aboutsummaryrefslogtreecommitdiffhomepage
path: root/src
diff options
context:
space:
mode:
authorGravatar Ben Wagner <bungeman@google.com>2018-07-18 21:27:57 +0000
committerGravatar Skia Commit-Bot <skia-commit-bot@chromium.org>2018-07-18 21:28:02 +0000
commite9dd316a0000a0b2a0812701d80775c30c8eb8cc (patch)
tree01f5319306639afa21c32e780da57b01e2369a95 /src
parent7c0998a130b5b1a64811defd17ab3266985515f4 (diff)
Revert "Reland "Add some optimizations to PolyUtils""
This reverts commit 946c37057f2618af7eda34fd6d2dd8625a9e9b61. Reason for revert: strict weak ordering: ((__x LT __y) && (__y LT __x)) != false Original change's description: > Reland "Add some optimizations to PolyUtils" > > This is a reland of 8bb0db3d07450880d346d808018708416c928657 > > Original change's description: > > Add some optimizations to PolyUtils > > > > * Switch inset/offset code to use a linked list rather than an array > > * Use std::set to store active edge list for IsSimplePolygon rather than array > > * Pre-alloc the priority queue for IsSimplePolygon > > * When adding radial curves, expand the array all at once rather than pushing > > one at a time. > > > > Bug: skia: > > Change-Id: I692f8c29c500c41ec1d1be39d924d8a752676bf4 > > Reviewed-on: https://skia-review.googlesource.com/140787 > > Reviewed-by: Robert Phillips <robertphillips@google.com> > > Commit-Queue: Jim Van Verth <jvanverth@google.com> > > Bug: skia: > Change-Id: I3f5d42cfb941deab2b28bed020b37ce199e91d3d > Reviewed-on: https://skia-review.googlesource.com/142200 > Reviewed-by: Robert Phillips <robertphillips@google.com> > Commit-Queue: Jim Van Verth <jvanverth@google.com> TBR=jvanverth@google.com,bsalomon@google.com,robertphillips@google.com Change-Id: Ie8cdf2375613c51dedaf0d11125d6d22d88821df No-Presubmit: true No-Tree-Checks: true No-Try: true Bug: skia: Reviewed-on: https://skia-review.googlesource.com/142281 Reviewed-by: Ben Wagner <bungeman@google.com> Commit-Queue: Ben Wagner <bungeman@google.com>
Diffstat (limited to 'src')
-rw-r--r--src/core/SkTDPQueue.h1
-rw-r--r--src/utils/SkPolyUtils.cpp464
2 files changed, 209 insertions, 256 deletions
diff --git a/src/core/SkTDPQueue.h b/src/core/SkTDPQueue.h
index 6e2a09ca8a..5dca4910ed 100644
--- a/src/core/SkTDPQueue.h
+++ b/src/core/SkTDPQueue.h
@@ -30,7 +30,6 @@ template <typename T,
class SkTDPQueue {
public:
SkTDPQueue() {}
- SkTDPQueue(int reserve) { fArray.setReserve(reserve); }
SkTDPQueue(SkTDPQueue&&) = default;
SkTDPQueue& operator =(SkTDPQueue&&) = default;
diff --git a/src/utils/SkPolyUtils.cpp b/src/utils/SkPolyUtils.cpp
index ed4b71d59f..b76d270d15 100644
--- a/src/utils/SkPolyUtils.cpp
+++ b/src/utils/SkPolyUtils.cpp
@@ -7,7 +7,6 @@
#include "SkPolyUtils.h"
-#include <set>
#include "SkPointPriv.h"
#include "SkTArray.h"
#include "SkTemplates.h"
@@ -299,32 +298,34 @@ bool SkIsConvexPolygon(const SkPoint* polygonVerts, int polygonSize) {
return true;
}
-struct OffsetEdge {
- OffsetEdge* fPrev;
- OffsetEdge* fNext;
+struct EdgeData {
OffsetSegment fInset;
SkPoint fIntersection;
SkScalar fTValue;
+ uint16_t fStart;
uint16_t fEnd;
uint16_t fIndex;
+ bool fValid;
- void init(uint16_t start = 0, uint16_t end = 0) {
+ void init() {
fIntersection = fInset.fP0;
fTValue = SK_ScalarMin;
