy>
+static void src_strategy_blend(Span span, Next* next, Strategy* strategy) {
+ SkPoint start;
+ SkScalar length;
+ int count;
+ std::tie(start, length, count) = span;
+ int ix = SkScalarFloorToInt(X(start));
+ const void* row = strategy->row((int)std::floor(Y(start)));
+ if (length > 0) {
+ while (count >= 4) {
+ Sk4f px0, px1, px2, px3;
+ strategy->get4Pixels(row, ix, &px0, &px1, &px2, &px3);
+ next->blend4Pixels(px0, px1, px2, px3);
+ ix += 4;
+ count -= 4;
+ }
+
+ while (count > 0) {
+ next->blendPixel(strategy->getPixelFromRow(row, ix));
+ ix += 1;
+ count -= 1;
+ }
+ } else {
+ while (count >= 4) {
+ Sk4f px0, px1, px2, px3;
+ strategy->get4Pixels(row, ix - 3, &px3, &px2, &px1, &px0);
+ next->blend4Pixels(px0, px1, px2, px3);
+ ix -= 4;
+ count -= 4;
+ }
+
+ while (count > 0) {
+ next->blendPixel(strategy->getPixelFromRow(row, ix));
+ ix -= 1;
+ count -= 1;
+ }
+ }
+}
+
+// -- NearestNeighborSampler -----------------------------------------------------------------------
+// NearestNeighborSampler - use nearest neighbor filtering to create runs of destination pixels.
+template<typename Accessor, typename Next>
+class NearestNeighborSampler : public SkLinearBitmapPipeline::SampleProcessorInterface {
+public:
+ template<typename... Args>
+ NearestNeighborSampler(SkLinearBitmapPipeline::BlendProcessorInterface* next, Args&& ... args)
+ : fNext{next}, fAccessor{std::forward<Args>(args)...} { }
+
+ NearestNeighborSampler(SkLinearBitmapPipeline::BlendProcessorInterface* next,
+ const NearestNeighborSampler& sampler)
+ : fNext{next}, fAccessor{sampler.fAccessor} { }
+
+ void SK_VECTORCALL pointListFew(int n, Sk4s xs, Sk4s ys) override {
+ SkASSERT(0 < n && n < 4);
+ Sk4f px0, px1, px2;
+ fAccessor.getFewPixels(n, SkNx_cast<int>(xs), SkNx_cast<int>(ys), &px0, &px1, &px2);
+ if (n >= 1) fNext->blendPixel(px0);
+ if (n >= 2) fNext->blendPixel(px1);
+ if (n >= 3) fNext->blendPixel(px2);
+ }
+
+ void SK_VECTORCALL pointList4(Sk4s xs, Sk4s ys) override {
+ Sk4f px0, px1, px2, px3;
+ fAccessor.get4Pixels(SkNx_cast<int>(xs), SkNx_cast<int>(ys), &px0, &px1, &px2, &px3);
+ fNext->blend4Pixels(px0, px1, px2, px3);
+ }
+
+ void pointSpan(Span span) override {
+ SkASSERT(!span.isEmpty());
+ SkPoint start;
+ SkScalar length;
+ int count;
+ std::tie(start, length, count) = span;
+ SkScalar absLength = SkScalarAbs(length);
+ if (absLength < (count - 1)) {
+ this->spanSlowRate(span);
+ } else if (absLength == (count - 1)) {
+ src_strategy_blend(span, fNext, &fAccessor);
+ } else {
+ this->spanFastRate(span);
+ }
+ }
+
+ void repeatSpan(Span span, int32_t repeatCount) override {
+ while (repeatCount > 0) {
+ this->pointSpan(span);
+ repeatCount--;
+ }
+ }
+
+private:
+ // When moving through source space more slowly than dst space (zoomed in),
+ // we'll be sampling from the same source pixel more than once.
+ void spanSlowRate(Span span) {
+ SkPoint start; SkScalar length; int count;
+ std::tie(start, length, count) = span;
+ SkScalar x = X(start);
+ // fx is a fixed 48.16 number.
