aboutsummaryrefslogtreecommitdiffhomepage
path: root/src
diff options
context:
space:
mode:
authorGravatar commit-bot@chromium.org <commit-bot@chromium.org@2bbb7eff-a529-9590-31e7-b0007b416f81>2013-11-07 15:57:32 +0000
committerGravatar commit-bot@chromium.org <commit-bot@chromium.org@2bbb7eff-a529-9590-31e7-b0007b416f81>2013-11-07 15:57:32 +0000
commitc51808445fa21d8527444ff0fba202872be8c1b7 (patch)
tree00045e943b25cd351426a2cf8893c3298cb08823 /src
parent500db7c7172052a5574d6f3dc5d077ae8c6b4f85 (diff)
ARM Skia NEON patches - 33 - Convolution filter
NEON version of the convolutionProcs The bitmap_scale benchmark is now twice as fast on ARM. Signed-off-by: Kévin PETIT <kevin.petit@arm.com> BUG= Committed: http://code.google.com/p/skia/source/detail?r=12154 R=djsollen@google.com, mtklein@google.com, humper@google.com, epoger@google.com Author: kevin.petit.arm@gmail.com Review URL: https://codereview.chromium.org/27533004 git-svn-id: http://skia.googlecode.com/svn/trunk@12166 2bbb7eff-a529-9590-31e7-b0007b416f81
Diffstat (limited to 'src')
-rw-r--r--src/opts/SkBitmapProcState_arm_neon.cpp420
-rw-r--r--src/opts/SkBitmapProcState_opts_arm.cpp384
2 files changed, 518 insertions, 286 deletions
diff --git a/src/opts/SkBitmapProcState_arm_neon.cpp b/src/opts/SkBitmapProcState_arm_neon.cpp
index d50707dce0..35ba462c82 100644
--- a/src/opts/SkBitmapProcState_arm_neon.cpp
+++ b/src/opts/SkBitmapProcState_arm_neon.cpp
@@ -90,3 +90,423 @@ const SkBitmapProcState::SampleProc16 gSkBitmapProcStateSample16_neon[] = {
// Don't support A8 -> 565
NULL, NULL, NULL, NULL
};
+
+///////////////////////////////////////////////////////////////////////////////
+
+#include <arm_neon.h>
+#include "SkConvolver.h"
+
+// Convolves horizontally along a single row. The row data is given in
+// |srcData| and continues for the numValues() of the filter.
+void convolveHorizontally_neon(const unsigned char* srcData,
+ const SkConvolutionFilter1D& filter,
+ unsigned char* outRow,
+ bool hasAlpha) {
+ // Loop over each pixel on this row in the output image.
+ int numValues = filter.numValues();
+ for (int outX = 0; outX < numValues; outX++) {
+ uint8x8_t coeff_mask0 = vcreate_u8(0x0100010001000100);
+ uint8x8_t coeff_mask1 = vcreate_u8(0x0302030203020302);
+ uint8x8_t coeff_mask2 = vcreate_u8(0x0504050405040504);
+ uint8x8_t coeff_mask3 = vcreate_u8(0x0706070607060706);
+ // Get the filter that determines the current output pixel.
+ int filterOffset, filterLength;
+ const SkConvolutionFilter1D::ConvolutionFixed* filterValues =
+ filter.FilterForValue(outX, &filterOffset, &filterLength);
+
+ // Compute the first pixel in this row that the filter affects. It will
+ // touch |filterLength| pixels (4 bytes each) after this.
+ const unsigned char* rowToFilter = &srcData[filterOffset * 4];
+
+ // Apply the filter to the row to get the destination pixel in |accum|.