+ fStart = 0;
+ fEnd = 0;
+ fIndex = 0;
+ fValid = true;
+ }
+
+ void init(uint16_t start, uint16_t end) {
+ fIntersection = fInset.fP0;
+ fTValue = SK_ScalarMin;
+ fStart = start;
fEnd = end;
fIndex = start;
+ fValid = true;
}
};
-static void remove_node(const OffsetEdge* node, OffsetEdge** head) {
- // remove from linked list
- node->fPrev->fNext = node->fNext;
- node->fNext->fPrev = node->fPrev;
- if (node == *head) {
- *head = (node->fNext == node) ? nullptr : node->fNext;
- }
-}
-
//////////////////////////////////////////////////////////////////////////////////
// The objective here is to inset all of the edges by the given distance, and then
@@ -353,118 +354,116 @@ bool SkInsetConvexPolygon(const SkPoint* inputPolygonVerts, int inputPolygonSize
}
// set up
- SkAutoSTMalloc<64, OffsetEdge> edgeData(inputPolygonSize);
- int prev = inputPolygonSize - 1;
- for (int curr = 0; curr < inputPolygonSize; prev = curr, ++curr) {
- int next = (curr + 1) % inputPolygonSize;
- if (!inputPolygonVerts[curr].isFinite()) {
+ SkAutoSTMalloc<64, EdgeData> edgeData(inputPolygonSize);
+ for (int i = 0; i < inputPolygonSize; ++i) {
+ int j = (i + 1) % inputPolygonSize;
+ int k = (i + 2) % inputPolygonSize;
+ if (!inputPolygonVerts[i].isFinite()) {
return false;
}
// check for convexity just to be sure
- if (compute_side(inputPolygonVerts[prev], inputPolygonVerts[curr],
- inputPolygonVerts[next])*winding < 0) {
+ if (compute_side(inputPolygonVerts[i], inputPolygonVerts[j],
+ inputPolygonVerts[k])*winding < 0) {
return false;
}
- edgeData[curr].fPrev = &edgeData[prev];
- edgeData[curr].fNext = &edgeData[next];
- if (!SkOffsetSegment(inputPolygonVerts[curr], inputPolygonVerts[next],
- insetDistanceFunc(inputPolygonVerts[curr]),
- insetDistanceFunc(inputPolygonVerts[next]),
+ if (!SkOffsetSegment(inputPolygonVerts[i], inputPolygonVerts[j],
+ insetDistanceFunc(inputPolygonVerts[i]),
+ insetDistanceFunc(inputPolygonVerts[j]),
winding,
- &edgeData[curr].fInset.fP0, &edgeData[curr].fInset.fP1)) {
+ &edgeData[i].fInset.fP0, &edgeData[i].fInset.fP1)) {
return false;
}
- edgeData[curr].init();
+ edgeData[i].init();
}
- OffsetEdge* head = &edgeData[0];
- OffsetEdge* currEdge = head;
- OffsetEdge* prevEdge = currEdge->fPrev;
+ int prevIndex = inputPolygonSize - 1;
+ int currIndex = 0;
int insetVertexCount = inputPolygonSize;
int iterations = 0;
- while (head && prevEdge != currEdge) {
+ while (prevIndex != currIndex) {
++iterations;
// we should check each edge against each other edge at most once
if (iterations > inputPolygonSize*inputPolygonSize) {
return false;
}
+ if (!edgeData[prevIndex].fValid) {
+ prevIndex = (prevIndex + inputPolygonSize - 1) % inputPolygonSize;
+ continue;
+ }
+
SkScalar s, t;
SkPoint intersection;
- if (compute_intersection(prevEdge->fInset, currEdge->fInset,
+ if (compute_intersection(edgeData[prevIndex].fInset, edgeData[currIndex].fInset,
&intersection, &s, &t)) {
// if new intersection is further back on previous inset from the prior intersection
- if (s < prevEdge->fTValue) {
+ if (s < edgeData[prevIndex].fTValue) {
// no point in considering this one again
- remove_node(prevEdge, &head);
+ edgeData[prevIndex].fValid = false;
--insetVertexCount;