+ int64_t fx = static_cast<int64_t>(x * SK_Fixed1);
+ SkScalar dx = length / (count - 1);
+ // fdx is a fixed 48.16 number.
+ int64_t fdx = static_cast<int64_t>(dx * SK_Fixed1);
+
+ const void* row = fAccessor.row((int)std::floor(Y(start)));
+ Next* next = fNext;
+
+ int64_t ix = fx >> 16;
+ int64_t prevIX = ix;
+ Sk4f fpixel = fAccessor.getPixelFromRow(row, ix);
+
+ // When dx is less than one, each pixel is used more than once. Using the fixed point fx
+ // allows the code to quickly check that the same pixel is being used. The code uses this
+ // same pixel check to do the sRGB and normalization only once.
+ auto getNextPixel = [&]() {
+ if (ix != prevIX) {
+ fpixel = fAccessor.getPixelFromRow(row, ix);
+ prevIX = ix;
+ }
+ fx += fdx;
+ ix = fx >> 16;
+ return fpixel;
+ };
+
+ while (count >= 4) {
+ Sk4f px0 = getNextPixel();
+ Sk4f px1 = getNextPixel();
+ Sk4f px2 = getNextPixel();
+ Sk4f px3 = getNextPixel();
+ next->blend4Pixels(px0, px1, px2, px3);
+ count -= 4;
+ }
+ while (count > 0) {
+ next->blendPixel(getNextPixel());
+ count -= 1;
+ }
+ }
+
+ // We're moving through source space at a rate of 1 source pixel per 1 dst pixel.
+ // We'll never re-use pixels, but we can at least load contiguous pixels.
+ void spanUnitRate(Span span) {
+ src_strategy_blend(span, fNext, &fAccessor);
+ }
+
+ // We're moving through source space faster than dst (zoomed out),
+ // so we'll never reuse a source pixel or be able to do contiguous loads.
+ void spanFastRate(Span span) {
+ span_fallback(span, this);
+ }
+
+ Next* const fNext;
+ Accessor fAccessor;
+};
+
+// From an edgeType, the integer value of a pixel vs, and the integer value of the extreme edge
+// vMax, take the point which might be off the tile by one pixel and either wrap it or pin it to
+// generate the right pixel. The value vs is on the interval [-1, vMax + 1]. It produces a value
+// on the interval [0, vMax].
+// Note: vMax is not width or height, but width-1 or height-1 because it is the largest valid pixel.
+static inline int adjust_edge(SkShader::TileMode edgeType, int vs, int vMax) {
+ SkASSERT(-1 <= vs && vs <= vMax + 1);
+ switch (edgeType) {
+ case SkShader::kClamp_TileMode:
+ case SkShader::kMirror_TileMode:
+ vs = std::max(vs, 0);
+ vs = std::min(vs, vMax);
+ break;
+ case SkShader::kRepeat_TileMode:
+ vs = (vs <= vMax) ? vs : 0;
+ vs = (vs >= 0) ? vs : vMax;
+ break;
+ }
+ SkASSERT(0 <= vs && vs <= vMax);
+ return vs;
+}
+
+// From a sample point on the tile, return the top or left filter value.
+// The result r should be in the range (0, 1]. Since this represents the weight given to the top
+// left element, then if x == 0.5 the filter value should be 1.0.
+// The input sample point must be on the tile, therefore it must be >= 0.
+static SkScalar sample_to_filter(SkScalar x) {
+ SkASSERT(x >= 0.0f);
+ // The usual form of the top or left edge is x - .5, but since we are working on the unit
+ // square, then x + .5 works just as well. This also guarantees that v > 0.0 allowing the use
+ // of trunc.
+ SkScalar v = x + 0.5f;
+ // Produce the top or left offset a value on the range [0, 1).
+ SkScalar f = v - SkScalarTruncToScalar(v);
+ // Produce the filter value which is on the range (0, 1].
