aboutsummaryrefslogtreecommitdiffhomepage
path: root/src/gpu/ccpr/GrCCCoverageProcessor_VSImpl.cpp
blob: a1f180b0315f2aab38da37039ebd2a698980f000 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
/*
 * Copyright 2017 Google Inc.
 *
 * Use of this source code is governed by a BSD-style license that can be
 * found in the LICENSE file.
 */

#include "GrCCCoverageProcessor.h"

#include "GrMesh.h"
#include "glsl/GrGLSLVertexGeoBuilder.h"

// This class implements the coverage processor with vertex shaders.
class GrCCCoverageProcessor::VSImpl : public GrGLSLGeometryProcessor {
public:
    VSImpl(std::unique_ptr<Shader> shader, int numSides)
            : fShader(std::move(shader)), fNumSides(numSides) {}

private:
    void setData(const GrGLSLProgramDataManager& pdman, const GrPrimitiveProcessor&,
                 FPCoordTransformIter&& transformIter) final {
        this->setTransformDataHelper(SkMatrix::I(), pdman, &transformIter);
    }

    void onEmitCode(EmitArgs&, GrGPArgs*) override;

    const std::unique_ptr<Shader> fShader;
    const int fNumSides;
};

static constexpr int kAttribIdx_X = 0; // Transposed X values of all input points.
static constexpr int kAttribIdx_Y = 1; // Transposed Y values of all input points.
static constexpr int kAttribIdx_VertexData = 2;

// Vertex data tells the shader how to offset vertices for conservative raster, as well as how to
// calculate coverage values for corners and edges.
static constexpr int kVertexData_LeftNeighborIdShift = 10;
static constexpr int kVertexData_RightNeighborIdShift = 8;
static constexpr int kVertexData_BloatIdxShift = 6;
static constexpr int kVertexData_InvertNegativeCoverageBit = 1 << 5;
static constexpr int kVertexData_IsCornerBit = 1 << 4;
static constexpr int kVertexData_IsEdgeBit = 1 << 3;
static constexpr int kVertexData_IsHullBit = 1 << 2;

static constexpr int32_t pack_vertex_data(int32_t leftNeighborID, int32_t rightNeighborID,
                                          int32_t bloatIdx, int32_t cornerID,
                                          int32_t extraData = 0) {
    return (leftNeighborID << kVertexData_LeftNeighborIdShift) |
           (rightNeighborID << kVertexData_RightNeighborIdShift) |
           (bloatIdx << kVertexData_BloatIdxShift) |
           cornerID | extraData;
}

static constexpr int32_t hull_vertex_data(int32_t cornerID, int32_t bloatIdx, int n) {
    return pack_vertex_data((cornerID + n - 1) % n, (cornerID + 1) % n, bloatIdx, cornerID,
                            kVertexData_IsHullBit);
}

static constexpr int32_t edge_vertex_data(int32_t edgeID, int32_t endptIdx, int32_t bloatIdx,
                                          int n) {
    return pack_vertex_data(0 == endptIdx ? (edgeID + 1) % n : edgeID,
                            0 == endptIdx ? (edgeID + 1) % n : edgeID,
                            bloatIdx, 0 == endptIdx ? edgeID : (edgeID + 1) % n,
                            kVertexData_IsEdgeBit |
                            (!endptIdx ? kVertexData_InvertNegativeCoverageBit : 0));
}

static constexpr int32_t corner_vertex_data(int32_t leftID, int32_t cornerID, int32_t rightID,
                                            int32_t bloatIdx) {
    return pack_vertex_data(leftID, rightID, bloatIdx, cornerID, kVertexData_IsCornerBit);
}

static constexpr int32_t kTriangleVertices[] = {
    hull_vertex_data(0, 0, 3),
    hull_vertex_data(0, 1, 3),
    hull_vertex_data(0, 2, 3),
    hull_vertex_data(1, 0, 3),
    hull_vertex_data(1, 1, 3),
    hull_vertex_data(1, 2, 3),
    hull_vertex_data(2, 0, 3),
    hull_vertex_data(2, 1, 3),
    hull_vertex_data(2, 2, 3),