// go back one segment
- prevEdge = prevEdge->fPrev;
+ prevIndex = (prevIndex + inputPolygonSize - 1) % inputPolygonSize;
// we've already considered this intersection, we're done
- } else if (currEdge->fTValue > SK_ScalarMin &&
+ } else if (edgeData[currIndex].fTValue > SK_ScalarMin &&
SkPointPriv::EqualsWithinTolerance(intersection,
- currEdge->fIntersection,
+ edgeData[currIndex].fIntersection,
1.0e-6f)) {
break;
} else {
// add intersection
- currEdge->fIntersection = intersection;
- currEdge->fTValue = t;
+ edgeData[currIndex].fIntersection = intersection;
+ edgeData[currIndex].fTValue = t;
// go to next segment
- prevEdge = currEdge;
- currEdge = currEdge->fNext;
+ prevIndex = currIndex;
+ currIndex = (currIndex + 1) % inputPolygonSize;
}
} else {
// if prev to right side of curr
- int side = winding*compute_side(currEdge->fInset.fP0,
- currEdge->fInset.fP1,
- prevEdge->fInset.fP1);
- if (side < 0 && side == winding*compute_side(currEdge->fInset.fP0,
- currEdge->fInset.fP1,
- prevEdge->fInset.fP0)) {
+ int side = winding*compute_side(edgeData[currIndex].fInset.fP0,
+ edgeData[currIndex].fInset.fP1,
+ edgeData[prevIndex].fInset.fP1);
+ if (side < 0 && side == winding*compute_side(edgeData[currIndex].fInset.fP0,
+ edgeData[currIndex].fInset.fP1,
+ edgeData[prevIndex].fInset.fP0)) {
// no point in considering this one again
- remove_node(prevEdge, &head);
+ edgeData[prevIndex].fValid = false;
--insetVertexCount;
// go back one segment
- prevEdge = prevEdge->fPrev;
+ prevIndex = (prevIndex + inputPolygonSize - 1) % inputPolygonSize;
} else {
// move to next segment
- remove_node(currEdge, &head);
+ edgeData[currIndex].fValid = false;
--insetVertexCount;
- currEdge = currEdge->fNext;
+ currIndex = (currIndex + 1) % inputPolygonSize;
}
}
}
// store all the valid intersections that aren't nearly coincident
// TODO: look at the main algorithm and see if we can detect these better
+ static constexpr SkScalar kCleanupTolerance = 0.01f;
+
insetPolygon->reset();
- if (head) {
- static constexpr SkScalar kCleanupTolerance = 0.01f;
- if (insetVertexCount >= 0) {
- insetPolygon->setReserve(insetVertexCount);
- }
- int currIndex = 0;
- OffsetEdge* currEdge = head;
- *insetPolygon->push() = currEdge->fIntersection;
- currEdge = currEdge->fNext;
- while (currEdge != head) {
- if (!SkPointPriv::EqualsWithinTolerance(currEdge->fIntersection,
- (*insetPolygon)[currIndex],
- kCleanupTolerance)) {
- *insetPolygon->push() = currEdge->fIntersection;
- currIndex++;
- }
- currEdge = currEdge->fNext;
- }
- // make sure the first and last points aren't coincident
- if (currIndex >= 1 &&
- SkPointPriv::EqualsWithinTolerance((*insetPolygon)[0], (*insetPolygon)[currIndex],
- kCleanupTolerance)) {
- insetPolygon->pop();
+ if (insetVertexCount >= 0) {
+ insetPolygon->setReserve(insetVertexCount);
+ }
+ currIndex = -1;
+ for (int i = 0; i < inputPolygonSize; ++i) {
+ if (edgeData[i].fValid && (currIndex == -1 ||
+ !SkPointPriv::EqualsWithinTolerance(edgeData[i].fIntersection,
+ (*insetPolygon)[currIndex],
+ kCleanupTolerance))) {
+ *insetPolygon->push() = edgeData[i].fIntersection;
+ currIndex++;
}
}
+ // make sure the first and last points aren't coincident
+ if (currIndex >= 1 &&
