aboutsummaryrefslogtreecommitdiffhomepage
diff options
context:
space:
mode:
authorGravatar commit-bot@chromium.org <commit-bot@chromium.org@2bbb7eff-a529-9590-31e7-b0007b416f81>2013-09-03 19:08:14 +0000
committerGravatar commit-bot@chromium.org <commit-bot@chromium.org@2bbb7eff-a529-9590-31e7-b0007b416f81>2013-09-03 19:08:14 +0000
commit5b2e2640ed345c4670b99b349f62eb6f9446ec1e (patch)
treeeafdb483c2d8f87ddffe03e2255d2fec03f31dd5
parente2b103fba2bf631a81875e33a28fb9a0c70acc34 (diff)
Revise SVD code to remove arctangents.
Also added bench for timing matrix decomposition. R=reed@google.com Author: jvanverth@google.com Review URL: https://chromiumcodereview.appspot.com/23596006 git-svn-id: http://skia.googlecode.com/svn/trunk@11066 2bbb7eff-a529-9590-31e7-b0007b416f81
-rw-r--r--bench/MatrixBench.cpp31
-rw-r--r--src/core/SkMatrix.cpp143
-rw-r--r--src/core/SkMatrixUtils.h16
-rw-r--r--tests/Matrix44Test.cpp4
-rw-r--r--tests/MatrixTest.cpp213
5 files changed, 202 insertions, 205 deletions
diff --git a/bench/MatrixBench.cpp b/bench/MatrixBench.cpp
index cae5622414..8fe9e34e4b 100644
--- a/bench/MatrixBench.cpp
+++ b/bench/MatrixBench.cpp
@@ -7,6 +7,7 @@
*/
#include "SkBenchmark.h"
#include "SkMatrix.h"
+#include "SkMatrixUtils.h"
#include "SkRandom.h"
#include "SkString.h"
@@ -345,6 +346,34 @@ class ScaleTransDoubleMatrixBench : public MatrixBench {
typedef MatrixBench INHERITED;
};
+class DecomposeMatrixBench : public MatrixBench {
+public:
+ DecomposeMatrixBench(void* param) : INHERITED(param, "decompose") {}
+
+protected:
+ virtual void onPreDraw() {
+ for (int i = 0; i < 10; ++i) {
+ SkScalar rot0 = (fRandom.nextBool()) ? fRandom.nextRangeF(-180, 180) : 0.0f;
+ SkScalar sx = fRandom.nextRangeF(-3000.f, 3000.f);
+ SkScalar sy = (fRandom.nextBool()) ? fRandom.nextRangeF(-3000.f, 3000.f) : sx;
+ SkScalar rot1 = fRandom.nextRangeF(-180, 180);
+ fMatrix[i].setRotate(rot0);
+ fMatrix[i].postScale(sx, sy);
+ fMatrix[i].postRotate(rot1);
+ }
+ }
+ virtual void performTest() {
+ SkPoint rotation1, scale, rotation2;
+ for (int i = 0; i < 10; ++i) {
+ (void) SkDecomposeUpper2x2(fMatrix[i], &rotation1, &scale, &rotation2);
+ }
+ }
+private:
+ SkMatrix fMatrix[10];
+ SkMWCRandom fRandom;
+ typedef MatrixBench INHERITED;
+};
+
class InvertMapRectMatrixBench : public MatrixBench {
public:
InvertMapRectMatrixBench(void* param, const char* name, int flags)
@@ -408,6 +437,8 @@ DEF_BENCH( return new FloatConcatMatrixBench(p); )
DEF_BENCH( return new FloatDoubleConcatMatrixBench(p); )
DEF_BENCH( return new DoubleConcatMatrixBench(p); )
DEF_BENCH( return new GetTypeMatrixBench(p); )
+DEF_BENCH( return new DecomposeMatrixBench(p); )
+
DEF_BENCH( return new InvertMapRectMatrixBench(p, "invert_maprect_identity", 0); )
DEF_BENCH(return new InvertMapRectMatrixBench(p,
diff --git a/src/core/SkMatrix.cpp b/src/core/SkMatrix.cpp
index e5d48f022f..e3e43ca690 100644
--- a/src/core/SkMatrix.cpp
+++ b/src/core/SkMatrix.cpp
@@ -2007,13 +2007,18 @@ bool SkTreatAsSprite(const SkMatrix& mat, int width, int height,
return isrc == idst;
}
+// A square matrix M can be decomposed (via polar decomposition) into two matrices --
+// an orthogonal matrix Q and a symmetric matrix S. In turn we can decompose S into U*W*U^T,
+// where U is another orthogonal matrix and W is a scale matrix. These can be recombined
+// to give M = (Q*U)*W*U^T, i.e., the product of two orthogonal matrices and a scale matrix.
