aboutsummaryrefslogtreecommitdiffhomepage
diff options
context:
space:
mode:
-rw-r--r--gn/gpu.gni2
-rw-r--r--samplecode/SampleCCPRGeometry.cpp78
-rw-r--r--src/gpu/ccpr/GrCCConicShader.cpp93
-rw-r--r--src/gpu/ccpr/GrCCConicShader.h44
-rw-r--r--src/gpu/ccpr/GrCCCoverageProcessor.cpp4
-rw-r--r--src/gpu/ccpr/GrCCCoverageProcessor.h19
-rw-r--r--src/gpu/ccpr/GrCCCoverageProcessor_GSImpl.cpp8
-rw-r--r--src/gpu/ccpr/GrCCCoverageProcessor_VSImpl.cpp12
-rw-r--r--src/gpu/ccpr/GrCCGeometry.cpp161
-rw-r--r--src/gpu/ccpr/GrCCGeometry.h19
-rw-r--r--src/gpu/ccpr/GrCCPathParser.cpp35
-rw-r--r--src/gpu/ccpr/GrCoverageCountingPathRenderer.cpp9
-rw-r--r--tests/SkNxTest.cpp16
13 files changed, 64 insertions, 436 deletions
diff --git a/gn/gpu.gni b/gn/gpu.gni
index 913270dd43..774b2a70d5 100644
--- a/gn/gpu.gni
+++ b/gn/gpu.gni
@@ -300,8 +300,6 @@ skia_gpu_sources = [
"$_src/gpu/ccpr/GrCCAtlas.h",
"$_src/gpu/ccpr/GrCCClipProcessor.cpp",
"$_src/gpu/ccpr/GrCCClipProcessor.h",
- "$_src/gpu/ccpr/GrCCConicShader.cpp",
- "$_src/gpu/ccpr/GrCCConicShader.h",
"$_src/gpu/ccpr/GrCCCoverageProcessor.cpp",
"$_src/gpu/ccpr/GrCCCoverageProcessor_GSImpl.cpp",
"$_src/gpu/ccpr/GrCCCoverageProcessor_VSImpl.cpp",
diff --git a/samplecode/SampleCCPRGeometry.cpp b/samplecode/SampleCCPRGeometry.cpp
index 52e1181e8c..a6e408749a 100644
--- a/samplecode/SampleCCPRGeometry.cpp
+++ b/samplecode/SampleCCPRGeometry.cpp
@@ -63,8 +63,6 @@ private:
SkPoint fPoints[4] = {
{100.05f, 100.05f}, {400.75f, 100.05f}, {400.75f, 300.95f}, {100.05f, 300.95f}};
- float fConicWeight = .5;
-
SkTArray<TriPointInstance> fTriPointInstances;
SkTArray<QuadPointInstance> fQuadPointInstances;
@@ -150,22 +148,14 @@ void CCPRGeometryView::onDrawContent(SkCanvas* canvas) {
SkPath outline;
outline.moveTo(fPoints[0]);
- switch (fPrimitiveType) {
- case PrimitiveType::kTriangles:
- case PrimitiveType::kWeightedTriangles:
- outline.lineTo(fPoints[1]);
- outline.lineTo(fPoints[3]);
- outline.close();
- break;
- case PrimitiveType::kQuadratics:
- outline.quadTo(fPoints[1], fPoints[3]);
- break;
- case PrimitiveType::kCubics:
- outline.cubicTo(fPoints[1], fPoints[2], fPoints[3]);
- break;
- case PrimitiveType::kConics:
- outline.conicTo(fPoints[1], fPoints[3], fConicWeight);
- break;
+ if (PrimitiveType::kCubics == fPrimitiveType) {
+ outline.cubicTo(fPoints[1], fPoints[2], fPoints[3]);
+ } else if (PrimitiveType::kQuadratics == fPrimitiveType) {
+ outline.quadTo(fPoints[1], fPoints[3]);
+ } else {
+ outline.lineTo(fPoints[1]);
+ outline.lineTo(fPoints[3]);
+ outline.close();
}
SkPaint outlinePaint;
@@ -218,8 +208,6 @@ void CCPRGeometryView::onDrawContent(SkCanvas* canvas) {
GrCCCoverageProcessor::PrimitiveTypeName(fPrimitiveType));
if (PrimitiveType::kCubics == fPrimitiveType) {
caption.appendf(" (%s)", SkCubicTypeName(fCubicType));
- } else if (PrimitiveType::kConics == fPrimitiveType) {
- caption.appendf(" (w=%f)", fConicWeight);
}
} else {
caption = "Use GPU backend to visualize geometry.";
@@ -276,18 +264,13 @@ void CCPRGeometryView::updateGpuData() {
continue;
}
}
- } else if (PrimitiveType::kTriangles != fPrimitiveType) {
+ } else if (PrimitiveType::kQuadratics == fPrimitiveType) {
SkPoint P3[3] = {fPoints[0], fPoints[1], fPoints[3]};
GrCCGeometry geometry;
geometry.beginContour(P3[0]);
- if (PrimitiveType::kQuadratics == fPrimitiveType) {
- geometry.quadraticTo(P3);
- } else {
- SkASSERT(PrimitiveType::kConics == fPrimitiveType);
- geometry.conicTo(P3, fConicWeight);
- }
+ geometry.quadraticTo(P3);
geometry.endContour();
- int ptsIdx = 0, conicWeightIdx = 0;
+ int ptsIdx = 0;
for (GrCCGeometry::Verb verb : geometry.verbs()) {
if (GrCCGeometry::Verb::kBeginContour == verb ||
GrCCGeometry::Verb::kEndOpenContour == verb ||
@@ -298,16 +281,8 @@ void CCPRGeometryView::updateGpuData() {
++ptsIdx;
continue;
}
- SkASSERT(GrCCGeometry::Verb::kMonotonicQuadraticTo == verb ||
- GrCCGeometry::Verb::kMonotonicConicTo == verb);
- if (PrimitiveType::kQuadratics == fPrimitiveType &&
- GrCCGeometry::Verb::kMonotonicQuadraticTo == verb) {
- fTriPointInstances.push_back().set(&geometry.points()[ptsIdx], Sk2f(0, 0));
- } else if (PrimitiveType::kConics == fPrimitiveType &&
- GrCCGeometry::Verb::kMonotonicConicTo == verb) {
- fQuadPointInstances.push_back().setW(&geometry.points()[ptsIdx], Sk2f(0, 0),
- geometry.getConicWeight(conicWeightIdx++));
- }
+ SkASSERT(GrCCGeometry::Verb::kMonotonicQuadraticTo == verb);