+ SkPointPriv::EqualsWithinTolerance((*insetPolygon)[0], (*insetPolygon)[currIndex],
+ kCleanupTolerance)) {
+ insetPolygon->pop();
+ }
return SkIsConvexPolygon(insetPolygon->begin(), insetPolygon->count());
}
@@ -505,7 +504,6 @@ struct Vertex {
static bool Left(const Vertex& qv0, const Vertex& qv1) {
return left(qv0.fPosition, qv1.fPosition);
}
-
// packed to fit into 16 bytes (one cache line)
SkPoint fPosition;
uint16_t fIndex; // index in unsorted polygon
@@ -519,60 +517,30 @@ enum VertexFlags {
kNextLeft_VertexFlag = 0x2,
};
-struct ActiveEdge {
- ActiveEdge(const SkPoint& p0, const SkPoint& p1, int32_t index0, int32_t index1)
- : fSegment({p0, p1})
- , fIndex0(index0)
- , fIndex1(index1) {}
-
+struct Edge {
// returns true if "this" is above "that"
- bool above(const ActiveEdge& that) const {
- SkASSERT(this->fSegment.fP0.fX <= that.fSegment.fP0.fX);
- const SkScalar kTolerance = SK_ScalarNearlyZero * SK_ScalarNearlyZero;
- SkVector u = this->fSegment.fP1 - this->fSegment.fP0;
+ bool above(const Edge& that, SkScalar tolerance = SK_ScalarNearlyZero) {
+ SkASSERT(this->fSegment.fP0.fX < that.fSegment.fP0.fX ||
+ SkScalarNearlyEqual(this->fSegment.fP0.fX, that.fSegment.fP0.fX, tolerance));
// The idea here is that if the vector between the origins of the two segments (dv)
// rotates counterclockwise up to the vector representing the "this" segment (u),
// then we know that "this" is above that. If the result is clockwise we say it's below.
- if (this->fIndex0 != that.fIndex0) {
- SkVector dv = that.fSegment.fP0 - this->fSegment.fP0;
- SkScalar cross = dv.cross(u);
- if (cross > kTolerance) {
- return true;
- } else if (cross < -kTolerance) {
- return false;
- }
- } else if (this->fIndex1 == that.fIndex1) {
- // they're the same edge
- return false;
- }
- // At this point either the two origins are nearly equal or the origin of "that"
- // lies on dv. So then we try the same for the vector from the tail of "this"
- // to the head of "that". Again, ccw means "this" is above "that".
- SkVector dv = that.fSegment.fP1 - this->fSegment.fP0;
+ SkVector dv = that.fSegment.fP0 - this->fSegment.fP0;
+ SkVector u = this->fSegment.fP1 - this->fSegment.fP0;
SkScalar cross = dv.cross(u);
- if (cross > kTolerance) {
+ if (cross > tolerance) {
return true;
- } else if (cross < -kTolerance) {
+ } else if (cross < -tolerance) {
return false;
}
- // If the previous check fails, the two segments are nearly collinear
- // First check y-coord of first endpoints
- if (this->fSegment.fP0.fX < that.fSegment.fP0.fX) {
- return (this->fSegment.fP0.fY >= that.fSegment.fP0.fY);
- } else if (this->fSegment.fP0.fY > that.fSegment.fP0.fY) {
- return true;
- } else if (this->fSegment.fP0.fY < that.fSegment.fP0.fY) {
- return false;
- }
- // The first endpoints are the same, so check the other endpoint
- if (this->fSegment.fP1.fX < that.fSegment.fP1.fX) {
- return (this->fSegment.fP1.fY >= that.fSegment.fP1.fY);
- } else {
- return (this->fSegment.fP1.fY > that.fSegment.fP1.fY);
- }
+ // If the result is 0 then either the two origins are equal or the origin of "that"
+ // lies on dv. So then we try the same for the vector from the tail of "this"
+ // to the head of "that". Again, ccw means "this" is above "that".