    edge_vertex_data(0, 0, 0, 3),
    edge_vertex_data(0, 0, 1, 3),
    edge_vertex_data(0, 0, 2, 3),
    edge_vertex_data(0, 1, 0, 3),
    edge_vertex_data(0, 1, 1, 3),
    edge_vertex_data(0, 1, 2, 3),

    edge_vertex_data(1, 0, 0, 3),
    edge_vertex_data(1, 0, 1, 3),
    edge_vertex_data(1, 0, 2, 3),
    edge_vertex_data(1, 1, 0, 3),
    edge_vertex_data(1, 1, 1, 3),
    edge_vertex_data(1, 1, 2, 3),

    edge_vertex_data(2, 0, 0, 3),
    edge_vertex_data(2, 0, 1, 3),
    edge_vertex_data(2, 0, 2, 3),
    edge_vertex_data(2, 1, 0, 3),
    edge_vertex_data(2, 1, 1, 3),
    edge_vertex_data(2, 1, 2, 3),

    corner_vertex_data(2, 0, 1, 0),
    corner_vertex_data(2, 0, 1, 1),
    corner_vertex_data(2, 0, 1, 2),
    corner_vertex_data(2, 0, 1, 3),

    corner_vertex_data(0, 1, 2, 0),
    corner_vertex_data(0, 1, 2, 1),
    corner_vertex_data(0, 1, 2, 2),
    corner_vertex_data(0, 1, 2, 3),

    corner_vertex_data(1, 2, 0, 0),
    corner_vertex_data(1, 2, 0, 1),
    corner_vertex_data(1, 2, 0, 2),
    corner_vertex_data(1, 2, 0, 3),
};

GR_DECLARE_STATIC_UNIQUE_KEY(gTriangleVertexBufferKey);

static constexpr uint16_t kRestartStrip = 0xffff;

static constexpr uint16_t kTriangleIndicesAsStrips[] =  {
    1, 2, 0, 3, 8, kRestartStrip, // First corner and main body of the hull.
    4, 5, 3, 6, 8, 7, kRestartStrip, // Opposite side and corners of the hull.
    10, 9, 11, 14, 12, 13, kRestartStrip, // First edge.
    16, 15, 17, 20, 18, 19, kRestartStrip, // Second edge.
    22, 21, 23, 26, 24, 25, kRestartStrip, // Third edge.
    28, 27, 29, 30, kRestartStrip, // First corner.
    32, 31, 33, 34, kRestartStrip, // Second corner.
    36, 35, 37, 38 // Third corner.
};

static constexpr uint16_t kTriangleIndicesAsTris[] =  {
    // First corner and main body of the hull.
    1, 2, 0,
    2, 3, 0,
    0, 3, 8, // Main body.

    // Opposite side and corners of the hull.
    4, 5, 3,
    5, 6, 3,
    3, 6, 8,
    6, 7, 8,

    // First edge.
    10,  9, 11,
     9, 14, 11,
    11, 14, 12,
    14, 13, 12,

    // Second edge.
    16, 15, 17,
    15, 20, 17,
    17, 20, 18,
    20, 19, 18,

    // Third edge.
    22, 21, 23,
    21, 26, 23,
    23, 26, 24,
    26, 25, 24,

    // First corner.
    28, 27, 29,
    27, 30, 29,

    // Second corner.
    32, 31, 33,
    31, 34, 33,

    // Third corner.
    36, 35, 37,
    35, 38, 37,
};

GR_DECLARE_STATIC_UNIQUE_KEY(gTriangleIndexBufferKey);