+ int32x4_t accum = vdupq_n_s32(0);
+ for (int filterX = 0; filterX < filterLength >> 2; filterX++) {
+ // Load 4 coefficients
+ int16x4_t coeffs, coeff0, coeff1, coeff2, coeff3;
+ coeffs = vld1_s16(filterValues);
+ coeff0 = vreinterpret_s16_u8(vtbl1_u8(vreinterpret_u8_s16(coeffs), coeff_mask0));
+ coeff1 = vreinterpret_s16_u8(vtbl1_u8(vreinterpret_u8_s16(coeffs), coeff_mask1));
+ coeff2 = vreinterpret_s16_u8(vtbl1_u8(vreinterpret_u8_s16(coeffs), coeff_mask2));
+ coeff3 = vreinterpret_s16_u8(vtbl1_u8(vreinterpret_u8_s16(coeffs), coeff_mask3));
+
+ // Load pixels and calc
+ uint8x16_t pixels = vld1q_u8(rowToFilter);
+ int16x8_t p01_16 = vreinterpretq_s16_u16(vmovl_u8(vget_low_u8(pixels)));
+ int16x8_t p23_16 = vreinterpretq_s16_u16(vmovl_u8(vget_high_u8(pixels)));
+
+ int16x4_t p0_src = vget_low_s16(p01_16);
+ int16x4_t p1_src = vget_high_s16(p01_16);
+ int16x4_t p2_src = vget_low_s16(p23_16);
+ int16x4_t p3_src = vget_high_s16(p23_16);
+
+ int32x4_t p0 = vmull_s16(p0_src, coeff0);
+ int32x4_t p1 = vmull_s16(p1_src, coeff1);
+ int32x4_t p2 = vmull_s16(p2_src, coeff2);
+ int32x4_t p3 = vmull_s16(p3_src, coeff3);
+
+ accum += p0;
+ accum += p1;
+ accum += p2;
+ accum += p3;
+
+ // Advance the pointers
+ rowToFilter += 16;
+ filterValues += 4;
+ }
+ int r = filterLength & 3;
+ if (r) {
+ const uint16_t mask[4][4] = {
+ {0, 0, 0, 0},
+ {0xFFFF, 0, 0, 0},
+ {0xFFFF, 0xFFFF, 0, 0},
+ {0xFFFF, 0xFFFF, 0xFFFF, 0}
+ };
+ uint16x4_t coeffs;
+ int16x4_t coeff0, coeff1, coeff2;
+ coeffs = vld1_u16(reinterpret_cast<const uint16_t*>(filterValues));
+ coeffs &= vld1_u16(&mask[r][0]);
+ coeff0 = vreinterpret_s16_u8(vtbl1_u8(vreinterpret_u8_u16(coeffs), coeff_mask0));
+ coeff1 = vreinterpret_s16_u8(vtbl1_u8(vreinterpret_u8_u16(coeffs), coeff_mask1));
+ coeff2 = vreinterpret_s16_u8(vtbl1_u8(vreinterpret_u8_u16(coeffs), coeff_mask2));
+
+ // Load pixels and calc
+ uint8x16_t pixels = vld1q_u8(rowToFilter);
+ int16x8_t p01_16 = vreinterpretq_s16_u16(vmovl_u8(vget_low_u8(pixels)));
+ int16x8_t p23_16 = vreinterpretq_s16_u16(vmovl_u8(vget_high_u8(pixels)));
+ int32x4_t p0 = vmull_s16(vget_low_s16(p01_16), coeff0);
+ int32x4_t p1 = vmull_s16(vget_high_s16(p01_16), coeff1);
+ int32x4_t p2 = vmull_s16(vget_low_s16(p23_16), coeff2);
+
+ accum += p0;
+ accum += p1;
+ accum += p2;
+ }
+
+ // Bring this value back in range. All of the filter scaling factors
+ // are in fixed point with kShiftBits bits of fractional part.
+ accum = vshrq_n_s32(accum, SkConvolutionFilter1D::kShiftBits);
+
+ // Pack and store the new pixel.
+ int16x4_t accum16 = vqmovn_s32(accum);
+ uint8x8_t accum8 = vqmovun_s16(vcombine_s16(accum16, accum16));
+ vst1_lane_u32(reinterpret_cast<uint32_t*>(outRow), vreinterpret_u32_u8(accum8), 0);
+ outRow += 4;
+ }
+}
+
+// Does vertical convolution to produce one output row. The filter values and
+// length are given in the first two parameters. These are applied to each
+// of the rows pointed to in the |sourceDataRows| array, with each row
+// being |pixelWidth| wide.
+//
+// The output must have room for |pixelWidth * 4| bytes.