+//
+// The one wrinkle is that traditionally Q may contain a reflection -- the
+// calculation has been rejiggered to put that reflection into W.
bool SkDecomposeUpper2x2(const SkMatrix& matrix,
- SkScalar* rotation0,
- SkScalar* xScale, SkScalar* yScale,
- SkScalar* rotation1) {
+ SkPoint* rotation1,
+ SkPoint* scale,
+ SkPoint* rotation2) {
- // borrowed from Jim Blinn's article "Consider the Lowly 2x2 Matrix"
- // Note: he uses row vectors, so we have to do some swapping of terms
SkScalar A = matrix[SkMatrix::kMScaleX];
SkScalar B = matrix[SkMatrix::kMSkewX];
SkScalar C = matrix[SkMatrix::kMSkewY];
@@ -2023,70 +2028,82 @@ bool SkDecomposeUpper2x2(const SkMatrix& matrix,
return false;
}
- SkScalar E = SK_ScalarHalf*(A + D);
- SkScalar F = SK_ScalarHalf*(A - D);
- SkScalar G = SK_ScalarHalf*(C + B);
- SkScalar H = SK_ScalarHalf*(C - B);
+ double w1, w2;
+ SkScalar cos1, sin1;
+ SkScalar cos2, sin2;
- SkScalar sqrt0 = SkScalarSqrt(E*E + H*H);
- SkScalar sqrt1 = SkScalarSqrt(F*F + G*G);
+ // do polar decomposition (M = Q*S)
+ SkScalar cosQ, sinQ;
+ double Sa, Sb, Sd;
+ // if M is already symmetric (i.e., M = I*S)
+ if (SkScalarNearlyEqual(B, C)) {
+ cosQ = SK_Scalar1;
+ sinQ = 0;
- SkScalar xs, ys, r0, r1;
-
- xs = sqrt0 + sqrt1;
- ys = sqrt0 - sqrt1;
- // can't have zero yScale, must be degenerate
- SkASSERT(!SkScalarNearlyZero(ys));
-
- // uniformly scaled rotation
- if (SkScalarNearlyZero(F) && SkScalarNearlyZero(G)) {
- SkASSERT(!SkScalarNearlyZero(E) || !SkScalarNearlyZero(H));
- r0 = SkScalarATan2(H, E);
- r1 = 0;
- // uniformly scaled reflection
- } else if (SkScalarNearlyZero(E) && SkScalarNearlyZero(H)) {
- SkASSERT(!SkScalarNearlyZero(F) || !SkScalarNearlyZero(G));
- r0 = -SkScalarATan2(G, F);
- r1 = 0;
+ Sa = A;
+ Sb = B;
+ Sd = D;
} else {
- SkASSERT(!SkScalarNearlyZero(E) || !SkScalarNearlyZero(H));
- SkASSERT(!SkScalarNearlyZero(F) || !SkScalarNearlyZero(G));
-
- SkScalar arctan0 = SkScalarATan2(H, E);
- SkScalar arctan1 = SkScalarATan2(G, F);
- r0 = SK_ScalarHalf*(arctan0 - arctan1);
- r1 = SK_ScalarHalf*(arctan0 + arctan1);
-
- // simplify the results
- const SkScalar kHalfPI = SK_ScalarHalf*SK_ScalarPI;
- if (SkScalarNearlyEqual(SkScalarAbs(r0), kHalfPI)) {
- SkScalar tmp = xs;
- xs = ys;
- ys = tmp;
-
- r1 += r0;
- r0 = 0;
- } else if (SkScalarNearlyEqual(SkScalarAbs(r1), kHalfPI)) {
- SkScalar tmp = xs;
- xs = ys;
- ys = tmp;
-
- r0 += r1;
- r1 = 0;
+ cosQ = A + D;
+ sinQ = C - B;