// Curves, including quadratics, are drawn with a four-sided hull.
static constexpr int32_t kCurveVertices[] = {
    hull_vertex_data(0, 0, 4),
    hull_vertex_data(0, 1, 4),
    hull_vertex_data(0, 2, 4),
    hull_vertex_data(1, 0, 4),
    hull_vertex_data(1, 1, 4),
    hull_vertex_data(1, 2, 4),
    hull_vertex_data(2, 0, 4),
    hull_vertex_data(2, 1, 4),
    hull_vertex_data(2, 2, 4),
    hull_vertex_data(3, 0, 4),
    hull_vertex_data(3, 1, 4),
    hull_vertex_data(3, 2, 4),

    corner_vertex_data(3, 0, 1, 0),
    corner_vertex_data(3, 0, 1, 1),
    corner_vertex_data(3, 0, 1, 2),
    corner_vertex_data(3, 0, 1, 3),

    corner_vertex_data(2, 3, 0, 0),
    corner_vertex_data(2, 3, 0, 1),
    corner_vertex_data(2, 3, 0, 2),
    corner_vertex_data(2, 3, 0, 3),
};

GR_DECLARE_STATIC_UNIQUE_KEY(gCurveVertexBufferKey);

static constexpr uint16_t kCurveIndicesAsStrips[] =  {
    1, 0, 2, 11, 3, 5, 4, kRestartStrip, // First half of the hull (split diagonally).
    7, 6, 8, 5, 9, 11, 10, kRestartStrip, // Second half of the hull.
    13, 12, 14, 15, kRestartStrip, // First corner.
    17, 16, 18, 19 // Final corner.
};

static constexpr uint16_t kCurveIndicesAsTris[] =  {
    // First half of the hull (split diagonally).
     1,  0,  2,
     0, 11,  2,
     2, 11,  3,
    11,  5,  3,
     3,  5,  4,

    // Second half of the hull.
    7,  6,  8,
    6,  5,  8,
    8,  5,  9,
    5, 11,  9,
    9, 11, 10,

    // First corner.
    13, 12, 14,
    12, 15, 14,

    // Final corner.
    17, 16, 18,
    16, 19, 18,
};

GR_DECLARE_STATIC_UNIQUE_KEY(gCurveIndexBufferKey);

// Generates a conservative raster hull around a triangle or curve. For triangles we generate
// additional conservative rasters with coverage ramps around the edges and corners.
//
// Triangles are drawn in three steps: (1) Draw a conservative raster of the entire triangle, with a
// coverage of +1. (2) Draw conservative rasters around each edge, with a coverage ramp from -1 to
// 0. These edge coverage values convert jagged conservative raster edges into smooth, antialiased
// ones. (3) Draw conservative rasters (aka pixel-size boxes) around each corner, replacing the
// previous coverage values with ones that ramp to zero in the bloat vertices that fall outside the
// triangle.
//
// Curves are drawn in two separate passes. Here we just draw a conservative raster around the input
// points. The Shader takes care of everything else for now. The final curve corners get touched up
// in a later step by VSCornerImpl.
void GrCCCoverageProcessor::VSImpl::onEmitCode(EmitArgs& args, GrGPArgs* gpArgs) {
    const GrCCCoverageProcessor& proc = args.fGP.cast<GrCCCoverageProcessor>();
    GrGLSLVertexBuilder* v = args.fVertBuilder;
    int numInputPoints = proc.numInputPoints();

    const char* swizzle = (4 == numInputPoints) ? "xyzw" : "xyz";
    v->codeAppendf("float%ix2 pts = transpose(float2x%i(%s.%s, %s.%s));",
                   numInputPoints, numInputPoints, proc.getAttrib(kAttribIdx_X).fName, swizzle,
                   proc.getAttrib(kAttribIdx_Y).fName, swizzle);

