aboutsummaryrefslogtreecommitdiffhomepage
path: root/tests
diff options
context:
space:
mode:
authorGravatar commit-bot@chromium.org <commit-bot@chromium.org@2bbb7eff-a529-9590-31e7-b0007b416f81>2013-09-03 19:08:14 +0000
committerGravatar commit-bot@chromium.org <commit-bot@chromium.org@2bbb7eff-a529-9590-31e7-b0007b416f81>2013-09-03 19:08:14 +0000
commit5b2e2640ed345c4670b99b349f62eb6f9446ec1e (patch)
treeeafdb483c2d8f87ddffe03e2255d2fec03f31dd5 /tests
parente2b103fba2bf631a81875e33a28fb9a0c70acc34 (diff)
Revise SVD code to remove arctangents.
Also added bench for timing matrix decomposition. R=reed@google.com Author: jvanverth@google.com Review URL: https://chromiumcodereview.appspot.com/23596006 git-svn-id: http://skia.googlecode.com/svn/trunk@11066 2bbb7eff-a529-9590-31e7-b0007b416f81
Diffstat (limited to 'tests')
-rw-r--r--tests/Matrix44Test.cpp4
-rw-r--r--tests/MatrixTest.cpp213
2 files changed, 83 insertions, 134 deletions
diff --git a/tests/Matrix44Test.cpp b/tests/Matrix44Test.cpp
index 67af60df90..6c29a55966 100644
--- a/tests/Matrix44Test.cpp
+++ b/tests/Matrix44Test.cpp
@@ -513,10 +513,10 @@ static void TestMatrix44(skiatest::Reporter* reporter) {
// test mixed-valued matrix inverse
mat.reset();
- mat.setScale(1.0e-10, 3.0, 1.0e+10);
+ mat.setScale(1.0e-11, 3.0, 1.0e+11);
rot.setRotateDegreesAbout(0, 0, -1, 90);
mat.postConcat(rot);
- mat.postTranslate(1.0e+10, 3.0, 1.0e-10);
+ mat.postTranslate(1.0e+11, 3.0, 1.0e-11);
REPORTER_ASSERT(reporter, mat.invert(NULL));
mat.invert(&inverse);
iden1.setConcat(mat, inverse);
diff --git a/tests/MatrixTest.cpp b/tests/MatrixTest.cpp
index 8785730322..c225565cc4 100644
--- a/tests/MatrixTest.cpp
+++ b/tests/MatrixTest.cpp
@@ -350,11 +350,13 @@ static void test_matrix_is_similarity(skiatest::Reporter* reporter) {
static bool scalar_nearly_equal_relative(SkScalar a, SkScalar b,
SkScalar tolerance = SK_ScalarNearlyZero) {
// from Bruce Dawson
+ // absolute check
SkScalar diff = SkScalarAbs(a - b);
if (diff < tolerance) {
return true;
}
+ // relative check
a = SkScalarAbs(a);
b = SkScalarAbs(b);
SkScalar largest = (b > a) ? b : a;
@@ -366,9 +368,32 @@ static bool scalar_nearly_equal_relative(SkScalar a, SkScalar b,
return false;
}
+static bool check_matrix_recomposition(const SkMatrix& mat,
+ const SkPoint& rotation1,
+ const SkPoint& scale,
+ const SkPoint& rotation2) {
+ SkScalar c1 = rotation1.fX;
+ SkScalar s1 = rotation1.fY;
+ SkScalar scaleX = scale.fX;
+ SkScalar scaleY = scale.fY;
+ SkScalar c2 = rotation2.fX;
+ SkScalar s2 = rotation2.fY;
+
+ // We do a relative check here because large scale factors cause problems with an absolute check
+ bool result = scalar_nearly_equal_relative(mat[SkMatrix::kMScaleX],
+ scaleX*c1*c2 - scaleY*s1*s2) &&
+ scalar_nearly_equal_relative(mat[SkMatrix::kMSkewX],
+ -scaleX*s1*c2 - scaleY*c1*s2) &&
+ scalar_nearly_equal_relative(mat[SkMatrix::kMSkewY],
+ scaleX*c1*s2 + scaleY*s1*c2) &&
+ scalar_nearly_equal_relative(mat[SkMatrix::kMScaleY],
+ -scaleX*s1*s2 + scaleY*c1*c2);
+ return result;
+}
+
static void test_matrix_decomposition(skiatest::Reporter* reporter) {
SkMatrix mat;
- SkScalar rotation0, scaleX, scaleY, rotation1;
+ SkPoint rotation1, scale, rotation2;
const float kRotation0 = 15.5f;
const float kRotation1 = -50.f;
@@ -377,150 +402,108 @@ static void test_matrix_decomposition(skiatest::Reporter* reporter) {
// identity
mat.reset();
- REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation0, &scaleX, &scaleY, &rotation1));
- REPORTER_ASSERT(reporter, SkScalarNearlyZero(rotation0));
- REPORTER_ASSERT(reporter, SkScalarNearlyEqual(scaleX, SK_Scalar1));
- REPORTER_ASSERT(reporter, SkScalarNearlyEqual(scaleY, SK_Scalar1));