+template<bool hasAlpha>
+void convolveVertically_neon(const SkConvolutionFilter1D::ConvolutionFixed* filterValues,
+ int filterLength,
+ unsigned char* const* sourceDataRows,
+ int pixelWidth,
+ unsigned char* outRow) {
+ int width = pixelWidth & ~3;
+
+ int32x4_t accum0, accum1, accum2, accum3;
+ int16x4_t coeff16;
+
+ // Output four pixels per iteration (16 bytes).
+ for (int outX = 0; outX < width; outX += 4) {
+
+ // Accumulated result for each pixel. 32 bits per RGBA channel.
+ accum0 = accum1 = accum2 = accum3 = vdupq_n_s32(0);
+
+ // Convolve with one filter coefficient per iteration.
+ for (int filterY = 0; filterY < filterLength; filterY++) {
+
+ // Duplicate the filter coefficient 4 times.
+ // [16] cj cj cj cj
+ coeff16 = vdup_n_s16(filterValues[filterY]);
+
+ // Load four pixels (16 bytes) together.
+ // [8] a3 b3 g3 r3 a2 b2 g2 r2 a1 b1 g1 r1 a0 b0 g0 r0
+ uint8x16_t src8 = vld1q_u8(&sourceDataRows[filterY][outX << 2]);
+
+ int16x8_t src16_01 = vreinterpretq_s16_u16(vmovl_u8(vget_low_u8(src8)));
+ int16x8_t src16_23 = vreinterpretq_s16_u16(vmovl_u8(vget_high_u8(src8)));
+ int16x4_t src16_0 = vget_low_s16(src16_01);
+ int16x4_t src16_1 = vget_high_s16(src16_01);
+ int16x4_t src16_2 = vget_low_s16(src16_23);
+ int16x4_t src16_3 = vget_high_s16(src16_23);
+
+ accum0 += vmull_s16(src16_0, coeff16);
+ accum1 += vmull_s16(src16_1, coeff16);
+ accum2 += vmull_s16(src16_2, coeff16);
+ accum3 += vmull_s16(src16_3, coeff16);
+ }
+
+ // Shift right for fixed point implementation.
+ accum0 = vshrq_n_s32(accum0, SkConvolutionFilter1D::kShiftBits);
+ accum1 = vshrq_n_s32(accum1, SkConvolutionFilter1D::kShiftBits);
+ accum2 = vshrq_n_s32(accum2, SkConvolutionFilter1D::kShiftBits);
+ accum3 = vshrq_n_s32(accum3, SkConvolutionFilter1D::kShiftBits);
+
+ // Packing 32 bits |accum| to 16 bits per channel (signed saturation).
+ // [16] a1 b1 g1 r1 a0 b0 g0 r0
+ int16x8_t accum16_0 = vcombine_s16(vqmovn_s32(accum0), vqmovn_s32(accum1));
+ // [16] a3 b3 g3 r3 a2 b2 g2 r2
+ int16x8_t accum16_1 = vcombine_s16(vqmovn_s32(accum2), vqmovn_s32(accum3));
+
+ // Packing 16 bits |accum| to 8 bits per channel (unsigned saturation).
+ // [8] a3 b3 g3 r3 a2 b2 g2 r2 a1 b1 g1 r1 a0 b0 g0 r0
+ uint8x16_t accum8 = vcombine_u8(vqmovun_s16(accum16_0), vqmovun_s16(accum16_1));
+
+ if (hasAlpha) {
+ // Compute the max(ri, gi, bi) for each pixel.
+ // [8] xx a3 b3 g3 xx a2 b2 g2 xx a1 b1 g1 xx a0 b0 g0
+ uint8x16_t a = vreinterpretq_u8_u32(vshrq_n_u32(vreinterpretq_u32_u8(accum8), 8));
+ // [8] xx xx xx max3 xx xx xx max2 xx xx xx max1 xx xx xx max0
+ uint8x16_t b = vmaxq_u8(a, accum8); // Max of r and g
+ // [8] xx xx a3 b3 xx xx a2 b2 xx xx a1 b1 xx xx a0 b0
+ a = vreinterpretq_u8_u32(vshrq_n_u32(vreinterpretq_u32_u8(accum8), 16));
+ // [8] xx xx xx max3 xx xx xx max2 xx xx xx max1 xx xx xx max0
+ b = vmaxq_u8(a, b); // Max of r and g and b.