    if (PrimitiveType::kWeightedTriangles != proc.fPrimitiveType) {
        v->codeAppend ("float area_x2 = determinant(float2x2(pts[0] - pts[1], "
                                                            "pts[0] - pts[2]));");
        if (4 == numInputPoints) {
            v->codeAppend ("area_x2 += determinant(float2x2(pts[0] - pts[2], "
                                                           "pts[0] - pts[3]));");
        }
        v->codeAppend ("half wind = sign(area_x2);");
    } else {
        SkASSERT(3 == numInputPoints);
        SkASSERT(kFloat4_GrVertexAttribType == proc.getAttrib(kAttribIdx_X).fType);
        v->codeAppendf("half wind = %s.w;", proc.getAttrib(kAttribIdx_X).fName);
    }

    float bloat = kAABloatRadius;
#ifdef SK_DEBUG
    if (proc.debugBloatEnabled()) {
        bloat *= proc.debugBloat();
    }
#endif
    v->defineConstant("bloat", bloat);

    const char* hullPts = "pts";
    fShader->emitSetupCode(v, "pts", "wind", (4 == fNumSides) ? &hullPts : nullptr);

    // Reverse all indices if the wind is counter-clockwise: [0, 1, 2] -> [2, 1, 0].
    v->codeAppendf("int clockwise_indices = wind > 0 ? %s : 0x%x - %s;",
                   proc.getAttrib(kAttribIdx_VertexData).fName,
                   ((fNumSides - 1) << kVertexData_LeftNeighborIdShift) |
                   ((fNumSides - 1) << kVertexData_RightNeighborIdShift) |
                   (((1 << kVertexData_RightNeighborIdShift) - 1) ^ 3) |
                   (fNumSides - 1),
                   proc.getAttrib(kAttribIdx_VertexData).fName);

    // Here we generate conservative raster geometry for the input polygon. It is the convex
    // hull of N pixel-size boxes, one centered on each the input points. Each corner has three
    // vertices, where one or two may cause degenerate triangles. The vertex data tells us how
    // to offset each vertex. Triangle edges and corners are also handled here using the same
    // concept. For more details on conservative raster, see:
    // https://developer.nvidia.com/gpugems/GPUGems2/gpugems2_chapter42.html
    v->codeAppendf("float2 corner = %s[clockwise_indices & 3];", hullPts);
    v->codeAppendf("float2 left = %s[clockwise_indices >> %i];",
                   hullPts, kVertexData_LeftNeighborIdShift);
    v->codeAppendf("float2 right = %s[(clockwise_indices >> %i) & 3];",
                   hullPts, kVertexData_RightNeighborIdShift);

    v->codeAppend ("float2 leftbloat = sign(corner - left);");
    v->codeAppend ("leftbloat = float2(0 != leftbloat.y ? leftbloat.y : leftbloat.x, "
                                      "0 != leftbloat.x ? -leftbloat.x : -leftbloat.y);");

    v->codeAppend ("float2 rightbloat = sign(right - corner);");
    v->codeAppend ("rightbloat = float2(0 != rightbloat.y ? rightbloat.y : rightbloat.x, "
                                       "0 != rightbloat.x ? -rightbloat.x : -rightbloat.y);");

    v->codeAppend ("bool2 left_right_notequal = notEqual(leftbloat, rightbloat);");

    v->codeAppend ("float2 bloatdir = leftbloat;");

    v->codeAppend ("float2 leftdir = corner - left;");
    v->codeAppend ("leftdir = (float2(0) != leftdir) ? normalize(leftdir) : float2(1, 0);");

    v->codeAppend ("float2 rightdir = right - corner;");
    v->codeAppend ("rightdir = (float2(0) != rightdir) ? normalize(rightdir) : float2(1, 0);");

    v->codeAppendf("if (0 != (%s & %i)) {", // Are we a corner?
                   proc.getAttrib(kAttribIdx_VertexData).fName, kVertexData_IsCornerBit);

                       // In corner boxes, all 4 coverage values will not map linearly.
                       // Therefore it is important to align the box so its diagonal shared
                       // edge points out of the triangle, in the direction that ramps to 0.
    v->codeAppend (    "bloatdir = float2(leftdir.x > rightdir.x ? +1 : -1, "
                                         "leftdir.y > rightdir.y ? +1 : -1);");