+ fTriPointInstances.push_back().set(&geometry.points()[ptsIdx], Sk2f(0, 0));
ptsIdx += 2;
}
} else {
@@ -326,8 +301,7 @@ void CCPRGeometryView::DrawCoverageCountOp::onExecute(GrOpFlushState* state) {
SkDEBUGCODE(proc.enableDebugBloat(kDebugBloat));
SkSTArray<1, GrMesh> mesh;
- if (PrimitiveType::kCubics == fView->fPrimitiveType ||
- PrimitiveType::kConics == fView->fPrimitiveType) {
+ if (PrimitiveType::kCubics == fView->fPrimitiveType) {
sk_sp<GrBuffer> instBuff(rp->createBuffer(
fView->fQuadPointInstances.count() * sizeof(QuadPointInstance),
kVertex_GrBufferType, kDynamic_GrAccessPattern,
@@ -415,7 +389,7 @@ bool CCPRGeometryView::onQuery(SkEvent* evt) {
}
SkUnichar unichar;
if (SampleCode::CharQ(*evt, &unichar)) {
- if (unichar >= '1' && unichar <= '4') {
+ if (unichar >= '1' && unichar <= '3') {
fPrimitiveType = PrimitiveType(unichar - '1');
if (fPrimitiveType >= PrimitiveType::kWeightedTriangles) {
fPrimitiveType = (PrimitiveType) ((int)fPrimitiveType + 1);
@@ -423,28 +397,6 @@ bool CCPRGeometryView::onQuery(SkEvent* evt) {
this->updateAndInval();
return true;
}
- if (PrimitiveType::kConics == fPrimitiveType) {
- if (unichar == '+') {
- fConicWeight *= 2;
- this->updateAndInval();
- return true;
- }
- if (unichar == '+' || unichar == '=') {
- fConicWeight *= 5/4.f;
- this->updateAndInval();
- return true;
- }
- if (unichar == '-') {
- fConicWeight *= 4/5.f;
- this->updateAndInval();
- return true;
- }
- if (unichar == '_') {
- fConicWeight *= .5f;
- this->updateAndInval();
- return true;
- }
- }
if (unichar == 'D') {
SkDebugf(" SkPoint fPoints[4] = {\n");
SkDebugf(" {%ff, %ff},\n", fPoints[0].x(), fPoints[0].y());
diff --git a/src/gpu/ccpr/GrCCConicShader.cpp b/src/gpu/ccpr/GrCCConicShader.cpp
deleted file mode 100644
index 01568de437..0000000000
--- a/src/gpu/ccpr/GrCCConicShader.cpp
+++ /dev/null
@@ -1,93 +0,0 @@
-/*
- * Copyright 2018 Google Inc.
- *
- * Use of this source code is governed by a BSD-style license that can be
- * found in the LICENSE file.
- */
-
-#include "GrCCConicShader.h"
-
-#include "glsl/GrGLSLFragmentShaderBuilder.h"
-#include "glsl/GrGLSLVertexGeoBuilder.h"
-
-void GrCCConicShader::emitSetupCode(GrGLSLVertexGeoBuilder* s, const char* pts, const char* wind,
- const char** outHull4) const {
- // K is distance from the line P2 -> P0. L is distance from the line P0 -> P1, scaled by 2w.
- // M is distance from the line P1 -> P2, scaled by 2w. We do this in a space where P1=0.
- s->declareGlobal(fKLMMatrix);
- s->codeAppendf("float x0 = %s[0].x - %s[1].x, x2 = %s[2].x - %s[1].x;", pts, pts, pts, pts);
- s->codeAppendf("float y0 = %s[0].y - %s[1].y, y2 = %s[2].y - %s[1].y;", pts, pts, pts, pts);
- s->codeAppendf("float w = %s[3].x;", pts);
- s->codeAppendf("%s = float3x3(y2 - y0, x0 - x2, x2*y0 - x0*y2, "
- "2*w * float2(+y0, -x0), 0, "
- "2*w * float2(-y2, +x2), 0);", fKLMMatrix.c_str());
-
- s->declareGlobal(fControlPoint);
- s->codeAppendf("%s = %s[1];", fControlPoint.c_str(), pts);
-
- // Scale KLM by the inverse Manhattan width of K. This allows K to double as the flat opposite
- // edge AA. kwidth will not be 0 because we cull degenerate conics on the CPU.
- s->codeAppendf("float kwidth = 2*bloat * %s * (abs(%s[0].x) + abs(%s[0].y));",
- wind, fKLMMatrix.c_str(), fKLMMatrix.c_str());
- s->codeAppendf("%s *= 1/kwidth;", fKLMMatrix.c_str());
-
- if (outHull4) {
- // Clip the conic triangle by the tangent line at maximum height. Conics have the nice
- // property that maximum height always occurs at T=.5. This is a simple application for
- // De Casteljau's algorithm.
- s->codeAppendf("float2 p1w = %s[1]*w;", pts);
- s->codeAppend ("float r = 1 / (1 + w);");
- s->codeAppendf("float2 conic_hull[4] = float2[4](%s[0], "
- "(%s[0] + p1w) * r, "
- "(p1w + %s[2]) * r, "
- "%s[2]);", pts, pts, pts, pts);
- *outHull4 = "conic_hull";
- }
-}
-
-void GrCCConicShader::onEmitVaryings(GrGLSLVaryingHandler* varyingHandler,
- GrGLSLVarying::Scope scope, SkString* code,
- const char* position, const char* coverage,
- const char* cornerCoverage) {
- fKLM_fWind.reset(kFloat4_GrSLType, scope);
- varyingHandler->addVarying("klm_and_wind", &fKLM_fWind);
- code->appendf("float3 klm = float3(%s - %s, 1) * %s;",
- position, fControlPoint.c_str(), fKLMMatrix.c_str());
- code->appendf("%s.xyz = klm;", OutName(fKLM_fWind));
- code->appendf("%s.w = %s;", OutName(fKLM_fWind), coverage); // coverage == wind.