+ dv = that.fSegment.fP1 - this->fSegment.fP0;
+ return (dv.cross(u) > tolerance);
}
- bool intersect(const ActiveEdge& that) const {
+ bool intersect(const Edge& that) const {
SkPoint intersection;
SkScalar s, t;
// check first to see if these edges are neighbors in the polygon
@@ -583,69 +551,78 @@ struct ActiveEdge {
return compute_intersection(this->fSegment, that.fSegment, &intersection, &s, &t);
}
- bool operator==(const ActiveEdge& that) const {
+ bool operator==(const Edge& that) const {
return (this->fIndex0 == that.fIndex0 && this->fIndex1 == that.fIndex1);
}
- bool operator!=(const ActiveEdge& that) const {
+ bool operator!=(const Edge& that) const {
return !operator==(that);
}
- bool operator<(const ActiveEdge& that) const {
- if (this->fSegment.fP0.fX > that.fSegment.fP0.fX) {
- return !that.above(*this);
- }
- return this->above(that);
- }
-
OffsetSegment fSegment;
int32_t fIndex0; // indices for previous and next vertex
int32_t fIndex1;
};
-class ActiveEdgeList {
+class EdgeList {
public:
- void reserve(int count) { }
+ void reserve(int count) { fEdges.reserve(count); }
- bool insert(const SkPoint& p0, const SkPoint& p1, int32_t index0, int32_t index1) {
- std::pair<Iterator, bool> result = fEdgeTree.emplace(p0, p1, index0, index1);
- if (!result.second) {
- return false;
+ bool insert(const Edge& newEdge) {
+ // linear search for now (expected case is very few active edges)
+ int insertIndex = 0;
+ while (insertIndex < fEdges.count() && fEdges[insertIndex].above(newEdge)) {
+ ++insertIndex;
}
-
- Iterator& curr = result.first;
- if (curr != fEdgeTree.begin() && curr->intersect(*std::prev(curr))) {
+ // if we intersect with the existing edge above or below us
+ // then we know this polygon is not simple, so don't insert, just fail
+ if (insertIndex > 0 && newEdge.intersect(fEdges[insertIndex - 1])) {
return false;
}
- Iterator next = std::next(curr);
- if (next != fEdgeTree.end() && curr->intersect(*next)) {
+ if (insertIndex < fEdges.count() && newEdge.intersect(fEdges[insertIndex])) {
return false;
}
+ fEdges.push_back();
+ for (int i = fEdges.count() - 1; i > insertIndex; --i) {
+ fEdges[i] = fEdges[i - 1];
+ }
+ fEdges[insertIndex] = newEdge;
+
return true;
}
- bool remove(const ActiveEdge& edge) {
- auto element = fEdgeTree.find(edge);
- // this better not happen
- if (element == fEdgeTree.end()) {
- return false;
+ bool remove(const Edge& edge) {
+ SkASSERT(fEdges.count() > 0);
+
+ // linear search for now (expected case is very few active edges)
+ int removeIndex = 0;
+ while (removeIndex < fEdges.count() && fEdges[removeIndex] != edge) {
+ ++removeIndex;
}
- if (element != fEdgeTree.begin() && element->intersect(*std::prev(element))) {
+ // we'd better find it or something is wrong
+ SkASSERT(removeIndex < fEdges.count());
+
+ // if we intersect with the edge above or below us
+ // then we know this polygon is not simple, so don't remove, just fail
+ if (removeIndex > 0 && fEdges[removeIndex].intersect(fEdges[removeIndex - 1])) {
return false;
}
- Iterator next = std::next(element);
- if (next != fEdgeTree.end() && element->intersect(*next)) {
- return false;
+ if (removeIndex < fEdges.count() - 1) {
+ if (fEdges[removeIndex].intersect(fEdges[removeIndex + 1])) {
+ return false;
+ }
+ // copy over the old entry
+ memmove(&fEdges[removeIndex], &fEdges[removeIndex + 1],
+ sizeof(Edge)*(fEdges.count() - removeIndex - 1));
}
- fEdgeTree.erase(element);
+ fEdges.pop_back();
return true;
}
private:
- std::set<ActiveEdge> fEdgeTree;
- typedef std::set<ActiveEdge>::iterator Iterator;