+ SkScalar reciplen = SK_Scalar1/SkScalarSqrt(cosQ*cosQ + sinQ*sinQ);
+ cosQ *= reciplen;
+ sinQ *= reciplen;
+
+ // S = Q^-1*M
+ // we don't calc Sc since it's symmetric
+ Sa = A*cosQ + C*sinQ;
+ Sb = B*cosQ + D*sinQ;
+ Sd = -B*sinQ + D*cosQ;
+ }
+
+ // Now we need to compute eigenvalues of S (our scale factors)
+ // and eigenvectors (bases for our rotation)
+ // From this, should be able to reconstruct S as U*W*U^T
+ if (SkScalarNearlyZero(Sb)) {
+ // already diagonalized
+ cos1 = SK_Scalar1;
+ sin1 = 0;
+ w1 = Sa;
+ w2 = Sd;
+ cos2 = cosQ;
+ sin2 = sinQ;
+ } else {
+ double diff = Sa - Sd;
+ double discriminant = sqrt(diff*diff + 4.0*Sb*Sb);
+ double trace = Sa + Sd;
+ if (diff > 0) {
+ w1 = 0.5*(trace + discriminant);
+ w2 = 0.5*(trace - discriminant);
+ } else {
+ w1 = 0.5*(trace - discriminant);
+ w2 = 0.5*(trace + discriminant);
}
- }
-
- if (NULL != xScale) {
- *xScale = xs;
- }
- if (NULL != yScale) {
- *yScale = ys;
- }
- if (NULL != rotation0) {
- *rotation0 = r0;
+
+ cos1 = Sb; sin1 = w1 - Sa;
+ SkScalar reciplen = SK_Scalar1/SkScalarSqrt(cos1*cos1 + sin1*sin1);
+ cos1 *= reciplen;
+ sin1 *= reciplen;
+
+ // rotation 2 is composition of Q and U
+ cos2 = cos1*cosQ - sin1*sinQ;
+ sin2 = sin1*cosQ + cos1*sinQ;
+
+ // rotation 1 is U^T
+ sin1 = -sin1;
+ }
+
+ if (NULL != scale) {
+ scale->fX = w1;
+ scale->fY = w2;
}
if (NULL != rotation1) {
- *rotation1 = r1;
+ rotation1->fX = cos1;
+ rotation1->fY = sin1;
+ }
+ if (NULL != rotation2) {
+ rotation2->fX = cos2;
+ rotation2->fY = sin2;
}
return true;
diff --git a/src/core/SkMatrixUtils.h b/src/core/SkMatrixUtils.h
index 37341f289e..3fc1440e15 100644
--- a/src/core/SkMatrixUtils.h
+++ b/src/core/SkMatrixUtils.h
@@ -40,15 +40,15 @@ static inline bool SkTreatAsSpriteFilter(const SkMatrix& matrix,
return SkTreatAsSprite(matrix, width, height, kSkSubPixelBitsForBilerp);
}
-/** Decomposes the upper-left 2x2 of the matrix into a rotation, followed by a non-uniform scale,
- followed by another rotation. Returns true if successful.
- If the scale factors are uniform, then rotation1 will be 0.
- If there is a reflection, yScale will be negative.
- Returns false if the matrix is degenerate.
+/** Decomposes the upper-left 2x2 of the matrix into a rotation (represented by
+ the cosine and sine of the rotation angle), followed by a non-uniform scale,
+ followed by another rotation. If there is a reflection, one of the scale
+ factors will be negative.
+ Returns true if successful. Returns false if the matrix is degenerate.