-
- fGrad_fCorner.reset(cornerCoverage ? kFloat4_GrSLType : kFloat2_GrSLType, scope);
- varyingHandler->addVarying(cornerCoverage ? "grad_and_corner" : "grad", &fGrad_fCorner);
- code->appendf("%s.xy = 2*bloat * (float3x2(%s) * float3(2*klm[0], -klm[2], -klm[1]));",
- OutName(fGrad_fCorner), fKLMMatrix.c_str());
-
- if (cornerCoverage) {
- code->appendf("half hull_coverage;");
- this->calcHullCoverage(code, "klm", OutName(fGrad_fCorner), "hull_coverage");
- code->appendf("%s.zw = half2(hull_coverage, 1) * %s;",
- OutName(fGrad_fCorner), cornerCoverage);
- }
-}
-
-void GrCCConicShader::onEmitFragmentCode(GrGLSLFPFragmentBuilder* f,
- const char* outputCoverage) const {
- this->calcHullCoverage(&AccessCodeString(f), fKLM_fWind.fsIn(), fGrad_fCorner.fsIn(),
- outputCoverage);
- f->codeAppendf("%s *= %s.w;", outputCoverage, fKLM_fWind.fsIn()); // Wind.
-
- if (kFloat4_GrSLType == fGrad_fCorner.type()) {
- f->codeAppendf("%s = %s.z * %s.w + %s;", // Attenuated corner coverage.
- outputCoverage, fGrad_fCorner.fsIn(), fGrad_fCorner.fsIn(),
- outputCoverage);
- }
-}
-
-void GrCCConicShader::calcHullCoverage(SkString* code, const char* klm, const char* grad,
- const char* outputCoverage) const {
- code->appendf("float k = %s.x, l = %s.y, m = %s.z;", klm, klm, klm);
- code->append ("float f = k*k - l*m;");
- code->appendf("float fwidth = abs(%s.x) + abs(%s.y);", grad, grad);
- code->appendf("%s = min(0.5 - f/fwidth, 1);", outputCoverage); // Curve coverage.
- code->append ("half d = min(k - 0.5, 0);"); // K doubles as the flat opposite edge's AA.
- code->appendf("%s = max(%s + d, 0);", outputCoverage, outputCoverage); // Total hull coverage.
-}
diff --git a/src/gpu/ccpr/GrCCConicShader.h b/src/gpu/ccpr/GrCCConicShader.h
deleted file mode 100644
index 16b70e7072..0000000000
--- a/src/gpu/ccpr/GrCCConicShader.h
+++ /dev/null
@@ -1,44 +0,0 @@
-/*
- * Copyright 2018 Google Inc.
- *
- * Use of this source code is governed by a BSD-style license that can be
- * found in the LICENSE file.
- */
-
-#ifndef GrCCConicShader_DEFINED
-#define GrCCConicShader_DEFINED
-
-#include "ccpr/GrCCCoverageProcessor.h"
-
-/**
- * This class renders the coverage of closed conic curves using the techniques outlined in
- * "Resolution Independent Curve Rendering using Programmable Graphics Hardware" by Charles Loop and
- * Jim Blinn:
- *
- * https://www.microsoft.com/en-us/research/wp-content/uploads/2005/01/p1000-loop.pdf
- *
- * The provided curves must be monotonic with respect to the vector of their closing edge [P2 - P0].
- * (Use GrCCGeometry::conicTo().)
- */
-class GrCCConicShader : public GrCCCoverageProcessor::Shader {
-public:
- void emitSetupCode(GrGLSLVertexGeoBuilder*, const char* pts, const char* wind,
- const char** outHull4) const override;
-
- void onEmitVaryings(GrGLSLVaryingHandler*, GrGLSLVarying::Scope, SkString* code,
- const char* position, const char* coverage,
- const char* cornerCoverage) override;
-
- void onEmitFragmentCode(GrGLSLFPFragmentBuilder*, const char* outputCoverage) const override;
-
-private:
- void calcHullCoverage(SkString* code, const char* klm, const char* grad,
- const char* outputCoverage) const;
-
- const GrShaderVar fKLMMatrix{"klm_matrix", kFloat3x3_GrSLType};
- const GrShaderVar fControlPoint{"control_point", kFloat2_GrSLType};
- GrGLSLVarying fKLM_fWind;
- GrGLSLVarying fGrad_fCorner;
-};
-
-#endif
diff --git a/src/gpu/ccpr/GrCCCoverageProcessor.cpp b/src/gpu/ccpr/GrCCCoverageProcessor.cpp
index d38db27a19..b94b188e69 100644
--- a/src/gpu/ccpr/GrCCCoverageProcessor.cpp
+++ b/src/gpu/ccpr/GrCCCoverageProcessor.cpp
@@ -10,7 +10,6 @@
#include "GrGpuCommandBuffer.h"
#include "GrOpFlushState.h"
#include "SkMakeUnique.h"
-#include "ccpr/GrCCConicShader.h"
#include "ccpr/GrCCCubicShader.h"
#include "ccpr/GrCCQuadraticShader.h"
#include "glsl/GrGLSLVertexGeoBuilder.h"
@@ -175,9 +174,6 @@ GrGLSLPrimitiveProcessor* GrCCCoverageProcessor::createGLSLInstance(const GrShad
case PrimitiveType::kCubics:
shader = skstd::make_unique<GrCCCubicShader>();
break;
- case PrimitiveType::kConics:
- shader = skstd::make_unique<GrCCConicShader>();
- break;
}
return Impl::kGeometryShader == fImpl ? this->createGSImpl(std::move(shader))
: this->createVSImpl(std::move(shader));
diff --git a/src/gpu/ccpr/GrCCCoverageProcessor.h b/src/gpu/ccpr/GrCCCoverageProcessor.h
index 454e728ae9..68180270b1 100644
--- a/src/gpu/ccpr/GrCCCoverageProcessor.h
+++ b/src/gpu/ccpr/GrCCCoverageProcessor.h
@@ -40,7 +40,6 @@ public:
kWeightedTriangles, // Triangles (from the tessellator) whose winding magnitude > 1.
kQuadratics,
kCubics,
- kConics
};
static const char* PrimitiveTypeName(PrimitiveType);
@@ -54,15 +53,14 @@ public:
void set(const SkPoint&, const SkPoint&, const SkPoint&, const Sk2f& trans);
};
- // Defines a single primitive shape with 4 input points, or 3 input points plus a "weight"
- // parameter duplicated in both lanes of the 4th input (i.e. Cubics, Conics, and Triangles with
- // a weighted winding number). X,Y point values are transposed.