- REPORTER_ASSERT(reporter, SkScalarNearlyZero(rotation1));
+ REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2));
+ REPORTER_ASSERT(reporter, check_matrix_recomposition(mat, rotation1, scale, rotation2));
// make sure it doesn't crash if we pass in NULLs
- REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, NULL, NULL, NULL, NULL));
+ REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, NULL, NULL, NULL));
// rotation only
mat.setRotate(kRotation0);
- REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation0, &scaleX, &scaleY, &rotation1));
- REPORTER_ASSERT(reporter, SkScalarNearlyEqual(rotation0, SkDegreesToRadians(kRotation0)));
- REPORTER_ASSERT(reporter, SkScalarNearlyEqual(scaleX, SK_Scalar1));
- REPORTER_ASSERT(reporter, SkScalarNearlyEqual(scaleY, SK_Scalar1));
- REPORTER_ASSERT(reporter, SkScalarNearlyZero(rotation1));
+ REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2));
+ REPORTER_ASSERT(reporter, check_matrix_recomposition(mat, rotation1, scale, rotation2));
// uniform scale only
mat.setScale(kScale0, kScale0);
- REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation0, &scaleX, &scaleY, &rotation1));
- REPORTER_ASSERT(reporter, SkScalarNearlyZero(rotation0));
- REPORTER_ASSERT(reporter, SkScalarNearlyEqual(scaleX, kScale0));
- REPORTER_ASSERT(reporter, SkScalarNearlyEqual(scaleY, kScale0));
- REPORTER_ASSERT(reporter, SkScalarNearlyZero(rotation1));
+ REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2));
+ REPORTER_ASSERT(reporter, check_matrix_recomposition(mat, rotation1, scale, rotation2));
// anisotropic scale only
mat.setScale(kScale1, kScale0);
- REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation0, &scaleX, &scaleY, &rotation1));
- REPORTER_ASSERT(reporter, SkScalarNearlyZero(rotation0));
- REPORTER_ASSERT(reporter, SkScalarNearlyEqual(scaleX, kScale1));
- REPORTER_ASSERT(reporter, SkScalarNearlyEqual(scaleY, kScale0));
- REPORTER_ASSERT(reporter, SkScalarNearlyZero(rotation1));
+ REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2));
+ REPORTER_ASSERT(reporter, check_matrix_recomposition(mat, rotation1, scale, rotation2));
// rotation then uniform scale
mat.setRotate(kRotation1);
mat.postScale(kScale0, kScale0);
- REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation0, &scaleX, &scaleY, &rotation1));
- REPORTER_ASSERT(reporter, SkScalarNearlyEqual(rotation0, SkDegreesToRadians(kRotation1)));
- REPORTER_ASSERT(reporter, SkScalarNearlyEqual(scaleX, kScale0));
- REPORTER_ASSERT(reporter, SkScalarNearlyEqual(scaleY, kScale0));
- REPORTER_ASSERT(reporter, SkScalarNearlyZero(rotation1));
+ REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2));
+ REPORTER_ASSERT(reporter, check_matrix_recomposition(mat, rotation1, scale, rotation2));
// uniform scale then rotation
mat.setScale(kScale0, kScale0);
mat.postRotate(kRotation1);
- REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation0, &scaleX, &scaleY, &rotation1));
- REPORTER_ASSERT(reporter, SkScalarNearlyEqual(rotation0, SkDegreesToRadians(kRotation1)));
- REPORTER_ASSERT(reporter, SkScalarNearlyEqual(scaleX, kScale0));
- REPORTER_ASSERT(reporter, SkScalarNearlyEqual(scaleY, kScale0));
- REPORTER_ASSERT(reporter, SkScalarNearlyZero(rotation1));
+ REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2));
+ REPORTER_ASSERT(reporter, check_matrix_recomposition(mat, rotation1, scale, rotation2));
// rotation then uniform scale+reflection
mat.setRotate(kRotation0);
mat.postScale(kScale1, -kScale1);
- REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation0, &scaleX, &scaleY, &rotation1));
- REPORTER_ASSERT(reporter, SkScalarNearlyEqual(rotation0, SkDegreesToRadians(kRotation0)));
- REPORTER_ASSERT(reporter, SkScalarNearlyEqual(scaleX, kScale1));