*/
bool SkDecomposeUpper2x2(const SkMatrix& matrix,
- SkScalar* rotation0,
- SkScalar* xScale, SkScalar* yScale,
- SkScalar* rotation1);
+ SkPoint* rotation1,
+ SkPoint* scale,
+ SkPoint* rotation2);
#endif
diff --git a/tests/Matrix44Test.cpp b/tests/Matrix44Test.cpp
index 67af60df90..6c29a55966 100644
--- a/tests/Matrix44Test.cpp
+++ b/tests/Matrix44Test.cpp
@@ -513,10 +513,10 @@ static void TestMatrix44(skiatest::Reporter* reporter) {
// test mixed-valued matrix inverse
mat.reset();
- mat.setScale(1.0e-10, 3.0, 1.0e+10);
+ mat.setScale(1.0e-11, 3.0, 1.0e+11);
rot.setRotateDegreesAbout(0, 0, -1, 90);
mat.postConcat(rot);
- mat.postTranslate(1.0e+10, 3.0, 1.0e-10);
+ mat.postTranslate(1.0e+11, 3.0, 1.0e-11);
REPORTER_ASSERT(reporter, mat.invert(NULL));
mat.invert(&inverse);
iden1.setConcat(mat, inverse);
diff --git a/tests/MatrixTest.cpp b/tests/MatrixTest.cpp
index 8785730322..c225565cc4 100644
--- a/tests/MatrixTest.cpp
+++ b/tests/MatrixTest.cpp
@@ -350,11 +350,13 @@ static void test_matrix_is_similarity(skiatest::Reporter* reporter) {
static bool scalar_nearly_equal_relative(SkScalar a, SkScalar b,
SkScalar tolerance = SK_ScalarNearlyZero) {
// from Bruce Dawson
+ // absolute check
SkScalar diff = SkScalarAbs(a - b);
if (diff < tolerance) {
return true;
}
+ // relative check
a = SkScalarAbs(a);
b = SkScalarAbs(b);
SkScalar largest = (b > a) ? b : a;
@@ -366,9 +368,32 @@ static bool scalar_nearly_equal_relative(SkScalar a, SkScalar b,
return false;
}
+static bool check_matrix_recomposition(const SkMatrix& mat,
+ const SkPoint& rotation1,
+ const SkPoint& scale,
+ const SkPoint& rotation2) {
+ SkScalar c1 = rotation1.fX;
+ SkScalar s1 = rotation1.fY;
+ SkScalar scaleX = scale.fX;
+ SkScalar scaleY = scale.fY;
+ SkScalar c2 = rotation2.fX;
+ SkScalar s2 = rotation2.fY;
+
+ // We do a relative check here because large scale factors cause problems with an absolute check
+ bool result = scalar_nearly_equal_relative(mat[SkMatrix::kMScaleX],
+ scaleX*c1*c2 - scaleY*s1*s2) &&
+ scalar_nearly_equal_relative(mat[SkMatrix::kMSkewX],
+ -scaleX*s1*c2 - scaleY*c1*s2) &&
+ scalar_nearly_equal_relative(mat[SkMatrix::kMSkewY],
+ scaleX*c1*s2 + scaleY*s1*c2) &&
+ scalar_nearly_equal_relative(mat[SkMatrix::kMScaleY],
+ -scaleX*s1*s2 + scaleY*c1*c2);
+ return result;
+}
+
static void test_matrix_decomposition(skiatest::Reporter* reporter) {
SkMatrix mat;
- SkScalar rotation0, scaleX, scaleY, rotation1;
+ SkPoint rotation1, scale, rotation2;
const float kRotation0 = 15.5f;
const float kRotation1 = -50.f;
@@ -377,150 +402,108 @@ static void test_matrix_decomposition(skiatest::Reporter* reporter) {
// identity
mat.reset();
- REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation0, &scaleX, &scaleY, &rotation1));
- REPORTER_ASSERT(reporter, SkScalarNearlyZero(rotation0));
- REPORTER_ASSERT(reporter, SkScalarNearlyEqual(scaleX, SK_Scalar1));
- REPORTER_ASSERT(reporter, SkScalarNearlyEqual(scaleY, SK_Scalar1));
- REPORTER_ASSERT(reporter, SkScalarNearlyZero(rotation1));
+ REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2));
+ REPORTER_ASSERT(reporter, check_matrix_recomposition(mat, rotation1, scale, rotation2));
// make sure it doesn't crash if we pass in NULLs
- REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, NULL, NULL, NULL, NULL));
+ REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, NULL, NULL, NULL));
// rotation only
mat.setRotate(kRotation0);
- REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation0, &scaleX, &scaleY, &rotation1));