+ // Defines a single primitive shape with 4 input points, or 3 input points plus a W parameter
+ // duplicated in both 4th components (i.e. Cubics or Triangles with a custom winding number).
+ // X,Y point values are transposed.
struct QuadPointInstance {
float fX[4];
float fY[4];
void set(const SkPoint[4], float dx, float dy);
- void setW(const SkPoint[3], const Sk2f& trans, float w);
void setW(const SkPoint&, const SkPoint&, const SkPoint&, const Sk2f& trans, float w);
};
@@ -207,11 +205,6 @@ private:
// Number of bezier points for curves, or 3 for triangles.
int numInputPoints() const { return PrimitiveType::kCubics == fPrimitiveType ? 4 : 3; }
- int hasInputWeight() const {
- return PrimitiveType::kWeightedTriangles == fPrimitiveType ||
- PrimitiveType::kConics == fPrimitiveType;
- }
-
enum class Impl : bool {
kGeometryShader,
kVertexShader
@@ -266,7 +259,6 @@ inline const char* GrCCCoverageProcessor::PrimitiveTypeName(PrimitiveType type)
case PrimitiveType::kWeightedTriangles: return "kWeightedTriangles";
case PrimitiveType::kQuadratics: return "kQuadratics";
case PrimitiveType::kCubics: return "kCubics";
- case PrimitiveType::kConics: return "kConics";
}
SK_ABORT("Invalid PrimitiveType");
return "";
@@ -291,11 +283,6 @@ inline void GrCCCoverageProcessor::QuadPointInstance::set(const SkPoint p[4], fl
(Y + dy).store(&fY);
}
-inline void GrCCCoverageProcessor::QuadPointInstance::setW(const SkPoint p[3], const Sk2f& trans,
- float w) {
- this->setW(p[0], p[1], p[2], trans, w);
-}
-
inline void GrCCCoverageProcessor::QuadPointInstance::setW(const SkPoint& p0, const SkPoint& p1,
const SkPoint& p2, const Sk2f& trans,
float w) {
diff --git a/src/gpu/ccpr/GrCCCoverageProcessor_GSImpl.cpp b/src/gpu/ccpr/GrCCCoverageProcessor_GSImpl.cpp
index b1d886cf8c..f933030177 100644
--- a/src/gpu/ccpr/GrCCCoverageProcessor_GSImpl.cpp
+++ b/src/gpu/ccpr/GrCCCoverageProcessor_GSImpl.cpp
@@ -52,10 +52,9 @@ protected:
int numInputPoints = proc.numInputPoints();
SkASSERT(3 == numInputPoints || 4 == numInputPoints);
- int inputWidth = (4 == numInputPoints || proc.hasInputWeight()) ? 4 : 3;
- const char* posValues = (4 == inputWidth) ? "sk_Position" : "sk_Position.xyz";
+ const char* posValues = (4 == numInputPoints) ? "sk_Position" : "sk_Position.xyz";
g->codeAppendf("float%ix2 pts = transpose(float2x%i(sk_in[0].%s, sk_in[1].%s));",
- inputWidth, inputWidth, posValues, posValues);
+ numInputPoints, numInputPoints, posValues, posValues);
GrShaderVar wind("wind", kHalf_GrSLType);
g->declareGlobal(wind);
@@ -390,7 +389,8 @@ public:
void GrCCCoverageProcessor::initGS() {
SkASSERT(Impl::kGeometryShader == fImpl);
- if (4 == this->numInputPoints() || this->hasInputWeight()) {
+ if (PrimitiveType::kCubics == fPrimitiveType ||
+ PrimitiveType::kWeightedTriangles == fPrimitiveType) {
this->addVertexAttrib("x_or_y_values", kFloat4_GrVertexAttribType);
SkASSERT(sizeof(QuadPointInstance) == this->getVertexStride() * 2);
SkASSERT(offsetof(QuadPointInstance, fY) == this->getVertexStride());
diff --git a/src/gpu/ccpr/GrCCCoverageProcessor_VSImpl.cpp b/src/gpu/ccpr/GrCCCoverageProcessor_VSImpl.cpp
index dd8da96f82..a1f180b031 100644
--- a/src/gpu/ccpr/GrCCCoverageProcessor_VSImpl.cpp
+++ b/src/gpu/ccpr/GrCCCoverageProcessor_VSImpl.cpp
@@ -257,10 +257,9 @@ void GrCCCoverageProcessor::VSImpl::onEmitCode(EmitArgs& args, GrGPArgs* gpArgs)
GrGLSLVertexBuilder* v = args.fVertBuilder;
int numInputPoints = proc.numInputPoints();
- int inputWidth = (4 == numInputPoints || proc.hasInputWeight()) ? 4 : 3;
- const char* swizzle = (4 == inputWidth) ? "xyzw" : "xyz";
+ const char* swizzle = (4 == numInputPoints) ? "xyzw" : "xyz";
v->codeAppendf("float%ix2 pts = transpose(float2x%i(%s.%s, %s.%s));",
- inputWidth, inputWidth, proc.getAttrib(kAttribIdx_X).fName, swizzle,
+ numInputPoints, numInputPoints, proc.getAttrib(kAttribIdx_X).fName, swizzle,
proc.getAttrib(kAttribIdx_Y).fName, swizzle);
if (PrimitiveType::kWeightedTriangles != proc.fPrimitiveType) {
@@ -477,8 +476,7 @@ void GrCCCoverageProcessor::initVS(GrResourceProvider* rp) {
}
case PrimitiveType::kQuadratics:
- case PrimitiveType::kCubics:
- case PrimitiveType::kConics: {
+ case PrimitiveType::kCubics: {
GR_DEFINE_STATIC_UNIQUE_KEY(gCurveVertexBufferKey);
fVSVertexBuffer = rp->findOrMakeStaticBuffer(kVertex_GrBufferType,
sizeof(kCurveVertices), kCurveVertices,
@@ -501,7 +499,8 @@ void GrCCCoverageProcessor::initVS(GrResourceProvider* rp) {
}
}
- if (4 == this->numInputPoints() || this->hasInputWeight()) {
+ if (PrimitiveType::kCubics == fPrimitiveType ||
+ PrimitiveType::kWeightedTriangles == fPrimitiveType) {
SkASSERT(kAttribIdx_X == this->numAttribs());
this->addInstanceAttrib("X", kFloat4_GrVertexAttribType);
@@ -551,7 +550,6 @@ GrGLSLPrimitiveProcessor* GrCCCoverageProcessor::createVSImpl(std::unique_ptr<Sh
return new VSImpl(std::move(shadr), 3);
case PrimitiveType::kQuadratics:
case PrimitiveType::kCubics:
- case PrimitiveType::kConics:
return new VSImpl(std::move(shadr), 4);
}
SK_ABORT("Invalid RenderPass");
diff --git a/src/gpu/ccpr/GrCCGeometry.cpp b/src/gpu/ccpr/GrCCGeometry.cpp
index 302cfe2f2e..5d7fc69556 100644
--- a/src/gpu/ccpr/GrCCGeometry.cpp
+++ b/src/gpu/ccpr/GrCCGeometry.cpp
@@ -27,7 +27,7 @@ void GrCCGeometry::beginContour(const SkPoint& pt) {
SkASSERT(!fBuildingContour);
// Store the current verb count in the fTriangles field for now. When we close the contour we
// will use this value to calculate the actual number of triangles in its fan.