                       // For corner boxes, we hack left_right_notequal to always true. This
                       // in turn causes the upcoming code to always rotate, generating all
                       // 4 vertices of the corner box.
    v->codeAppendf(    "left_right_notequal = bool2(true);");
    v->codeAppend ("}");

    // At each corner of the polygon, our hull will have either 1, 2, or 3 vertices (or 4 if
    // it's a corner box). We begin with this corner's first raster vertex (leftbloat), then
    // continue rotating 90 degrees clockwise until we reach the desired raster vertex for this
    // invocation. Corners with less than 3 corresponding raster vertices will result in
    // redundant vertices and degenerate triangles.
    v->codeAppendf("int bloatidx = (%s >> %i) & 3;",
                   proc.getAttrib(kAttribIdx_VertexData).fName, kVertexData_BloatIdxShift);
    v->codeAppend ("switch (bloatidx) {");
    v->codeAppend (    "case 3:");
                            // Only corners will have bloatidx=3, and corners always rotate.
    v->codeAppend (        "bloatdir = float2(-bloatdir.y, +bloatdir.x);"); // 90 deg CW.
                           // fallthru.
    v->codeAppend (    "case 2:");
    v->codeAppendf(        "if (all(left_right_notequal)) {");
    v->codeAppend (            "bloatdir = float2(-bloatdir.y, +bloatdir.x);"); // 90 deg CW.
    v->codeAppend (        "}");
                           // fallthru.
    v->codeAppend (    "case 1:");
    v->codeAppendf(        "if (any(left_right_notequal)) {");
    v->codeAppend (            "bloatdir = float2(-bloatdir.y, +bloatdir.x);"); // 90 deg CW.
    v->codeAppend (        "}");
                           // fallthru.
    v->codeAppend ("}");

    v->codeAppend ("float2 vertex = corner + bloatdir * bloat;");
    gpArgs->fPositionVar.set(kFloat2_GrSLType, "vertex");

    // Hulls have a coverage of +1 all around.
    v->codeAppend ("half coverage = +1;");

    if (3 == fNumSides) {
        v->codeAppend ("half left_coverage; {");
        Shader::CalcEdgeCoverageAtBloatVertex(v, "left", "corner", "bloatdir", "left_coverage");
        v->codeAppend ("}");

        v->codeAppend ("half right_coverage; {");
        Shader::CalcEdgeCoverageAtBloatVertex(v, "corner", "right", "bloatdir", "right_coverage");
        v->codeAppend ("}");

        v->codeAppendf("if (0 != (%s & %i)) {", // Are we an edge?
                       proc.getAttrib(kAttribIdx_VertexData).fName, kVertexData_IsEdgeBit);
        v->codeAppend (    "coverage = left_coverage;");
        v->codeAppend ("}");

        v->codeAppendf("if (0 != (%s & %i)) {", // Invert coverage?
                       proc.getAttrib(kAttribIdx_VertexData).fName,
                       kVertexData_InvertNegativeCoverageBit);
        v->codeAppend (    "coverage = -1 - coverage;");
        v->codeAppend ("}");
    }

    // Non-corner geometry should have zero effect from corner coverage.
    v->codeAppend ("half2 corner_coverage = half2(0);");

    v->codeAppendf("if (0 != (%s & %i)) {", // Are we a corner?
                   proc.getAttrib(kAttribIdx_VertexData).fName, kVertexData_IsCornerBit);
                       // We use coverage=-1 to erase what the hull geometry wrote.
                       //
                       // In the context of curves, this effectively means "wind = -wind" and
                       // causes the Shader to erase what it had written previously for the hull.
                       //
                       // For triangles it just erases the "+1" value written by the hull geometry.
    v->codeAppend (    "coverage = -1;");
    if (3 == fNumSides) {
                       // Triangle corners also have to erase what the edge geometry wrote.
        v->codeAppend ("coverage -= left_coverage + right_coverage;");
    }