- REPORTER_ASSERT(reporter, SkScalarNearlyEqual(rotation0, SkDegreesToRadians(kRotation0)));
- REPORTER_ASSERT(reporter, SkScalarNearlyEqual(scaleX, SK_Scalar1));
- REPORTER_ASSERT(reporter, SkScalarNearlyEqual(scaleY, SK_Scalar1));
- REPORTER_ASSERT(reporter, SkScalarNearlyZero(rotation1));
+ REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2));
+ REPORTER_ASSERT(reporter, check_matrix_recomposition(mat, rotation1, scale, rotation2));
// uniform scale only
mat.setScale(kScale0, kScale0);
- REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation0, &scaleX, &scaleY, &rotation1));
- REPORTER_ASSERT(reporter, SkScalarNearlyZero(rotation0));
- REPORTER_ASSERT(reporter, SkScalarNearlyEqual(scaleX, kScale0));
- REPORTER_ASSERT(reporter, SkScalarNearlyEqual(scaleY, kScale0));
- REPORTER_ASSERT(reporter, SkScalarNearlyZero(rotation1));
+ REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2));
+ REPORTER_ASSERT(reporter, check_matrix_recomposition(mat, rotation1, scale, rotation2));
// anisotropic scale only
mat.setScale(kScale1, kScale0);
- REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation0, &scaleX, &scaleY, &rotation1));
- REPORTER_ASSERT(reporter, SkScalarNearlyZero(rotation0));
- REPORTER_ASSERT(reporter, SkScalarNearlyEqual(scaleX, kScale1));
- REPORTER_ASSERT(reporter, SkScalarNearlyEqual(scaleY, kScale0));
- REPORTER_ASSERT(reporter, SkScalarNearlyZero(rotation1));
+ REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2));
+ REPORTER_ASSERT(reporter, check_matrix_recomposition(mat, rotation1, scale, rotation2));
// rotation then uniform scale
mat.setRotate(kRotation1);
mat.postScale(kScale0, kScale0);
- REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation0, &scaleX, &scaleY, &rotation1));
- REPORTER_ASSERT(reporter, SkScalarNearlyEqual(rotation0, SkDegreesToRadians(kRotation1)));
- REPORTER_ASSERT(reporter, SkScalarNearlyEqual(scaleX, kScale0));
- REPORTER_ASSERT(reporter, SkScalarNearlyEqual(scaleY, kScale0));
- REPORTER_ASSERT(reporter, SkScalarNearlyZero(rotation1));
+ REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2));
+ REPORTER_ASSERT(reporter, check_matrix_recomposition(mat, rotation1, scale, rotation2));
// uniform scale then rotation
mat.setScale(kScale0, kScale0);
mat.postRotate(kRotation1);
- REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation0, &scaleX, &scaleY, &rotation1));
- REPORTER_ASSERT(reporter, SkScalarNearlyEqual(rotation0, SkDegreesToRadians(kRotation1)));
- REPORTER_ASSERT(reporter, SkScalarNearlyEqual(scaleX, kScale0));
- REPORTER_ASSERT(reporter, SkScalarNearlyEqual(scaleY, kScale0));
- REPORTER_ASSERT(reporter, SkScalarNearlyZero(rotation1));
+ REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2));
+ REPORTER_ASSERT(reporter, check_matrix_recomposition(mat, rotation1, scale, rotation2));
// rotation then uniform scale+reflection
mat.setRotate(kRotation0);
mat.postScale(kScale1, -kScale1);
- REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation0, &scaleX, &scaleY, &rotation1));
- REPORTER_ASSERT(reporter, SkScalarNearlyEqual(rotation0, SkDegreesToRadians(kRotation0)));
- REPORTER_ASSERT(reporter, SkScalarNearlyEqual(scaleX, kScale1));
- REPORTER_ASSERT(reporter, SkScalarNearlyEqual(scaleY, -kScale1));
- REPORTER_ASSERT(reporter, SkScalarNearlyZero(rotation1));
+ REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2));
+ REPORTER_ASSERT(reporter, check_matrix_recomposition(mat, rotation1, scale, rotation2));
// uniform scale+reflection, then rotate
mat.setScale(kScale0, -kScale0);
mat.postRotate(kRotation1);
- REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation0, &scaleX, &scaleY, &rotation1));
- REPORTER_ASSERT(reporter, SkScalarNearlyEqual(rotation0, SkDegreesToRadians(-kRotation1)));
- REPORTER_ASSERT(reporter, SkScalarNearlyEqual(scaleX, kScale0));
- REPORTER_ASSERT(reporter, SkScalarNearlyEqual(scaleY, -kScale0));
- REPORTER_ASSERT(reporter, SkScalarNearlyZero(rotation1));
+ REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2));
+ REPORTER_ASSERT(reporter, check_matrix_recomposition(mat, rotation1, scale, rotation2));
// rotation then anisotropic scale
mat.setRotate(kRotation1);
mat.postScale(kScale1, kScale0);
- REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation0, &scaleX, &scaleY, &rotation1));
- REPORTER_ASSERT(reporter, SkScalarNearlyEqual(rotation0, SkDegreesToRadians(kRotation1)));
- REPORTER_ASSERT(reporter, SkScalarNearlyEqual(scaleX, kScale1));
- REPORTER_ASSERT(reporter, SkScalarNearlyEqual(scaleY, kScale0));
- REPORTER_ASSERT(reporter, SkScalarNearlyZero(rotation1));
+ REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2));
+ REPORTER_ASSERT(reporter, check_matrix_recomposition(mat, rotation1, scale, rotation2));
+ // rotation then anisotropic scale
+ mat.setRotate(90);
+ mat.postScale(kScale1, kScale0);
+ REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2));
+ REPORTER_ASSERT(reporter, check_matrix_recomposition(mat, rotation1, scale, rotation2));
+
// anisotropic scale then rotation
mat.setScale(kScale1, kScale0);
mat.postRotate(kRotation0);
- REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation0, &scaleX, &scaleY, &rotation1));
- REPORTER_ASSERT(reporter, SkScalarNearlyZero(rotation0));
- REPORTER_ASSERT(reporter, SkScalarNearlyEqual(scaleX, kScale1));
- REPORTER_ASSERT(reporter, SkScalarNearlyEqual(scaleY, kScale0));
- REPORTER_ASSERT(reporter, SkScalarNearlyEqual(rotation1, SkDegreesToRadians(kRotation0)));
+ REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2));
+ REPORTER_ASSERT(reporter, check_matrix_recomposition(mat, rotation1, scale, rotation2));
+
+ // anisotropic scale then rotation
+ mat.setScale(kScale1, kScale0);
+ mat.postRotate(90);
+ REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2));
+ REPORTER_ASSERT(reporter, check_matrix_recomposition(mat, rotation1, scale, rotation2));
// rotation, uniform scale, then different rotation
mat.setRotate(kRotation1);
mat.postScale(kScale0, kScale0);
mat.postRotate(kRotation0);
- REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation0, &scaleX, &scaleY, &rotation1));
- REPORTER_ASSERT(reporter, SkScalarNearlyEqual(rotation0,
- SkDegreesToRadians(kRotation0 + kRotation1)));
- REPORTER_ASSERT(reporter, SkScalarNearlyEqual(scaleX, kScale0));
- REPORTER_ASSERT(reporter, SkScalarNearlyEqual(scaleY, kScale0));
- REPORTER_ASSERT(reporter, SkScalarNearlyZero(rotation1));
+ REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2));
+ REPORTER_ASSERT(reporter, check_matrix_recomposition(mat, rotation1, scale, rotation2));
// rotation, anisotropic scale, then different rotation
mat.setRotate(kRotation0);
mat.postScale(kScale1, kScale0);
mat.postRotate(kRotation1);
- REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation0, &scaleX, &scaleY, &rotation1));
- // Because of the shear/skew we won't get the same results, so we need to multiply it out.
- // Generating the matrices requires doing a radian-to-degree calculation, then degree-to-radian
- // calculation (in setRotate()), which adds error, so this just computes the matrix elements
- // directly.