- fCurrContourTallies = {fVerbs.count(), 0, 0, 0, 0};
+ fCurrContourTallies = {fVerbs.count(), 0, 0, 0};
fPoints.push_back(pt);
fVerbs.push_back(Verb::kBeginContour);
@@ -125,8 +125,7 @@ static inline bool is_convex_curve_monotonic(const Sk2f& startPt, const Sk2f& ta
return dot0 >= tolerance && dot1 >= tolerance;
}
-template<int N> static inline SkNx<N,float> lerp(const SkNx<N,float>& a, const SkNx<N,float>& b,
- const SkNx<N,float>& t) {
+static inline Sk2f lerp(const Sk2f& a, const Sk2f& b, const Sk2f& t) {
return SkNx_fma(t, b - a, a);
}
@@ -329,54 +328,6 @@ static inline bool is_cubic_nearly_quadratic(const Sk2f& p0, const Sk2f& p1, con
return ((c1 - c2).abs() <= 1).allTrue();
}
-// Given a convex curve segment with the following order-2 tangent function:
-//
-// |C2x C2y|
-// tan = some_scale * |dx/dt dy/dt| = |t^2 t 1| * |C1x C1y|
-// |C0x C0y|
-//
-// This function finds the T value whose tangent angle is halfway between the tangents at T=0 and
-// T=1 (tan0 and tan1).
-static inline float find_midtangent(const Sk2f& tan0, const Sk2f& tan1,
- float scale2, const Sk2f& C2,
- float scale1, const Sk2f& C1,
- float scale0, const Sk2f& C0) {
- // Tangents point in the direction of increasing T, so tan0 and -tan1 both point toward the
- // midtangent. 'n' will therefore bisect tan0 and -tan1, giving us the normal to the midtangent.
- //
- // n dot midtangent = 0
- //
- Sk2f n = normalize(tan0) - normalize(tan1);
-
- // Find the T value at the midtangent. This is a simple quadratic equation:
- //
- // midtangent dot n = 0
- //
- // (|t^2 t 1| * C) dot n = 0
- //
- // |t^2 t 1| dot C*n = 0
- //
- // First find coeffs = C*n.
- Sk4f C[2];
- Sk2f::Store4(C, C2, C1, C0, 0);
- Sk4f coeffs = C[0]*n[0] + C[1]*n[1];
- if (1 != scale2 || 1 != scale1 || 1 != scale0) {
- coeffs *= Sk4f(scale2, scale1, scale0, 0);
- }
-
- // Now solve the quadratic.
- float a = coeffs[0], b = coeffs[1], c = coeffs[2];
- float discr = b*b - 4*a*c;
- if (discr < 0) {
- return 0; // This will only happen if the curve is a line.
- }
-
- // The roots are q/a and c/q. Pick the one closer to T=.5.
- float q = -.5f * (b + copysignf(std::sqrt(discr), b));
- float r = .5f*q*a;
- return std::abs(q*q - r) < std::abs(a*c - r) ? q/a : c/q;
-}
-
void GrCCGeometry::cubicTo(const SkPoint P[4], float inflectPad, float loopIntersectPad) {
SkASSERT(fBuildingContour);
SkASSERT(P[0] == fPoints.back());
@@ -535,7 +486,7 @@ void GrCCGeometry::cubicTo(const SkPoint P[4], float inflectPad, float loopInter
this->appendMonotonicCubics(p0, ab2, abc2, abcd2);
} else if (T2 > T1) {
// Section 3 (middle section).
- Sk2f midp2 = lerp(abc2, abcd2, Sk2f(T1/T2));
+ Sk2f midp2 = lerp(abc2, abcd2, T1/T2);
this->appendMonotonicCubics(midp0, midp1, midp2, abcd2);
}
@@ -548,18 +499,25 @@ template<GrCCGeometry::AppendCubicFn AppendLeftRight>
inline void GrCCGeometry::chopCubicAtMidTangent(const Sk2f& p0, const Sk2f& p1, const Sk2f& p2,
const Sk2f& p3, const Sk2f& tan0,
const Sk2f& tan1, int maxFutureSubdivisions) {
- float midT = find_midtangent(tan0, tan1, 3, p3 + (p1 - p2)*3 - p0,
- 6, p0 - p1*2 + p2,
- 3, p1 - p0);
- // Use positive logic since NaN fails comparisons. (However midT should not be NaN since we cull
- // near-flat cubics in cubicTo().)