+ SkSTArray<1, Edge> fEdges;
};
// Here we implement a sweep line algorithm to determine whether the provided points
@@ -659,7 +636,10 @@ bool SkIsSimplePolygon(const SkPoint* polygon, int polygonSize) {
return false;
}
- SkTDPQueue <Vertex, Vertex::Left> vertexQueue(polygonSize);
+ SkTDPQueue <Vertex, Vertex::Left> vertexQueue;
+ EdgeList sweepLine;
+
+ sweepLine.reserve(polygonSize);
for (int i = 0; i < polygonSize; ++i) {
Vertex newVertex;
if (!polygon[i].isFinite()) {
@@ -681,31 +661,31 @@ bool SkIsSimplePolygon(const SkPoint* polygon, int polygonSize) {
// pop each vertex from the queue and generate events depending on
// where it lies relative to its neighboring edges
- ActiveEdgeList sweepLine;
- sweepLine.reserve(polygonSize);
while (vertexQueue.count() > 0) {
const Vertex& v = vertexQueue.peek();
// check edge to previous vertex
if (v.fFlags & kPrevLeft_VertexFlag) {
- ActiveEdge edge(polygon[v.fPrevIndex], v.fPosition, v.fPrevIndex, v.fIndex);
+ Edge edge{ { polygon[v.fPrevIndex], v.fPosition }, v.fPrevIndex, v.fIndex };
if (!sweepLine.remove(edge)) {
break;
}
} else {
- if (!sweepLine.insert(v.fPosition, polygon[v.fPrevIndex], v.fIndex, v.fPrevIndex)) {
+ Edge edge{ { v.fPosition, polygon[v.fPrevIndex] }, v.fIndex, v.fPrevIndex };
+ if (!sweepLine.insert(edge)) {
break;
}
}
// check edge to next vertex
if (v.fFlags & kNextLeft_VertexFlag) {
- ActiveEdge edge(polygon[v.fNextIndex], v.fPosition, v.fNextIndex, v.fIndex);
+ Edge edge{ { polygon[v.fNextIndex], v.fPosition }, v.fNextIndex, v.fIndex };
if (!sweepLine.remove(edge)) {
break;
}
} else {
- if (!sweepLine.insert(v.fPosition, polygon[v.fNextIndex], v.fIndex, v.fNextIndex)) {
+ Edge edge{ { v.fPosition, polygon[v.fNextIndex] }, v.fIndex, v.fNextIndex };
+ if (!sweepLine.insert(edge)) {
break;
}
}
@@ -718,15 +698,6 @@ bool SkIsSimplePolygon(const SkPoint* polygon, int polygonSize) {
///////////////////////////////////////////////////////////////////////////////////////////
-// helper function for SkOffsetSimplePolygon
-static void setup_offset_edge(OffsetEdge* currEdge,
- const SkPoint& endpoint0, const SkPoint& endpoint1,
- int startIndex, int endIndex) {
- currEdge->fInset.fP0 = endpoint0;
- currEdge->fInset.fP1 = endpoint1;
- currEdge->init(startIndex, endIndex);
-}
-
bool SkOffsetSimplePolygon(const SkPoint* inputPolygonVerts, int inputPolygonSize,
std::function<SkScalar(const SkPoint&)> offsetDistanceFunc,
SkTDArray<SkPoint>* offsetPolygon, SkTDArray<int>* polygonIndices) {
@@ -765,7 +736,7 @@ bool SkOffsetSimplePolygon(const SkPoint* inputPolygonVerts, int inputPolygonSiz
}
// build initial offset edge list
- SkSTArray<64, OffsetEdge> edgeData(inputPolygonSize);
+ SkSTArray<64, EdgeData> edgeData(inputPolygonSize);
int prevIndex = inputPolygonSize - 1;
int currIndex = 0;
int nextIndex = 1;
@@ -783,143 +754,126 @@ bool SkOffsetSimplePolygon(const SkPoint* inputPolygonVerts, int inputPolygonSiz
&rotSin, &rotCos, &numSteps)) {
return false;
}
- auto currEdge = edgeData.push_back_n(SkTMax(numSteps, 1));
for (int i = 0; i < numSteps - 1; ++i) {
SkVector currNormal = SkVector::Make(prevNormal.fX*rotCos - prevNormal.fY*rotSin,
prevNormal.fY*rotCos + prevNormal.fX*rotSin);
- setup_offset_edge(currEdge,
- inputPolygonVerts[currIndex] + prevNormal,
- inputPolygonVerts[currIndex] + currNormal,
- currIndex, currIndex);
+ EdgeData& edge = edgeData.push_back();
+ edge.fInset.fP0 = inputPolygonVerts[currIndex] + prevNormal;
+ edge.fInset.fP1 = inputPolygonVerts[currIndex] + currNormal;
+ edge.init(currIndex, currIndex);
prevNormal = currNormal;
- ++currEdge;
}