+ SkScalar r = 1.0f - f;
+ SkASSERT(0.0f < r && r <= 1.0f);
+ return r;
+}
+
+// -- BilerpSampler --------------------------------------------------------------------------------
+// BilerpSampler - use a bilerp filter to create runs of destination pixels.
+// Note: in the code below, there are two types of points
+// * sample points - these are the points passed in by pointList* and Spans.
+// * filter points - are created from a sample point to form the coordinates of the points
+// to use in the filter and to generate the filter values.
+template<typename Accessor, typename Next>
+class BilerpSampler : public SkLinearBitmapPipeline::SampleProcessorInterface {
+public:
+ template<typename... Args>
+ BilerpSampler(
+ SkLinearBitmapPipeline::BlendProcessorInterface* next,
+ SkISize dimensions,
+ SkShader::TileMode xTile, SkShader::TileMode yTile,
+ Args&& ... args
+ )
+ : fNext{next}
+ , fXEdgeType{xTile}
+ , fXMax{dimensions.width() - 1}
+ , fYEdgeType{yTile}
+ , fYMax{dimensions.height() - 1}
+ , fAccessor{std::forward<Args>(args)...} { }
+
+ BilerpSampler(SkLinearBitmapPipeline::BlendProcessorInterface* next,
+ const BilerpSampler& sampler)
+ : fNext{next}
+ , fXEdgeType{sampler.fXEdgeType}
+ , fXMax{sampler.fXMax}
+ , fYEdgeType{sampler.fYEdgeType}
+ , fYMax{sampler.fYMax}
+ , fAccessor{sampler.fAccessor} { }
+
+ void SK_VECTORCALL pointListFew(int n, Sk4s xs, Sk4s ys) override {
+ SkASSERT(0 < n && n < 4);
+ auto bilerpPixel = [&](int index) {
+ return this->bilerpSamplePoint(SkPoint{xs[index], ys[index]});
+ };
+
+ if (n >= 1) fNext->blendPixel(bilerpPixel(0));
+ if (n >= 2) fNext->blendPixel(bilerpPixel(1));
+ if (n >= 3) fNext->blendPixel(bilerpPixel(2));
+ }
+
+ void SK_VECTORCALL pointList4(Sk4s xs, Sk4s ys) override {
+ auto bilerpPixel = [&](int index) {
+ return this->bilerpSamplePoint(SkPoint{xs[index], ys[index]});
+ };
+ fNext->blend4Pixels(bilerpPixel(0), bilerpPixel(1), bilerpPixel(2), bilerpPixel(3));
+ }
+
+ void pointSpan(Span span) override {
+ SkASSERT(!span.isEmpty());
+ SkPoint start;
+ SkScalar length;
+ int count;
+ std::tie(start, length, count) = span;
+
+ // Nothing to do.
+ if (count == 0) {
+ return;
+ }
+
+ // Trivial case. No sample points are generated other than start.
+ if (count == 1) {
+ fNext->blendPixel(this->bilerpSamplePoint(start));
+ return;
+ }
+
+ // Note: the following code could be done in terms of dx = length / (count -1), but that
+ // would introduce a divide that is not needed for the most common dx == 1 cases.
+ SkScalar absLength = SkScalarAbs(length);
+ if (absLength == 0.0f) {
+ // |dx| == 0
+ // length is zero, so clamp an edge pixel.
+ this->spanZeroRate(span);
+ } else if (absLength < (count - 1)) {
+ // 0 < |dx| < 1.
+ this->spanSlowRate(span);
+ } else if (absLength == (count - 1)) {
+ // |dx| == 1.
+ if (sample_to_filter(span.startX()) == 1.0f
+ && sample_to_filter(span.startY()) == 1.0f) {
+ // All the pixels are aligned with the dest; go fast.
+ src_strategy_blend(span, fNext, &fAccessor);
+ } else {
+ // There is some sub-pixel offsets, so bilerp.
+ this->spanUnitRate(span);
+ }
+ } else if (absLength < 2.0f * (count - 1)) {
+ // 1 < |dx| < 2.