- SkScalar c0;
- SkScalar s0 = SkScalarSinCos(rotation0, &c0);
- SkScalar c1;
- SkScalar s1 = SkScalarSinCos(rotation1, &c1);
- // We do a relative check here because large scale factors cause problems with an absolute check
- REPORTER_ASSERT(reporter, scalar_nearly_equal_relative(mat[SkMatrix::kMScaleX],
- scaleX*c0*c1 - scaleY*s0*s1));
- REPORTER_ASSERT(reporter, scalar_nearly_equal_relative(mat[SkMatrix::kMSkewX],
- -scaleX*s0*c1 - scaleY*c0*s1));
- REPORTER_ASSERT(reporter, scalar_nearly_equal_relative(mat[SkMatrix::kMSkewY],
- scaleX*c0*s1 + scaleY*s0*c1));
- REPORTER_ASSERT(reporter, scalar_nearly_equal_relative(mat[SkMatrix::kMScaleY],
- -scaleX*s0*s1 + scaleY*c0*c1));
+ REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2));
+ REPORTER_ASSERT(reporter, check_matrix_recomposition(mat, rotation1, scale, rotation2));
+
+ // rotation, anisotropic scale + reflection, then different rotation
+ mat.setRotate(kRotation0);
+ mat.postScale(-kScale1, kScale0);
+ mat.postRotate(kRotation1);
+ REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2));
+ REPORTER_ASSERT(reporter, check_matrix_recomposition(mat, rotation1, scale, rotation2));
// try some random matrices
SkMWCRandom rand;
for (int m = 0; m < 1000; ++m) {
- SkScalar rot0 = rand.nextRangeF(-SK_ScalarPI, SK_ScalarPI);
+ SkScalar rot0 = rand.nextRangeF(-180, 180);
SkScalar sx = rand.nextRangeF(-3000.f, 3000.f);
SkScalar sy = rand.nextRangeF(-3000.f, 3000.f);
- SkScalar rot1 = rand.nextRangeF(-SK_ScalarPI, SK_ScalarPI);
+ SkScalar rot1 = rand.nextRangeF(-180, 180);
mat.setRotate(rot0);
mat.postScale(sx, sy);
mat.postRotate(rot1);
- if (SkDecomposeUpper2x2(mat, &rotation0, &scaleX, &scaleY, &rotation1)) {
- SkScalar c0;
- SkScalar s0 = SkScalarSinCos(rotation0, &c0);
- SkScalar c1;
- SkScalar s1 = SkScalarSinCos(rotation1, &c1);
- REPORTER_ASSERT(reporter, scalar_nearly_equal_relative(mat[SkMatrix::kMScaleX],
- scaleX*c0*c1 - scaleY*s0*s1));
- REPORTER_ASSERT(reporter, scalar_nearly_equal_relative(mat[SkMatrix::kMSkewX],
- -scaleX*s0*c1 - scaleY*c0*s1));
- REPORTER_ASSERT(reporter, scalar_nearly_equal_relative(mat[SkMatrix::kMSkewY],
- scaleX*c0*s1 + scaleY*s0*c1));
- REPORTER_ASSERT(reporter, scalar_nearly_equal_relative(mat[SkMatrix::kMScaleY],
- -scaleX*s0*s1 + scaleY*c0*c1));
+ if (SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2)) {
+ REPORTER_ASSERT(reporter, check_matrix_recomposition(mat, rotation1, scale, rotation2));
} else {
// if the matrix is degenerate, the basis vectors should be near-parallel or near-zero
SkScalar perpdot = mat[SkMatrix::kMScaleX]*mat[SkMatrix::kMScaleY] -
@@ -531,65 +514,31 @@ static void test_matrix_decomposition(skiatest::Reporter* reporter) {
// translation shouldn't affect this
mat.postTranslate(-1000.f, 1000.f);
- REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation0, &scaleX, &scaleY, &rotation1));
- s0 = SkScalarSinCos(rotation0, &c0);
- s1 = SkScalarSinCos(rotation1, &c1);
- REPORTER_ASSERT(reporter, scalar_nearly_equal_relative(mat[SkMatrix::kMScaleX],
- scaleX*c0*c1 - scaleY*s0*s1));