                       // Corner boxes require attenuated coverage.
    v->codeAppend (    "half attenuation; {");
    Shader::CalcCornerAttenuation(v, "leftdir", "rightdir", "attenuation");
    v->codeAppend (    "}");

                       // Attenuate corner coverage towards the outermost vertex (where bloatidx=0).
                       // This is all that curves need: At each vertex of the corner box, the curve
                       // Shader will calculate the curve's local coverage value, interpolate it
                       // alongside our attenuation parameter, and multiply the two together for a
                       // final coverage value.
    v->codeAppend (    "corner_coverage = (0 == bloatidx) ? half2(0, attenuation) : half2(1);");

    if (3 == fNumSides) {
                       // For triangles we also provide the actual coverage values at each vertex of
                       // the corner box.
        v->codeAppend ("if (1 == bloatidx || 2 == bloatidx) {");
        v->codeAppend (    "corner_coverage.x += right_coverage;");
        v->codeAppend ("}");
        v->codeAppend ("if (bloatidx >= 2) {");
        v->codeAppend (    "corner_coverage.x += left_coverage;");
        v->codeAppend ("}");
    }
    v->codeAppend ("}");

    GrGLSLVaryingHandler* varyingHandler = args.fVaryingHandler;
    v->codeAppend ("coverage *= wind;");
    v->codeAppend ("corner_coverage.x *= wind;");
    fShader->emitVaryings(varyingHandler, GrGLSLVarying::Scope::kVertToFrag, &v->code(),
                          gpArgs->fPositionVar.c_str(), "coverage", "corner_coverage");

    varyingHandler->emitAttributes(proc);
    SkASSERT(!args.fFPCoordTransformHandler->nextCoordTransform());

    // Fragment shader.
    fShader->emitFragmentCode(proc, args.fFragBuilder, args.fOutputColor, args.fOutputCoverage);
}

void GrCCCoverageProcessor::initVS(GrResourceProvider* rp) {
    SkASSERT(Impl::kVertexShader == fImpl);
    const GrCaps& caps = *rp->caps();

    switch (fPrimitiveType) {
        case PrimitiveType::kTriangles:
        case PrimitiveType::kWeightedTriangles: {
            GR_DEFINE_STATIC_UNIQUE_KEY(gTriangleVertexBufferKey);
            fVSVertexBuffer = rp->findOrMakeStaticBuffer(kVertex_GrBufferType,
                                                         sizeof(kTriangleVertices),
                                                         kTriangleVertices,
                                                         gTriangleVertexBufferKey);
            GR_DEFINE_STATIC_UNIQUE_KEY(gTriangleIndexBufferKey);
            if (caps.usePrimitiveRestart()) {
                fVSIndexBuffer = rp->findOrMakeStaticBuffer(kIndex_GrBufferType,
                                                            sizeof(kTriangleIndicesAsStrips),
                                                            kTriangleIndicesAsStrips,
                                                            gTriangleIndexBufferKey);
                fVSNumIndicesPerInstance = SK_ARRAY_COUNT(kTriangleIndicesAsStrips);
            } else {
                fVSIndexBuffer = rp->findOrMakeStaticBuffer(kIndex_GrBufferType,
                                                            sizeof(kTriangleIndicesAsTris),
                                                            kTriangleIndicesAsTris,
                                                            gTriangleIndexBufferKey);
                fVSNumIndicesPerInstance = SK_ARRAY_COUNT(kTriangleIndicesAsTris);
            }
            break;
        }