- if (!(midT > 0 && midT < 1)) {
- // The cubic is flat. Otherwise there would be a real midtangent inside T=0..1.
- this->appendLine(p3);
+ // Find the T value whose tangent is perpendicular to the vector that bisects tan0 and -tan1.
+ Sk2f n = normalize(tan0) - normalize(tan1);
+
+ float a = 3 * dot(p3 + (p1 - p2)*3 - p0, n);
+ float b = 6 * dot(p0 - p1*2 + p2, n);
+ float c = 3 * dot(p1 - p0, n);
+
+ float discr = b*b - 4*a*c;
+ if (discr < 0) {
+ // If this is the case then the cubic must be nearly flat.
+ (this->*AppendLeftRight)(p0, p1, p2, p3, maxFutureSubdivisions);
return;
}
- this->chopCubic<AppendLeftRight, AppendLeftRight>(p0, p1, p2, p3, midT, maxFutureSubdivisions);
+ float q = -.5f * (b + copysignf(std::sqrt(discr), b));
+ float m = .5f*q*a;
+ float T = std::abs(q*q - m) < std::abs(a*c - m) ? q/a : c/q;
+
+ this->chopCubic<AppendLeftRight, AppendLeftRight>(p0, p1, p2, p3, T, maxFutureSubdivisions);
}
template<GrCCGeometry::AppendCubicFn AppendLeft, GrCCGeometry::AppendCubicFn AppendRight>
@@ -652,87 +610,6 @@ void GrCCGeometry::appendCubicApproximation(const Sk2f& p0, const Sk2f& p1, cons
}
}
-void GrCCGeometry::conicTo(const SkPoint P[3], float w) {
- SkASSERT(fBuildingContour);
- SkASSERT(P[0] == fPoints.back());
- Sk2f p0 = Sk2f::Load(P);
- Sk2f p1 = Sk2f::Load(P+1);
- Sk2f p2 = Sk2f::Load(P+2);
-
- // Don't crunch on the curve if it is nearly flat (or just very small). Collinear control points
- // can break the midtangent-finding math below.
- if (are_collinear(p0, p1, p2)) {
- this->appendLine(p2);
- return;
- }
-
- Sk2f tan0 = p1 - p0;
- Sk2f tan1 = p2 - p1;
- // The derivative of a conic has a cumbersome order-4 denominator. However, this isn't necessary
- // if we are only interested in a vector in the same *direction* as a given tangent line. Since
- // the denominator scales dx and dy uniformly, we can throw it out completely after evaluating
- // the derivative with the standard quotient rule. This leaves us with a simpler quadratic
- // function that we use to find the midtangent.
- float midT = find_midtangent(tan0, tan1, 1, (w - 1) * (p2 - p0),
- 1, (p2 - p0) - 2*w*(p1 - p0),
- 1, w*(p1 - p0));
- // Use positive logic since NaN fails comparisons. (However midT should not be NaN since we cull
- // near-linear conics above. And while w=0 is flat, it's not a line and has valid midtangents.)
- if (!(midT > 0 && midT < 1)) {
- // The conic is flat. Otherwise there would be a real midtangent inside T=0..1.
- this->appendLine(p2);
- return;
- }
-
- // Evaluate the conic at midT.
- Sk4f p3d0 = Sk4f(p0[0], p0[1], 1, 0);
- Sk4f p3d1 = Sk4f(p1[0], p1[1], 1, 0) * w;
- Sk4f p3d2 = Sk4f(p2[0], p2[1], 1, 0);
- Sk4f midT4 = midT;
-
- Sk4f p3d01 = lerp(p3d0, p3d1, midT4);
- Sk4f p3d12 = lerp(p3d1, p3d2, midT4);
- Sk4f p3d012 = lerp(p3d01, p3d12, midT4);
-
- Sk2f midpoint = Sk2f(p3d012[0], p3d012[1]) / p3d012[2];
-
- if (are_collinear(p0, midpoint, p2, 1) || // Check if the curve is within one pixel of flat.
- ((midpoint - p1).abs() < 1).allTrue()) { // Check if the curve is almost a triangle.
- // Draw the conic as a triangle instead. Our AA approximation won't do well if the curve
- // gets wrapped too tightly, and if we get too close to p1 we will pick up artifacts from
- // the implicit function's reflection.
- this->appendLine(midpoint);
- this->appendLine(p2);
- return;
- }
-
- if (!is_convex_curve_monotonic(p0, tan0, p2, tan1)) {
- // Chop the conic at midtangent to produce two monotonic segments.
- Sk2f ww = Sk2f(p3d01[2], p3d12[2]) * Sk2f(p3d012[2]).rsqrt();
- this->appendMonotonicConic(p0, Sk2f(p3d01[0], p3d01[1]) / p3d01[2], midpoint, ww[0]);
- this->appendMonotonicConic(midpoint, Sk2f(p3d12[0], p3d12[1]) / p3d12[2], p2, ww[1]);
- return;
- }
-
- this->appendMonotonicConic(p0, p1, p2, w);
-}
-
-void GrCCGeometry::appendMonotonicConic(const Sk2f& p0, const Sk2f& p1, const Sk2f& p2, float w) {
- SkASSERT(fPoints.back() == SkPoint::Make(p0[0], p0[1]));
-
- // Don't send curves to the GPU if we know they are nearly flat (or just very small).
- if (are_collinear(p0, p1, p2)) {
- this->appendLine(p2);
- return;
- }
-
- p1.store(&fPoints.push_back());
- p2.store(&fPoints.push_back());
- fConicWeights.push_back(w);
- fVerbs.push_back(Verb::kMonotonicConicTo);
- ++fCurrContourTallies.fConics;
-}
-
GrCCGeometry::PrimitiveTallies GrCCGeometry::endContour() {
SkASSERT(fBuildingContour);
SkASSERT(fVerbs.count() >= fCurrContourTallies.fTriangles);
diff --git a/src/gpu/ccpr/GrCCGeometry.h b/src/gpu/ccpr/GrCCGeometry.h
index 7f098f958b..01cf16c68d 100644
--- a/src/gpu/ccpr/GrCCGeometry.h
+++ b/src/gpu/ccpr/GrCCGeometry.h
@@ -31,7 +31,6 @@ public:
kLineTo,
kMonotonicQuadraticTo, // Monotonic relative to the vector between its endpoints [P2 - P0].
kMonotonicCubicTo,
- kMonotonicConicTo,
kEndClosedContour, // endPt == startPt.
kEndOpenContour // endPt != startPt.