+ this->spanMediumRate(span);
+ } else {
+ // |dx| >= 2.
+ this->spanFastRate(span);
+ }
+ }
+
+ void repeatSpan(Span span, int32_t repeatCount) override {
+ while (repeatCount > 0) {
+ this->pointSpan(span);
+ repeatCount--;
+ }
+ }
+
+private:
+
+ // Convert a sample point to the points used by the filter.
+ void filterPoints(SkPoint sample, Sk4i* filterXs, Sk4i* filterYs) {
+ // May be less than zero. Be careful to use Floor.
+ int x0 = adjust_edge(fXEdgeType, SkScalarFloorToInt(X(sample) - 0.5), fXMax);
+ // Always greater than zero. Use the faster Trunc.
+ int x1 = adjust_edge(fXEdgeType, SkScalarTruncToInt(X(sample) + 0.5), fXMax);
+ int y0 = adjust_edge(fYEdgeType, SkScalarFloorToInt(Y(sample) - 0.5), fYMax);
+ int y1 = adjust_edge(fYEdgeType, SkScalarTruncToInt(Y(sample) + 0.5), fYMax);
+
+ *filterXs = Sk4i{x0, x1, x0, x1};
+ *filterYs = Sk4i{y0, y0, y1, y1};
+ }
+
+ // Given a sample point, generate a color by bilerping the four filter points.
+ Sk4f bilerpSamplePoint(SkPoint sample) {
+ Sk4i iXs, iYs;
+ filterPoints(sample, &iXs, &iYs);
+ Sk4f px00, px10, px01, px11;
+ fAccessor.get4Pixels(iXs, iYs, &px00, &px10, &px01, &px11);
+ return bilerp4(Sk4f{X(sample) - 0.5f}, Sk4f{Y(sample) - 0.5f}, px00, px10, px01, px11);
+ }
+
+ // Get two pixels at x from row0 and row1.
+ void get2PixelColumn(const void* row0, const void* row1, int x, Sk4f* px0, Sk4f* px1) {
+ *px0 = fAccessor.getPixelFromRow(row0, x);
+ *px1 = fAccessor.getPixelFromRow(row1, x);
+ }
+
+ // |dx| == 0. This code assumes that length is zero.
+ void spanZeroRate(Span span) {
+ SkPoint start; SkScalar length; int count;
+ std::tie(start, length, count) = span;
+ SkASSERT(length == 0.0f);
+
+ // Filter for the blending of the top and bottom pixels.
+ SkScalar filterY = sample_to_filter(Y(start));
+
+ // Generate the four filter points from the sample point start. Generate the row* values.
+ Sk4i iXs, iYs;
+ this->filterPoints(start, &iXs, &iYs);
+ const void* const row0 = fAccessor.row(iYs[0]);
+ const void* const row1 = fAccessor.row(iYs[2]);
+
+ // Get the two pixels that make up the clamping pixel.
+ Sk4f pxTop, pxBottom;
+ this->get2PixelColumn(row0, row1, SkScalarFloorToInt(X(start)), &pxTop, &pxBottom);
+ Sk4f pixel = pxTop * filterY + (1.0f - filterY) * pxBottom;
+
+ while (count >= 4) {
+ fNext->blend4Pixels(pixel, pixel, pixel, pixel);
+ count -= 4;
+ }
+ while (count > 0) {
+ fNext->blendPixel(pixel);
+ count -= 1;
+ }
+ }
+
+ // 0 < |dx| < 1. This code reuses the calculations from previous pixels to reduce
+ // computation. In particular, several destination pixels maybe generated from the same four
+ // source pixels.
+ // In the following code a "part" is a combination of two pixels from the same column of the
+ // filter.
+ void spanSlowRate(Span span) {
+ SkPoint start; SkScalar length; int count;
+ std::tie(start, length, count) = span;
+
+ // Calculate the distance between each sample point.