        case PrimitiveType::kQuadratics:
        case PrimitiveType::kCubics: {
            GR_DEFINE_STATIC_UNIQUE_KEY(gCurveVertexBufferKey);
            fVSVertexBuffer = rp->findOrMakeStaticBuffer(kVertex_GrBufferType,
                                                         sizeof(kCurveVertices), kCurveVertices,
                                                         gCurveVertexBufferKey);
            GR_DEFINE_STATIC_UNIQUE_KEY(gCurveIndexBufferKey);
            if (caps.usePrimitiveRestart()) {
                fVSIndexBuffer = rp->findOrMakeStaticBuffer(kIndex_GrBufferType,
                                                            sizeof(kCurveIndicesAsStrips),
                                                            kCurveIndicesAsStrips,
                                                            gCurveIndexBufferKey);
                fVSNumIndicesPerInstance = SK_ARRAY_COUNT(kCurveIndicesAsStrips);
            } else {
                fVSIndexBuffer = rp->findOrMakeStaticBuffer(kIndex_GrBufferType,
                                                            sizeof(kCurveIndicesAsTris),
                                                            kCurveIndicesAsTris,
                                                            gCurveIndexBufferKey);
                fVSNumIndicesPerInstance = SK_ARRAY_COUNT(kCurveIndicesAsTris);
            }
            break;
        }
    }

    if (PrimitiveType::kCubics == fPrimitiveType ||
        PrimitiveType::kWeightedTriangles == fPrimitiveType) {
        SkASSERT(kAttribIdx_X == this->numAttribs());
        this->addInstanceAttrib("X", kFloat4_GrVertexAttribType);

        SkASSERT(kAttribIdx_Y == this->numAttribs());
        this->addInstanceAttrib("Y", kFloat4_GrVertexAttribType);

        SkASSERT(offsetof(QuadPointInstance, fX) == this->getAttrib(kAttribIdx_X).fOffsetInRecord);
        SkASSERT(offsetof(QuadPointInstance, fY) == this->getAttrib(kAttribIdx_Y).fOffsetInRecord);
        SkASSERT(sizeof(QuadPointInstance) == this->getInstanceStride());
    } else {
        SkASSERT(kAttribIdx_X == this->numAttribs());
        this->addInstanceAttrib("X", kFloat3_GrVertexAttribType);

        SkASSERT(kAttribIdx_Y == this->numAttribs());
        this->addInstanceAttrib("Y", kFloat3_GrVertexAttribType);

        SkASSERT(offsetof(TriPointInstance, fX) == this->getAttrib(kAttribIdx_X).fOffsetInRecord);
        SkASSERT(offsetof(TriPointInstance, fY) == this->getAttrib(kAttribIdx_Y).fOffsetInRecord);
        SkASSERT(sizeof(TriPointInstance) == this->getInstanceStride());
    }

    SkASSERT(kAttribIdx_VertexData == this->numAttribs());
    this->addVertexAttrib("vertexdata", kInt_GrVertexAttribType);
    SkASSERT(sizeof(int32_t) == this->getVertexStride());

    if (caps.usePrimitiveRestart()) {
        this->setWillUsePrimitiveRestart();
        fVSTriangleType = GrPrimitiveType::kTriangleStrip;
    } else {
        fVSTriangleType = GrPrimitiveType::kTriangles;
    }
}

void GrCCCoverageProcessor::appendVSMesh(GrBuffer* instanceBuffer, int instanceCount,
                                         int baseInstance, SkTArray<GrMesh>* out) const {
    SkASSERT(Impl::kVertexShader == fImpl);
    GrMesh& mesh = out->emplace_back(fVSTriangleType);
    mesh.setIndexedInstanced(fVSIndexBuffer.get(), fVSNumIndicesPerInstance, instanceBuffer,
                             instanceCount, baseInstance);
    mesh.setVertexData(fVSVertexBuffer.get(), 0);
}

GrGLSLPrimitiveProcessor* GrCCCoverageProcessor::createVSImpl(std::unique_ptr<Shader> shadr) const {
    switch (fPrimitiveType) {
        case PrimitiveType::kTriangles:
        case PrimitiveType::kWeightedTriangles:
            return new VSImpl(std::move(shadr), 3);
        case PrimitiveType::kQuadratics:
        case PrimitiveType::kCubics:
            return new VSImpl(std::move(shadr), 4);
    }
    SK_ABORT("Invalid RenderPass");
    return nullptr;
}