+ // [8] max3 00 00 00 max2 00 00 00 max1 00 00 00 max0 00 00 00
+ b = vreinterpretq_u8_u32(vshlq_n_u32(vreinterpretq_u32_u8(b), 24));
+
+ // Make sure the value of alpha channel is always larger than maximum
+ // value of color channels.
+ accum8 = vmaxq_u8(b, accum8);
+ } else {
+ // Set value of alpha channels to 0xFF.
+ accum8 = vreinterpretq_u8_u32(vreinterpretq_u32_u8(accum8) | vdupq_n_u32(0xFF000000));
+ }
+
+ // Store the convolution result (16 bytes) and advance the pixel pointers.
+ vst1q_u8(outRow, accum8);
+ outRow += 16;
+ }
+
+ // Process the leftovers when the width of the output is not divisible
+ // by 4, that is at most 3 pixels.
+ int r = pixelWidth & 3;
+ if (r) {
+
+ accum0 = accum1 = accum2 = vdupq_n_s32(0);
+
+ for (int filterY = 0; filterY < filterLength; ++filterY) {
+ coeff16 = vdup_n_s16(filterValues[filterY]);
+
+ // [8] a3 b3 g3 r3 a2 b2 g2 r2 a1 b1 g1 r1 a0 b0 g0 r0
+ uint8x16_t src8 = vld1q_u8(&sourceDataRows[filterY][width << 2]);
+
+ int16x8_t src16_01 = vreinterpretq_s16_u16(vmovl_u8(vget_low_u8(src8)));
+ int16x8_t src16_23 = vreinterpretq_s16_u16(vmovl_u8(vget_high_u8(src8)));
+ int16x4_t src16_0 = vget_low_s16(src16_01);
+ int16x4_t src16_1 = vget_high_s16(src16_01);
+ int16x4_t src16_2 = vget_low_s16(src16_23);
+
+ accum0 += vmull_s16(src16_0, coeff16);
+ accum1 += vmull_s16(src16_1, coeff16);
+ accum2 += vmull_s16(src16_2, coeff16);
+ }
+
+ accum0 = vshrq_n_s32(accum0, SkConvolutionFilter1D::kShiftBits);
+ accum1 = vshrq_n_s32(accum1, SkConvolutionFilter1D::kShiftBits);
+ accum2 = vshrq_n_s32(accum2, SkConvolutionFilter1D::kShiftBits);
+
+ int16x8_t accum16_0 = vcombine_s16(vqmovn_s32(accum0), vqmovn_s32(accum1));
+ int16x8_t accum16_1 = vcombine_s16(vqmovn_s32(accum2), vqmovn_s32(accum2));
+
+ uint8x16_t accum8 = vcombine_u8(vqmovun_s16(accum16_0), vqmovun_s16(accum16_1));
+
+ if (hasAlpha) {
+ // Compute the max(ri, gi, bi) for each pixel.
+ // [8] xx a3 b3 g3 xx a2 b2 g2 xx a1 b1 g1 xx a0 b0 g0
+ uint8x16_t a = vreinterpretq_u8_u32(vshrq_n_u32(vreinterpretq_u32_u8(accum8), 8));
+ // [8] xx xx xx max3 xx xx xx max2 xx xx xx max1 xx xx xx max0
+ uint8x16_t b = vmaxq_u8(a, accum8); // Max of r and g
+ // [8] xx xx a3 b3 xx xx a2 b2 xx xx a1 b1 xx xx a0 b0
+ a = vreinterpretq_u8_u32(vshrq_n_u32(vreinterpretq_u32_u8(accum8), 16));
+ // [8] xx xx xx max3 xx xx xx max2 xx xx xx max1 xx xx xx max0
+ b = vmaxq_u8(a, b); // Max of r and g and b.
+ // [8] max3 00 00 00 max2 00 00 00 max1 00 00 00 max0 00 00 00
+ b = vreinterpretq_u8_u32(vshlq_n_u32(vreinterpretq_u32_u8(b), 24));
+
+ // Make sure the value of alpha channel is always larger than maximum
+ // value of color channels.
+ accum8 = vmaxq_u8(b, accum8);
+ } else {
+ // Set value of alpha channels to 0xFF.