+ const SkScalar dx = length / (count - 1);
+ SkASSERT(-1.0f < dx && dx < 1.0f && dx != 0.0f);
+
+ // Generate the filter values for the top-left corner.
+ // Note: these values are in filter space; this has implications about how to adjust
+ // these values at each step. For example, as the sample point increases, the filter
+ // value decreases, this is because the filter and position are related by
+ // (1 - (X(sample) - .5)) % 1. The (1 - stuff) causes the filter to move in the opposite
+ // direction of the sample point which is increasing by dx.
+ SkScalar filterX = sample_to_filter(X(start));
+ SkScalar filterY = sample_to_filter(Y(start));
+
+ // Generate the four filter points from the sample point start. Generate the row* values.
+ Sk4i iXs, iYs;
+ this->filterPoints(start, &iXs, &iYs);
+ const void* const row0 = fAccessor.row(iYs[0]);
+ const void* const row1 = fAccessor.row(iYs[2]);
+
+ // Generate part of the filter value at xColumn.
+ auto partAtColumn = [&](int xColumn) {
+ int adjustedColumn = adjust_edge(fXEdgeType, xColumn, fXMax);
+ Sk4f pxTop, pxBottom;
+ this->get2PixelColumn(row0, row1, adjustedColumn, &pxTop, &pxBottom);
+ return pxTop * filterY + (1.0f - filterY) * pxBottom;
+ };
+
+ // The leftPart is made up of two pixels from the left column of the filter, right part
+ // is similar. The top and bottom pixels in the *Part are created as a linear blend of
+ // the top and bottom pixels using filterY. See the partAtColumn function above.
+ Sk4f leftPart = partAtColumn(iXs[0]);
+ Sk4f rightPart = partAtColumn(iXs[1]);
+
+ // Create a destination color by blending together a left and right part using filterX.
+ auto bilerp = [&](const Sk4f& leftPart, const Sk4f& rightPart) {
+ Sk4f pixel = leftPart * filterX + rightPart * (1.0f - filterX);
+ return check_pixel(pixel);
+ };
+
+ // Send the first pixel to the destination. This simplifies the loop structure so that no
+ // extra pixels are fetched for the last iteration of the loop.
+ fNext->blendPixel(bilerp(leftPart, rightPart));
+ count -= 1;
+
+ if (dx > 0.0f) {
+ // * positive direction - generate destination pixels by sliding the filter from left
+ // to right.
+ int rightPartCursor = iXs[1];
+
+ // Advance the filter from left to right. Remember that moving the top-left corner of
+ // the filter to the right actually makes the filter value smaller.
+ auto advanceFilter = [&]() {
+ filterX -= dx;
+ if (filterX <= 0.0f) {
+ filterX += 1.0f;
+ leftPart = rightPart;
+ rightPartCursor += 1;
+ rightPart = partAtColumn(rightPartCursor);
+ }
+ SkASSERT(0.0f < filterX && filterX <= 1.0f);
+
+ return bilerp(leftPart, rightPart);
+ };
+
+ while (count >= 4) {
+ Sk4f px0 = advanceFilter(),
+ px1 = advanceFilter(),
+ px2 = advanceFilter(),
+ px3 = advanceFilter();
+ fNext->blend4Pixels(px0, px1, px2, px3);
+ count -= 4;
+ }
+
+ while (count > 0) {
+ fNext->blendPixel(advanceFilter());
+ count -= 1;
+ }
+ } else {
+ // * negative direction - generate destination pixels by sliding the filter from
+ // right to left.
+ int leftPartCursor = iXs[0];
+
+ // Advance the filter from right to left. Remember that moving the top-left corner of
+ // the filter to the left actually makes the filter value larger.
+ auto advanceFilter = [&]() {
+ // Remember, dx < 0 therefore this adds |dx| to filterX.
+ filterX -= dx;
+ // At this point filterX may be > 1, and needs to be wrapped back on to the filter
+ // interval, and the next column in the filter is calculated.