- REPORTER_ASSERT(reporter, SkScalarNearlyEqual(scaleY, -kScale1));
- REPORTER_ASSERT(reporter, SkScalarNearlyZero(rotation1));
+ REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2));
+ REPORTER_ASSERT(reporter, check_matrix_recomposition(mat, rotation1, scale, rotation2));
// uniform scale+reflection, then rotate
mat.setScale(kScale0, -kScale0);
mat.postRotate(kRotation1);
- REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation0, &scaleX, &scaleY, &rotation1));
- REPORTER_ASSERT(reporter, SkScalarNearlyEqual(rotation0, SkDegreesToRadians(-kRotation1)));
- REPORTER_ASSERT(reporter, SkScalarNearlyEqual(scaleX, kScale0));
- REPORTER_ASSERT(reporter, SkScalarNearlyEqual(scaleY, -kScale0));
- REPORTER_ASSERT(reporter, SkScalarNearlyZero(rotation1));
+ REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2));
+ REPORTER_ASSERT(reporter, check_matrix_recomposition(mat, rotation1, scale, rotation2));
// rotation then anisotropic scale
mat.setRotate(kRotation1);
mat.postScale(kScale1, kScale0);
- REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation0, &scaleX, &scaleY, &rotation1));
- REPORTER_ASSERT(reporter, SkScalarNearlyEqual(rotation0, SkDegreesToRadians(kRotation1)));
- REPORTER_ASSERT(reporter, SkScalarNearlyEqual(scaleX, kScale1));
- REPORTER_ASSERT(reporter, SkScalarNearlyEqual(scaleY, kScale0));
- REPORTER_ASSERT(reporter, SkScalarNearlyZero(rotation1));
+ REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2));
+ REPORTER_ASSERT(reporter, check_matrix_recomposition(mat, rotation1, scale, rotation2));
+ // rotation then anisotropic scale
+ mat.setRotate(90);
+ mat.postScale(kScale1, kScale0);
+ REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2));
+ REPORTER_ASSERT(reporter, check_matrix_recomposition(mat, rotation1, scale, rotation2));
+
// anisotropic scale then rotation
mat.setScale(kScale1, kScale0);
mat.postRotate(kRotation0);
- REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation0, &scaleX, &scaleY, &rotation1));
- REPORTER_ASSERT(reporter, SkScalarNearlyZero(rotation0));
- REPORTER_ASSERT(reporter, SkScalarNearlyEqual(scaleX, kScale1));
- REPORTER_ASSERT(reporter, SkScalarNearlyEqual(scaleY, kScale0));
- REPORTER_ASSERT(reporter, SkScalarNearlyEqual(rotation1, SkDegreesToRadians(kRotation0)));
+ REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2));
+ REPORTER_ASSERT(reporter, check_matrix_recomposition(mat, rotation1, scale, rotation2));
+
+ // anisotropic scale then rotation
+ mat.setScale(kScale1, kScale0);
+ mat.postRotate(90);
+ REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2));
+ REPORTER_ASSERT(reporter, check_matrix_recomposition(mat, rotation1, scale, rotation2));
// rotation, uniform scale, then different rotation
mat.setRotate(kRotation1);
mat.postScale(kScale0, kScale0);
mat.postRotate(kRotation0);
- REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation0, &scaleX, &scaleY, &rotation1));
- REPORTER_ASSERT(reporter, SkScalarNearlyEqual(rotation0,
- SkDegreesToRadians(kRotation0 + kRotation1)));
- REPORTER_ASSERT(reporter, SkScalarNearlyEqual(scaleX, kScale0));
- REPORTER_ASSERT(reporter, SkScalarNearlyEqual(scaleY, kScale0));
- REPORTER_ASSERT(reporter, SkScalarNearlyZero(rotation1));
+ REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2));
+ REPORTER_ASSERT(reporter, check_matrix_recomposition(mat, rotation1, scale, rotation2));
// rotation, anisotropic scale, then different rotation
mat.setRotate(kRotation0);
mat.postScale(kScale1, kScale0);
mat.postRotate(kRotation1);
- REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation0, &scaleX, &scaleY, &rotation1));
- // Because of the shear/skew we won't get the same results, so we need to multiply it out.