};
@@ -42,7 +41,6 @@ public:
int fWeightedTriangles; // Triangles (from the tessellator) whose winding magnitude > 1.
int fQuadratics;
int fCubics;
- int fConics;
void operator+=(const PrimitiveTallies&);
PrimitiveTallies operator-(const PrimitiveTallies&) const;
@@ -55,7 +53,6 @@ public:
const SkTArray<SkPoint, true>& points() const { SkASSERT(!fBuildingContour); return fPoints; }
const SkTArray<Verb, true>& verbs() const { SkASSERT(!fBuildingContour); return fVerbs; }
- float getConicWeight(int idx) const { SkASSERT(!fBuildingContour); return fConicWeights[idx]; }
void reset() {
SkASSERT(!fBuildingContour);
@@ -92,8 +89,6 @@ public:
// intersection vs. 1.489 on the tiger).
void cubicTo(const SkPoint[4], float inflectPad = 0.55f, float loopIntersectPad = 2);
- void conicTo(const SkPoint[3], float w);
-
PrimitiveTallies endContour(); // Returns the numbers of primitives needed to draw the contour.
private:
@@ -121,17 +116,15 @@ private:
void appendCubicApproximation(const Sk2f& p0, const Sk2f& p1, const Sk2f& p2, const Sk2f& p3,
int maxSubdivisions = kMaxSubdivionsPerCubicSection);
- void appendMonotonicConic(const Sk2f& p0, const Sk2f& p1, const Sk2f& p2, float w);
-
// Transient state used while building a contour.
SkPoint fCurrAnchorPoint;
PrimitiveTallies fCurrContourTallies;
SkCubicType fCurrCubicType;
SkDEBUGCODE(bool fBuildingContour = false);
- SkSTArray<128, SkPoint, true> fPoints;
- SkSTArray<32, float, true> fConicWeights;
- SkSTArray<128, Verb, true> fVerbs;
+ // TODO: These points could eventually be written directly to block-allocated GPU buffers.
+ SkSTArray<128, SkPoint, true> fPoints;
+ SkSTArray<128, Verb, true> fVerbs;
};
inline void GrCCGeometry::PrimitiveTallies::operator+=(const PrimitiveTallies& b) {
@@ -139,7 +132,6 @@ inline void GrCCGeometry::PrimitiveTallies::operator+=(const PrimitiveTallies& b
fWeightedTriangles += b.fWeightedTriangles;
fQuadratics += b.fQuadratics;
fCubics += b.fCubics;
- fConics += b.fConics;
}
GrCCGeometry::PrimitiveTallies
@@ -147,13 +139,12 @@ inline GrCCGeometry::PrimitiveTallies::operator-(const PrimitiveTallies& b) cons
return {fTriangles - b.fTriangles,
fWeightedTriangles - b.fWeightedTriangles,
fQuadratics - b.fQuadratics,
- fCubics - b.fCubics,
- fConics - b.fConics};
+ fCubics - b.fCubics};
}
inline bool GrCCGeometry::PrimitiveTallies::operator==(const PrimitiveTallies& b) {
return fTriangles == b.fTriangles && fWeightedTriangles == b.fWeightedTriangles &&
- fQuadratics == b.fQuadratics && fCubics == b.fCubics && fConics == b.fConics;
+ fQuadratics == b.fQuadratics && fCubics == b.fCubics;
}
#endif
diff --git a/src/gpu/ccpr/GrCCPathParser.cpp b/src/gpu/ccpr/GrCCPathParser.cpp
index 2740569fe6..f77c52e6f1 100644
--- a/src/gpu/ccpr/GrCCPathParser.cpp
+++ b/src/gpu/ccpr/GrCCPathParser.cpp
@@ -114,9 +114,7 @@ void GrCCPathParser::parsePath(const SkPath& path, const SkPoint* deviceSpacePts
return;
}
- const float* conicWeights = SkPathPriv::ConicWeightData(path);
int ptsIdx = 0;
- int conicWeightsIdx = 0;
bool insideContour = false;
for (SkPath::Verb verb : SkPathPriv::Verbs(path)) {
@@ -144,16 +142,11 @@ void GrCCPathParser::parsePath(const SkPath& path, const SkPoint* deviceSpacePts
ptsIdx += 3;
continue;
case SkPath::kConic_Verb:
- fGeometry.conicTo(&deviceSpacePts[ptsIdx - 1], conicWeights[conicWeightsIdx]);
- ptsIdx += 2;
- ++conicWeightsIdx;
- continue;
+ SK_ABORT("Conics are not supported.");
default:
SK_ABORT("Unexpected path verb.");
}
}
- SkASSERT(ptsIdx == path.countPoints());
- SkASSERT(conicWeightsIdx == SkPathPriv::ConicWeightCnt(path));
this->endContourIfNeeded(insideContour);
}
@@ -203,7 +196,6 @@ void GrCCPathParser::saveParsedPath(ScissorMode scissorMode, const SkIRect& clip
continue;
case GrCCGeometry::Verb::kMonotonicQuadraticTo:
- case GrCCGeometry::Verb::kMonotonicConicTo:
fan.lineTo(pts[ptsIdx + 1]);
ptsIdx += 2;
continue;
@@ -385,9 +377,7 @@ bool GrCCPathParser::finalize(GrOnFlushResourceProvider* onFlushRP) {
fBaseInstances[0].fCubics = fBaseInstances[1].fWeightedTriangles +
fTotalPrimitiveCounts[1].fWeightedTriangles;
fBaseInstances[1].fCubics = fBaseInstances[0].fCubics + fTotalPrimitiveCounts[0].fCubics;
- fBaseInstances[0].fConics = fBaseInstances[1].fCubics + fTotalPrimitiveCounts[1].fCubics;
- fBaseInstances[1].fConics = fBaseInstances[0].fConics + fTotalPrimitiveCounts[0].fConics;
- int quadEndIdx = fBaseInstances[1].fConics + fTotalPrimitiveCounts[1].fConics;
+ int quadEndIdx = fBaseInstances[1].fCubics + fTotalPrimitiveCounts[1].fCubics;
fInstanceBuffer = onFlushRP->makeBuffer(kVertex_GrBufferType,
quadEndIdx * sizeof(QuadPointInstance));
@@ -410,7 +400,6 @@ bool GrCCPathParser::finalize(GrOnFlushResourceProvider* onFlushRP) {
const SkTArray<SkPoint, true>& pts = fGeometry.points();
int ptsIdx = -1;
- int nextConicWeightIdx = 0;
// Expand the ccpr verbs into GPU instance buffers.