- setup_offset_edge(currEdge,
- inputPolygonVerts[currIndex] + prevNormal,
- inputPolygonVerts[currIndex] + normal0[currIndex],
- currIndex, currIndex);
- ++currEdge;
-
+ EdgeData& edge = edgeData.push_back();
+ edge.fInset.fP0 = inputPolygonVerts[currIndex] + prevNormal;
+ edge.fInset.fP1 = inputPolygonVerts[currIndex] + normal0[currIndex];
+ edge.init(currIndex, currIndex);
}
// Add the edge
- auto edge = edgeData.push_back_n(1);
- setup_offset_edge(edge,
- inputPolygonVerts[currIndex] + normal0[currIndex],
- inputPolygonVerts[nextIndex] + normal1[nextIndex],
- currIndex, nextIndex);
+ EdgeData& edge = edgeData.push_back();
+ edge.fInset.fP0 = inputPolygonVerts[currIndex] + normal0[currIndex];
+ edge.fInset.fP1 = inputPolygonVerts[nextIndex] + normal1[nextIndex];
+ edge.init(currIndex, nextIndex);
prevIndex = currIndex;
currIndex++;
nextIndex = (nextIndex + 1) % inputPolygonSize;
}
- // build linked list
- // we have to do this as a post-process step because we might have reallocated
- // the array when adding fans for reflex verts
- prevIndex = edgeData.count()-1;
- for (int currIndex = 0; currIndex < edgeData.count(); prevIndex = currIndex, ++currIndex) {
- int nextIndex = (currIndex + 1) % edgeData.count();
- edgeData[currIndex].fPrev = &edgeData[prevIndex];
- edgeData[currIndex].fNext = &edgeData[nextIndex];
- }
-
- // now clip edges
int edgeDataSize = edgeData.count();
- auto head = &edgeData[0];
- auto currEdge = head;
- auto prevEdge = currEdge->fPrev;
- int offsetVertexCount = edgeDataSize;
+ prevIndex = edgeDataSize - 1;
+ currIndex = 0;
+ int insetVertexCount = edgeDataSize;
int iterations = 0;
- while (head && prevEdge != currEdge) {
+ while (prevIndex != currIndex) {
++iterations;
// we should check each edge against each other edge at most once
if (iterations > edgeDataSize*edgeDataSize) {
return false;
}
+ if (!edgeData[prevIndex].fValid) {
+ prevIndex = (prevIndex + edgeDataSize - 1) % edgeDataSize;
+ continue;
+ }
+ if (!edgeData[currIndex].fValid) {
+ currIndex = (currIndex + 1) % edgeDataSize;
+ continue;
+ }
+
SkScalar s, t;
SkPoint intersection;
- if (compute_intersection(prevEdge->fInset, currEdge->fInset,
+ if (compute_intersection(edgeData[prevIndex].fInset, edgeData[currIndex].fInset,
&intersection, &s, &t)) {
// if new intersection is further back on previous inset from the prior intersection
- if (s < prevEdge->fTValue) {
+ if (s < edgeData[prevIndex].fTValue) {
// no point in considering this one again
- remove_node(prevEdge, &head);
- --offsetVertexCount;
+ edgeData[prevIndex].fValid = false;
+ --insetVertexCount;
// go back one segment
- prevEdge = prevEdge->fPrev;
+ prevIndex = (prevIndex + edgeDataSize - 1) % edgeDataSize;
// we've already considered this intersection, we're done
- } else if (currEdge->fTValue > SK_ScalarMin &&
+ } else if (edgeData[currIndex].fTValue > SK_ScalarMin &&
SkPointPriv::EqualsWithinTolerance(intersection,
- currEdge->fIntersection,
+ edgeData[currIndex].fIntersection,
1.0e-6f)) {
break;
} else {
// add intersection
- currEdge->fIntersection = intersection;
- currEdge->fTValue = t;
- currEdge->fIndex = prevEdge->fEnd;
+ edgeData[currIndex].fIntersection = intersection;
+ edgeData[currIndex].fTValue = t;
+ edgeData[currIndex].fIndex = edgeData[prevIndex].fEnd;
// go to next segment
- prevEdge = currEdge;
- currEdge = currEdge->fNext;
+ prevIndex = currIndex;
+ currIndex = (currIndex + 1) % edgeDataSize;
}
} else {
// If there is no intersection, we want to minimize the distance between
// the point where the segment lines cross and the segments themselves.