+ if (filterX > 1.0f) {
+ filterX -= 1.0f;
+ rightPart = leftPart;
+ leftPartCursor -= 1;
+ leftPart = partAtColumn(leftPartCursor);
+ }
+ SkASSERT(0.0f < filterX && filterX <= 1.0f);
+
+ return bilerp(leftPart, rightPart);
+ };
+
+ while (count >= 4) {
+ Sk4f px0 = advanceFilter(),
+ px1 = advanceFilter(),
+ px2 = advanceFilter(),
+ px3 = advanceFilter();
+ fNext->blend4Pixels(px0, px1, px2, px3);
+ count -= 4;
+ }
+
+ while (count > 0) {
+ fNext->blendPixel(advanceFilter());
+ count -= 1;
+ }
+ }
+ }
+
+ // |dx| == 1. Moving through source space at a rate of 1 source pixel per 1 dst pixel.
+ // Every filter part is used for two destination pixels, and the code can bulk load four
+ // pixels at a time.
+ void spanUnitRate(Span span) {
+ SkPoint start; SkScalar length; int count;
+ std::tie(start, length, count) = span;
+ SkASSERT(SkScalarAbs(length) == (count - 1));
+
+ // Calculate the four filter points of start, and use the two different Y values to
+ // generate the row pointers.
+ Sk4i iXs, iYs;
+ filterPoints(start, &iXs, &iYs);
+ const void* row0 = fAccessor.row(iYs[0]);
+ const void* row1 = fAccessor.row(iYs[2]);
+
+ // Calculate the filter values for the top-left filter element.
+ const SkScalar filterX = sample_to_filter(X(start));
+ const SkScalar filterY = sample_to_filter(Y(start));
+
+ // Generate part of the filter value at xColumn.
+ auto partAtColumn = [&](int xColumn) {
+ int adjustedColumn = adjust_edge(fXEdgeType, xColumn, fXMax);
+ Sk4f pxTop, pxBottom;
+ this->get2PixelColumn(row0, row1, adjustedColumn, &pxTop, &pxBottom);
+ return pxTop * filterY + (1.0f - filterY) * pxBottom;
+ };
+
+ auto get4Parts = [&](int ix, Sk4f* part0, Sk4f* part1, Sk4f* part2, Sk4f* part3) {
+ // Check if the pixels needed are near the edges. If not go fast using bulk pixels,
+ // otherwise be careful.
+ if (0 <= ix && ix <= fXMax - 3) {
+ Sk4f px00, px10, px20, px30,
+ px01, px11, px21, px31;
+ fAccessor.get4Pixels(row0, ix, &px00, &px10, &px20, &px30);
+ fAccessor.get4Pixels(row1, ix, &px01, &px11, &px21, &px31);
+ *part0 = filterY * px00 + (1.0f - filterY) * px01;
+ *part1 = filterY * px10 + (1.0f - filterY) * px11;
+ *part2 = filterY * px20 + (1.0f - filterY) * px21;
+ *part3 = filterY * px30 + (1.0f - filterY) * px31;
+ } else {
+ *part0 = partAtColumn(ix + 0);
+ *part1 = partAtColumn(ix + 1);
+ *part2 = partAtColumn(ix + 2);
+ *part3 = partAtColumn(ix + 3);
+ }
+ };
+
+ auto bilerp = [&](const Sk4f& part0, const Sk4f& part1) {
+ return part0 * filterX + part1 * (1.0f - filterX);
+ };
+
+ if (length > 0) {
+ // * positive direction - generate destination pixels by sliding the filter from left
+ // to right.
+
+ // overlapPart is the filter part from the end of the previous four pixels used at
+ // the start of the next four pixels.