- // Generating the matrices requires doing a radian-to-degree calculation, then degree-to-radian
- // calculation (in setRotate()), which adds error, so this just computes the matrix elements
- // directly.
- SkScalar c0;
- SkScalar s0 = SkScalarSinCos(rotation0, &c0);
- SkScalar c1;
- SkScalar s1 = SkScalarSinCos(rotation1, &c1);
- // We do a relative check here because large scale factors cause problems with an absolute check
- REPORTER_ASSERT(reporter, scalar_nearly_equal_relative(mat[SkMatrix::kMScaleX],
- scaleX*c0*c1 - scaleY*s0*s1));
- REPORTER_ASSERT(reporter, scalar_nearly_equal_relative(mat[SkMatrix::kMSkewX],
- -scaleX*s0*c1 - scaleY*c0*s1));
- REPORTER_ASSERT(reporter, scalar_nearly_equal_relative(mat[SkMatrix::kMSkewY],
- scaleX*c0*s1 + scaleY*s0*c1));
- REPORTER_ASSERT(reporter, scalar_nearly_equal_relative(mat[SkMatrix::kMScaleY],
- -scaleX*s0*s1 + scaleY*c0*c1));
+ REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2));
+ REPORTER_ASSERT(reporter, check_matrix_recomposition(mat, rotation1, scale, rotation2));
+
+ // rotation, anisotropic scale + reflection, then different rotation
+ mat.setRotate(kRotation0);
+ mat.postScale(-kScale1, kScale0);
+ mat.postRotate(kRotation1);
+ REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2));
+ REPORTER_ASSERT(reporter, check_matrix_recomposition(mat, rotation1, scale, rotation2));
// try some random matrices
SkMWCRandom rand;
for (int m = 0; m < 1000; ++m) {
- SkScalar rot0 = rand.nextRangeF(-SK_ScalarPI, SK_ScalarPI);
+ SkScalar rot0 = rand.nextRangeF(-180, 180);
SkScalar sx = rand.nextRangeF(-3000.f, 3000.f);
SkScalar sy = rand.nextRangeF(-3000.f, 3000.f);
- SkScalar rot1 = rand.nextRangeF(-SK_ScalarPI, SK_ScalarPI);
+ SkScalar rot1 = rand.nextRangeF(-180, 180);
mat.setRotate(rot0);
mat.postScale(sx, sy);
mat.postRotate(rot1);
- if (SkDecomposeUpper2x2(mat, &rotation0, &scaleX, &scaleY, &rotation1)) {
- SkScalar c0;
- SkScalar s0 = SkScalarSinCos(rotation0, &c0);
- SkScalar c1;
- SkScalar s1 = SkScalarSinCos(rotation1, &c1);
- REPORTER_ASSERT(reporter, scalar_nearly_equal_relative(mat[SkMatrix::kMScaleX],
- scaleX*c0*c1 - scaleY*s0*s1));
- REPORTER_ASSERT(reporter, scalar_nearly_equal_relative(mat[SkMatrix::kMSkewX],
- -scaleX*s0*c1 - scaleY*c0*s1));
- REPORTER_ASSERT(reporter, scalar_nearly_equal_relative(mat[SkMatrix::kMSkewY],
- scaleX*c0*s1 + scaleY*s0*c1));
- REPORTER_ASSERT(reporter, scalar_nearly_equal_relative(mat[SkMatrix::kMScaleY],
- -scaleX*s0*s1 + scaleY*c0*c1));
+ if (SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2)) {
+ REPORTER_ASSERT(reporter, check_matrix_recomposition(mat, rotation1, scale, rotation2));
} else {
// if the matrix is degenerate, the basis vectors should be near-parallel or near-zero
SkScalar perpdot = mat[SkMatrix::kMScaleX]*mat[SkMatrix::kMScaleY] -
@@ -531,65 +514,31 @@ static void test_matrix_decomposition(skiatest::Reporter* reporter) {
// translation shouldn't affect this
mat.postTranslate(-1000.f, 1000.f);
- REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation0, &scaleX, &scaleY, &rotation1));
- s0 = SkScalarSinCos(rotation0, &c0);
- s1 = SkScalarSinCos(rotation1, &c1);
- REPORTER_ASSERT(reporter, scalar_nearly_equal_relative(mat[SkMatrix::kMScaleX],