for (GrCCGeometry::Verb verb : fGeometry.verbs()) {
@@ -465,17 +454,6 @@ bool GrCCPathParser::finalize(GrOnFlushResourceProvider* onFlushRP) {
}
continue;
- case GrCCGeometry::Verb::kMonotonicConicTo:
- quadPointInstanceData[currIndices->fConics++].setW(
- &pts[ptsIdx], atlasOffset, fGeometry.getConicWeight(nextConicWeightIdx));
- ptsIdx += 2;
- ++nextConicWeightIdx;
- if (!currFanIsTessellated) {
- SkASSERT(!currFan.empty());
- currFan.push_back(ptsIdx);
- }
- continue;
-
case GrCCGeometry::Verb::kEndClosedContour: // endPt == startPt.
if (!currFanIsTessellated) {
SkASSERT(!currFan.empty());
@@ -511,9 +489,7 @@ bool GrCCPathParser::finalize(GrOnFlushResourceProvider* onFlushRP) {
SkASSERT(instanceIndices[0].fWeightedTriangles == fBaseInstances[1].fWeightedTriangles);
SkASSERT(instanceIndices[1].fWeightedTriangles == fBaseInstances[0].fCubics);
SkASSERT(instanceIndices[0].fCubics == fBaseInstances[1].fCubics);
- SkASSERT(instanceIndices[1].fCubics == fBaseInstances[0].fConics);
- SkASSERT(instanceIndices[0].fConics == fBaseInstances[1].fConics);
- SkASSERT(instanceIndices[1].fConics == quadEndIdx);
+ SkASSERT(instanceIndices[1].fCubics == quadEndIdx);
fMeshesScratchBuffer.reserve(fMaxMeshesPerDraw);
fDynamicStatesScratchBuffer.reserve(fMaxMeshesPerDraw);
@@ -551,11 +527,6 @@ void GrCCPathParser::drawCoverageCount(GrOpFlushState* flushState, CoverageCount
this->drawPrimitives(flushState, pipeline, batchID, PrimitiveType::kCubics,
&PrimitiveTallies::fCubics, drawBounds);
}
-
- if (batchTotalCounts.fConics) {
- this->drawPrimitives(flushState, pipeline, batchID, PrimitiveType::kConics,
- &PrimitiveTallies::fConics, drawBounds);
- }
}
void GrCCPathParser::drawPrimitives(GrOpFlushState* flushState, const GrPipeline& pipeline,
diff --git a/src/gpu/ccpr/GrCoverageCountingPathRenderer.cpp b/src/gpu/ccpr/GrCoverageCountingPathRenderer.cpp
index b6f5770b35..90d89dec60 100644
--- a/src/gpu/ccpr/GrCoverageCountingPathRenderer.cpp
+++ b/src/gpu/ccpr/GrCoverageCountingPathRenderer.cpp
@@ -65,6 +65,10 @@ GrPathRenderer::CanDrawPath GrCoverageCountingPathRenderer::onCanDrawPath(
SkPath path;
args.fShape->asPath(&path);
+ if (SkPathPriv::ConicWeightCnt(path)) {
+ return CanDrawPath::kNo;
+ }
+
SkRect devBounds;
SkIRect devIBounds;
args.fViewMatrix->mapRect(&devBounds, path.getBounds());
@@ -189,6 +193,11 @@ bool GrCoverageCountingPathRenderer::canMakeClipProcessor(const SkPath& deviceSp
if (!fDrawCachablePaths && !deviceSpacePath.isVolatile()) {
return false;
}
+
+ if (SkPathPriv::ConicWeightCnt(deviceSpacePath)) {
+ return false;
+ }
+
return true;
}
diff --git a/tests/SkNxTest.cpp b/tests/SkNxTest.cpp
index 933a5fc877..bcf2a71658 100644
--- a/tests/SkNxTest.cpp
+++ b/tests/SkNxTest.cpp
@@ -467,8 +467,7 @@ DEF_TEST(Sk2f_Store4, r) {
Sk2f p1{1, 5};
Sk2f p2{2, 6};
Sk2f p3{3, 7};
-
- float dst[8] = {-1, -1, -1, -1, -1, -1, -1, -1};
+ float dst[8];
Sk2f::Store4(dst, p0, p1, p2, p3);
REPORTER_ASSERT(r, dst[0] == 0);
REPORTER_ASSERT(r, dst[1] == 1);
@@ -478,19 +477,6 @@ DEF_TEST(Sk2f_Store4, r) {
REPORTER_ASSERT(r, dst[5] == 5);
REPORTER_ASSERT(r, dst[6] == 6);
REPORTER_ASSERT(r, dst[7] == 7);
-
- // Ensure transposing to Sk4f works.
- Sk4f dst4f[2] = {{-1, -1, -1, -1}, {-1, -1, -1, -1}};
- Sk2f::Store4(dst4f, p0, p1, p2, p3);
- REPORTER_ASSERT(r, dst4f[0][0] == 0);
- REPORTER_ASSERT(r, dst4f[0][1] == 1);
- REPORTER_ASSERT(r, dst4f[0][2] == 2);
- REPORTER_ASSERT(r, dst4f[0][3] == 3);
- REPORTER_ASSERT(r, dst4f[1][0] == 4);
- REPORTER_ASSERT(r, dst4f[1][1] == 5);
- REPORTER_ASSERT(r, dst4f[1][2] == 6);
- REPORTER_ASSERT(r, dst4f[1][3] == 7);
-
}
DEF_TEST(Sk4f_minmax, r) {