- REPORTER_ASSERT(reporter, scalar_nearly_equal_relative(mat[SkMatrix::kMSkewX],
- -scaleX*s0*c1 - scaleY*c0*s1));
- REPORTER_ASSERT(reporter, scalar_nearly_equal_relative(mat[SkMatrix::kMSkewY],
- scaleX*c0*s1 + scaleY*s0*c1));
- REPORTER_ASSERT(reporter, scalar_nearly_equal_relative(mat[SkMatrix::kMScaleY],
- -scaleX*s0*s1 + scaleY*c0*c1));
+ REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2));
+ REPORTER_ASSERT(reporter, check_matrix_recomposition(mat, rotation1, scale, rotation2));
// perspective shouldn't affect this
mat[SkMatrix::kMPersp0] = 12.f;
mat[SkMatrix::kMPersp1] = 4.f;
mat[SkMatrix::kMPersp2] = 1872.f;
- REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation0, &scaleX, &scaleY, &rotation1));
- s0 = SkScalarSinCos(rotation0, &c0);
- s1 = SkScalarSinCos(rotation1, &c1);
- REPORTER_ASSERT(reporter, scalar_nearly_equal_relative(mat[SkMatrix::kMScaleX],
- scaleX*c0*c1 - scaleY*s0*s1));
- REPORTER_ASSERT(reporter, scalar_nearly_equal_relative(mat[SkMatrix::kMSkewX],
- -scaleX*s0*c1 - scaleY*c0*s1));
- REPORTER_ASSERT(reporter, scalar_nearly_equal_relative(mat[SkMatrix::kMSkewY],
- scaleX*c0*s1 + scaleY*s0*c1));
- REPORTER_ASSERT(reporter, scalar_nearly_equal_relative(mat[SkMatrix::kMScaleY],
- -scaleX*s0*s1 + scaleY*c0*c1));
-
- // rotation, anisotropic scale + reflection, then different rotation
- mat.setRotate(kRotation0);
- mat.postScale(-kScale1, kScale0);
- mat.postRotate(kRotation1);
- REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation0, &scaleX, &scaleY, &rotation1));
- s0 = SkScalarSinCos(rotation0, &c0);
- s1 = SkScalarSinCos(rotation1, &c1);
- REPORTER_ASSERT(reporter, scalar_nearly_equal_relative(mat[SkMatrix::kMScaleX],
- scaleX*c0*c1 - scaleY*s0*s1));
- REPORTER_ASSERT(reporter, scalar_nearly_equal_relative(mat[SkMatrix::kMSkewX],
- -scaleX*s0*c1 - scaleY*c0*s1));
- REPORTER_ASSERT(reporter, scalar_nearly_equal_relative(mat[SkMatrix::kMSkewY],
- scaleX*c0*s1 + scaleY*s0*c1));
- REPORTER_ASSERT(reporter, scalar_nearly_equal_relative(mat[SkMatrix::kMScaleY],
- -scaleX*s0*s1 + scaleY*c0*c1));
+ REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2));
+ REPORTER_ASSERT(reporter, check_matrix_recomposition(mat, rotation1, scale, rotation2));
// degenerate matrices
// mostly zero entries
mat.reset();
mat[SkMatrix::kMScaleX] = 0.f;
- REPORTER_ASSERT(reporter, !SkDecomposeUpper2x2(mat, &rotation0, &scaleX, &scaleY, &rotation1));
+ REPORTER_ASSERT(reporter, !SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2));
mat.reset();
mat[SkMatrix::kMScaleY] = 0.f;
- REPORTER_ASSERT(reporter, !SkDecomposeUpper2x2(mat, &rotation0, &scaleX, &scaleY, &rotation1));
+ REPORTER_ASSERT(reporter, !SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2));
mat.reset();
// linearly dependent entries
mat[SkMatrix::kMScaleX] = 1.f;
mat[SkMatrix::kMSkewX] = 2.f;
mat[SkMatrix::kMSkewY] = 4.f;
mat[SkMatrix::kMScaleY] = 8.f;
- REPORTER_ASSERT(reporter, !SkDecomposeUpper2x2(mat, &rotation0, &scaleX, &scaleY, &rotation1));
+ REPORTER_ASSERT(reporter, !SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2));
}
// For test_matrix_homogeneous, below.