- scaleX*c0*c1 - scaleY*s0*s1));
- REPORTER_ASSERT(reporter, scalar_nearly_equal_relative(mat[SkMatrix::kMSkewX],
- -scaleX*s0*c1 - scaleY*c0*s1));
- REPORTER_ASSERT(reporter, scalar_nearly_equal_relative(mat[SkMatrix::kMSkewY],
- scaleX*c0*s1 + scaleY*s0*c1));
- REPORTER_ASSERT(reporter, scalar_nearly_equal_relative(mat[SkMatrix::kMScaleY],
- -scaleX*s0*s1 + scaleY*c0*c1));
+ REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2));
+ REPORTER_ASSERT(reporter, check_matrix_recomposition(mat, rotation1, scale, rotation2));
// perspective shouldn't affect this
mat[SkMatrix::kMPersp0] = 12.f;
mat[SkMatrix::kMPersp1] = 4.f;
mat[SkMatrix::kMPersp2] = 1872.f;
- REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation0, &scaleX, &scaleY, &rotation1));
- s0 = SkScalarSinCos(rotation0, &c0);
- s1 = SkScalarSinCos(rotation1, &c1);
- REPORTER_ASSERT(reporter, scalar_nearly_equal_relative(mat[SkMatrix::kMScaleX],
- scaleX*c0*c1 - scaleY*s0*s1));
- REPORTER_ASSERT(reporter, scalar_nearly_equal_relative(mat[SkMatrix::kMSkewX],
- -scaleX*s0*c1 - scaleY*c0*s1));
- REPORTER_ASSERT(reporter, scalar_nearly_equal_relative(mat[SkMatrix::kMSkewY],
- scaleX*c0*s1 + scaleY*s0*c1));
- REPORTER_ASSERT(reporter, scalar_nearly_equal_relative(mat[SkMatrix::kMScaleY],
- -scaleX*s0*s1 + scaleY*c0*c1));
-
- // rotation, anisotropic scale + reflection, then different rotation
- mat.setRotate(kRotation0);
- mat.postScale(-kScale1, kScale0);
- mat.postRotate(kRotation1);
- REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation0, &scaleX, &scaleY, &rotation1));
- s0 = SkScalarSinCos(rotation0, &c0);
- s1 = SkScalarSinCos(rotation1, &c1);
- REPORTER_ASSERT(reporter, scalar_nearly_equal_relative(mat[SkMatrix::kMScaleX],
- scaleX*c0*c1 - scaleY*s0*s1));
- REPORTER_ASSERT(reporter, scalar_nearly_equal_relative(mat[SkMatrix::kMSkewX],
- -scaleX*s0*c1 - scaleY*c0*s1));
- REPORTER_ASSERT(reporter, scalar_nearly_equal_relative(mat[SkMatrix::kMSkewY],
- scaleX*c0*s1 + scaleY*s0*c1));
- REPORTER_ASSERT(reporter, scalar_nearly_equal_relative(mat[SkMatrix::kMScaleY],
- -scaleX*s0*s1 + scaleY*c0*c1));
+ REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2));
+ REPORTER_ASSERT(reporter, check_matrix_recomposition(mat, rotation1, scale, rotation2));
// degenerate matrices
// mostly zero entries
mat.reset();
mat[SkMatrix::kMScaleX] = 0.f;
- REPORTER_ASSERT(reporter, !SkDecomposeUpper2x2(mat, &rotation0, &scaleX, &scaleY, &rotation1));
+ REPORTER_ASSERT(reporter, !SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2));
mat.reset();
mat[SkMatrix::kMScaleY] = 0.f;
- REPORTER_ASSERT(reporter, !SkDecomposeUpper2x2(mat, &rotation0, &scaleX, &scaleY, &rotation1));
+ REPORTER_ASSERT(reporter, !SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2));
mat.reset();
// linearly dependent entries
mat[SkMatrix::kMScaleX] = 1.f;
mat[SkMatrix::kMSkewX] = 2.f;
mat[SkMatrix::kMSkewY] = 4.f;
mat[SkMatrix::kMScaleY] = 8.f;
- REPORTER_ASSERT(reporter, !SkDecomposeUpper2x2(mat, &rotation0, &scaleX, &scaleY, &rotation1));
+ REPORTER_ASSERT(reporter, !SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2));
}
// For test_matrix_homogeneous, below.