+ Sk4f overlapPart = partAtColumn(iXs[0]);
+ int rightColumnCursor = iXs[1];
+ while (count >= 4) {
+ Sk4f part0, part1, part2, part3;
+ get4Parts(rightColumnCursor, &part0, &part1, &part2, &part3);
+ Sk4f px0 = bilerp(overlapPart, part0);
+ Sk4f px1 = bilerp(part0, part1);
+ Sk4f px2 = bilerp(part1, part2);
+ Sk4f px3 = bilerp(part2, part3);
+ overlapPart = part3;
+ fNext->blend4Pixels(px0, px1, px2, px3);
+ rightColumnCursor += 4;
+ count -= 4;
+ }
+
+ while (count > 0) {
+ Sk4f rightPart = partAtColumn(rightColumnCursor);
+
+ fNext->blendPixel(bilerp(overlapPart, rightPart));
+ overlapPart = rightPart;
+ rightColumnCursor += 1;
+ count -= 1;
+ }
+ } else {
+ // * negative direction - generate destination pixels by sliding the filter from
+ // right to left.
+ Sk4f overlapPart = partAtColumn(iXs[1]);
+ int leftColumnCursor = iXs[0];
+
+ while (count >= 4) {
+ Sk4f part0, part1, part2, part3;
+ get4Parts(leftColumnCursor - 3, &part3, &part2, &part1, &part0);
+ Sk4f px0 = bilerp(part0, overlapPart);
+ Sk4f px1 = bilerp(part1, part0);
+ Sk4f px2 = bilerp(part2, part1);
+ Sk4f px3 = bilerp(part3, part2);
+ overlapPart = part3;
+ fNext->blend4Pixels(px0, px1, px2, px3);
+ leftColumnCursor -= 4;
+ count -= 4;
+ }
+
+ while (count > 0) {
+ Sk4f leftPart = partAtColumn(leftColumnCursor);
+
+ fNext->blendPixel(bilerp(leftPart, overlapPart));
+ overlapPart = leftPart;
+ leftColumnCursor -= 1;
+ count -= 1;
+ }
+ }
+ }
+
+ // 1 < |dx| < 2. Going through the source pixels at a faster rate than the dest pixels, but
+ // still slow enough to take advantage of previous calculations.
+ void spanMediumRate(Span span) {
+ SkPoint start; SkScalar length; int count;
+ std::tie(start, length, count) = span;
+
+ // Calculate the distance between each sample point.
+ const SkScalar dx = length / (count - 1);
+ SkASSERT((-2.0f < dx && dx < -1.0f) || (1.0f < dx && dx < 2.0f));
+
+ // Generate the filter values for the top-left corner.
+ // Note: these values are in filter space; this has implications about how to adjust
+ // these values at each step. For example, as the sample point increases, the filter
+ // value decreases, this is because the filter and position are related by
+ // (1 - (X(sample) - .5)) % 1. The (1 - stuff) causes the filter to move in the opposite
+ // direction of the sample point which is increasing by dx.
+ SkScalar filterX = sample_to_filter(X(start));
+ SkScalar filterY = sample_to_filter(Y(start));
+
+ // Generate the four filter points from the sample point start. Generate the row* values.
+ Sk4i iXs, iYs;
+ this->filterPoints(start, &iXs, &iYs);
+ const void* const row0 = fAccessor.row(iYs[0]);
+ const void* const row1 = fAccessor.row(iYs[2]);
+
+ // Generate part of the filter value at xColumn.
+ auto partAtColumn = [&](int xColumn) {
+ int adjustedColumn = adjust_edge(fXEdgeType, xColumn, fXMax);
+ Sk4f pxTop, pxBottom;
+ this->get2PixelColumn(row0, row1, adjustedColumn, &pxTop, &pxBottom);
+ return pxTop * filterY + (1.0f - filterY) * pxBottom;
+ };
+
+ // The leftPart is made up of two pixels from the left column of the filter, right part
+ // is similar. The top and bottom pixels in the *Part are created as a linear blend of
+ // the top and bottom pixels using filterY. See the nextPart function below.
+ Sk4f leftPart = partAtColumn(iXs[0]);
+ Sk4f rightPart = partAtColumn(iXs[1]);
+
+ // Create a destination color by blending together a left and right part using filterX.