- OffsetEdge* prevPrevEdge = prevEdge->fPrev;
- OffsetEdge* currNextEdge = currEdge->fNext;
- SkScalar dist0 = compute_crossing_distance(currEdge->fInset,
- prevPrevEdge->fInset);
- SkScalar dist1 = compute_crossing_distance(prevEdge->fInset,
- currNextEdge->fInset);
+ SkScalar prevPrevIndex = (prevIndex + edgeDataSize - 1) % edgeDataSize;
+ SkScalar currNextIndex = (currIndex + 1) % edgeDataSize;
+ SkScalar dist0 = compute_crossing_distance(edgeData[currIndex].fInset,
+ edgeData[prevPrevIndex].fInset);
+ SkScalar dist1 = compute_crossing_distance(edgeData[prevIndex].fInset,
+ edgeData[currNextIndex].fInset);
if (dist0 < dist1) {
- remove_node(prevEdge, &head);
- prevEdge = prevPrevEdge;
+ edgeData[prevIndex].fValid = false;
+ prevIndex = prevPrevIndex;
} else {
- remove_node(currEdge, &head);
- currEdge = currNextEdge;
+ edgeData[currIndex].fValid = false;
+ currIndex = currNextIndex;
}
- --offsetVertexCount;
+ --insetVertexCount;
}
}
// store all the valid intersections that aren't nearly coincident
// TODO: look at the main algorithm and see if we can detect these better
+ static constexpr SkScalar kCleanupTolerance = 0.01f;
+
offsetPolygon->reset();
- if (head) {
- static constexpr SkScalar kCleanupTolerance = 0.01f;
- if (offsetVertexCount >= 0) {
- offsetPolygon->setReserve(offsetVertexCount);
- }
- int currIndex = 0;
- OffsetEdge* currEdge = head;
- *offsetPolygon->push() = currEdge->fIntersection;
- if (polygonIndices) {
- *polygonIndices->push() = currEdge->fIndex;
- }
- currEdge = currEdge->fNext;
- while (currEdge != head) {
- if (!SkPointPriv::EqualsWithinTolerance(currEdge->fIntersection,
- (*offsetPolygon)[currIndex],
- kCleanupTolerance)) {
- *offsetPolygon->push() = currEdge->fIntersection;
- if (polygonIndices) {
- *polygonIndices->push() = currEdge->fIndex;
- }
- currIndex++;
- }
- currEdge = currEdge->fNext;
- }
- // make sure the first and last points aren't coincident
- if (currIndex >= 1 &&
- SkPointPriv::EqualsWithinTolerance((*offsetPolygon)[0], (*offsetPolygon)[currIndex],
- kCleanupTolerance)) {
- offsetPolygon->pop();
+ offsetPolygon->setReserve(insetVertexCount);
+ currIndex = -1;
+ for (int i = 0; i < edgeData.count(); ++i) {
+ if (edgeData[i].fValid && (currIndex == -1 ||
+ !SkPointPriv::EqualsWithinTolerance(edgeData[i].fIntersection,
+ (*offsetPolygon)[currIndex],
+ kCleanupTolerance))) {
+ *offsetPolygon->push() = edgeData[i].fIntersection;
if (polygonIndices) {
- polygonIndices->pop();
+ *polygonIndices->push() = edgeData[i].fIndex;
}
+ currIndex++;
+ }
+ }
+ // make sure the first and last points aren't coincident
+ if (currIndex >= 1 &&
+ SkPointPriv::EqualsWithinTolerance((*offsetPolygon)[0], (*offsetPolygon)[currIndex],
+ kCleanupTolerance)) {
+ offsetPolygon->pop();
+ if (polygonIndices) {
+ polygonIndices->pop();
}
}