+ auto bilerp = [&](const Sk4f& leftPart, const Sk4f& rightPart) {
+ Sk4f pixel = leftPart * filterX + rightPart * (1.0f - filterX);
+ return check_pixel(pixel);
+ };
+
+ // Send the first pixel to the destination. This simplifies the loop structure so that no
+ // extra pixels are fetched for the last iteration of the loop.
+ fNext->blendPixel(bilerp(leftPart, rightPart));
+ count -= 1;
+
+ if (dx > 0.0f) {
+ // * positive direction - generate destination pixels by sliding the filter from left
+ // to right.
+ int rightPartCursor = iXs[1];
+
+ // Advance the filter from left to right. Remember that moving the top-left corner of
+ // the filter to the right actually makes the filter value smaller.
+ auto advanceFilter = [&]() {
+ filterX -= dx;
+ // At this point filterX is less than zero, but might actually be less than -1.
+ if (filterX > -1.0f) {
+ filterX += 1.0f;
+ leftPart = rightPart;
+ rightPartCursor += 1;
+ rightPart = partAtColumn(rightPartCursor);
+ } else {
+ filterX += 2.0f;
+ rightPartCursor += 2;
+ leftPart = partAtColumn(rightPartCursor - 1);
+ rightPart = partAtColumn(rightPartCursor);
+ }
+ SkASSERT(0.0f < filterX && filterX <= 1.0f);
+
+ return bilerp(leftPart, rightPart);
+ };
+
+ while (count >= 4) {
+ Sk4f px0 = advanceFilter(),
+ px1 = advanceFilter(),
+ px2 = advanceFilter(),
+ px3 = advanceFilter();
+ fNext->blend4Pixels(px0, px1, px2, px3);
+ count -= 4;
+ }
+
+ while (count > 0) {
+ fNext->blendPixel(advanceFilter());
+ count -= 1;
+ }
+ } else {
+ // * negative direction - generate destination pixels by sliding the filter from
+ // right to left.
+ int leftPartCursor = iXs[0];
+
+ auto advanceFilter = [&]() {
+ // Remember, dx < 0 therefore this adds |dx| to filterX.
+ filterX -= dx;
+ // At this point, filterX is greater than one, but may actually be greater than two.
+ if (filterX < 2.0f) {
+ filterX -= 1.0f;
+ rightPart = leftPart;
+ leftPartCursor -= 1;
+ leftPart = partAtColumn(leftPartCursor);
+ } else {
+ filterX -= 2.0f;
+ leftPartCursor -= 2;
+ rightPart = partAtColumn(leftPartCursor - 1);
+ leftPart = partAtColumn(leftPartCursor);
+ }
+ SkASSERT(0.0f < filterX && filterX <= 1.0f);
+ return bilerp(leftPart, rightPart);
+ };
+
+ while (count >= 4) {
+ Sk4f px0 = advanceFilter(),
+ px1 = advanceFilter(),
+ px2 = advanceFilter(),
+ px3 = advanceFilter();
+ fNext->blend4Pixels(px0, px1, px2, px3);
+ count -= 4;
+ }
+
+ while (count > 0) {
+ fNext->blendPixel(advanceFilter());
+ count -= 1;
+ }
+ }
+ }
+
+ // We're moving through source space faster than dst (zoomed out),
+ // so we'll never reuse a source pixel or be able to do contiguous loads.
+ void spanFastRate(Span span) {
+ SkPoint start; SkScalar length; int count;
+ std::tie(start, length, count) = span;
+ SkScalar x = X(start);
+ SkScalar y = Y(start);
+
+ SkScalar dx = length / (count - 1);
+ while (count > 0) {
+ fNext->blendPixel(this->bilerpSamplePoint(SkPoint{x, y}));
+ x += dx;
+ count -= 1;
+ }
+ }
+
+ Next* const fNext;
+ const SkShader::TileMode fXEdgeType;
+ const int fXMax;
+ const SkShader::TileMode fYEdgeType;
+ const int fYMax;
+ Accessor fAccessor;
+};
+
+} // namespace
+
+#endif // SkLinearBitmapPipeline_sampler_DEFINED