+ accum8 = vreinterpretq_u8_u32(vreinterpretq_u32_u8(accum8) | vdupq_n_u32(0xFF000000));
+ }
+
+ switch(r) {
+ case 1:
+ vst1q_lane_u32(reinterpret_cast<uint32_t*>(outRow), vreinterpretq_u32_u8(accum8), 0);
+ break;
+ case 2:
+ vst1_u32(reinterpret_cast<uint32_t*>(outRow),
+ vreinterpret_u32_u8(vget_low_u8(accum8)));
+ break;
+ case 3:
+ vst1_u32(reinterpret_cast<uint32_t*>(outRow),
+ vreinterpret_u32_u8(vget_low_u8(accum8)));
+ vst1q_lane_u32(reinterpret_cast<uint32_t*>(outRow+8), vreinterpretq_u32_u8(accum8), 2);
+ break;
+ }
+ }
+}
+
+void convolveVertically_neon(const SkConvolutionFilter1D::ConvolutionFixed* filterValues,
+ int filterLength,
+ unsigned char* const* sourceDataRows,
+ int pixelWidth,
+ unsigned char* outRow,
+ bool sourceHasAlpha) {
+ if (sourceHasAlpha) {
+ convolveVertically_neon<true>(filterValues, filterLength,
+ sourceDataRows, pixelWidth,
+ outRow);
+ } else {
+ convolveVertically_neon<false>(filterValues, filterLength,
+ sourceDataRows, pixelWidth,
+ outRow);
+ }
+}
+
+// Convolves horizontally along four rows. The row data is given in
+// |src_data| and continues for the num_values() of the filter.
+// The algorithm is almost same as |ConvolveHorizontally_SSE2|. Please
+// refer to that function for detailed comments.
+void convolve4RowsHorizontally_neon(const unsigned char* srcData[4],
+ const SkConvolutionFilter1D& filter,
+ unsigned char* outRow[4]) {
+
+ uint8x8_t coeff_mask0 = vcreate_u8(0x0100010001000100);
+ uint8x8_t coeff_mask1 = vcreate_u8(0x0302030203020302);
+ uint8x8_t coeff_mask2 = vcreate_u8(0x0504050405040504);
+ uint8x8_t coeff_mask3 = vcreate_u8(0x0706070607060706);
+ int num_values = filter.numValues();
+
+ int filterOffset, filterLength;
+ // |mask| will be used to decimate all extra filter coefficients that are
+ // loaded by SIMD when |filter_length| is not divisible by 4.
+ // mask[0] is not used in following algorithm.
+ const uint16_t mask[4][4] = {
+ {0, 0, 0, 0},
+ {0xFFFF, 0, 0, 0},
+ {0xFFFF, 0xFFFF, 0, 0},
+ {0xFFFF, 0xFFFF, 0xFFFF, 0}
+ };
+
+ // Output one pixel each iteration, calculating all channels (RGBA) together.
+ for (int outX = 0; outX < num_values; outX++) {
+
+ const SkConvolutionFilter1D::ConvolutionFixed* filterValues =
+ filter.FilterForValue(outX, &filterOffset, &filterLength);
+
+ // four pixels in a column per iteration.
+ int32x4_t accum0 = vdupq_n_s32(0);
+ int32x4_t accum1 = vdupq_n_s32(0);
+ int32x4_t accum2 = vdupq_n_s32(0);
+ int32x4_t accum3 = vdupq_n_s32(0);
+
+ int start = (filterOffset<<2);
+
+ // We will load and accumulate with four coefficients per iteration.
+ for (int filter_x = 0; filter_x < (filterLength >> 2); filter_x++) {
+ int16x4_t coeffs, coeff0, coeff1, coeff2, coeff3;
+
+ coeffs = vld1_s16(filterValues);
+ coeff0 = vreinterpret_s16_u8(vtbl1_u8(vreinterpret_u8_s16(coeffs), coeff_mask0));
+ coeff1 = vreinterpret_s16_u8(vtbl1_u8(vreinterpret_u8_s16(coeffs), coeff_mask1));
+ coeff2 = vreinterpret_s16_u8(vtbl1_u8(vreinterpret_u8_s16(coeffs), coeff_mask2));
+ coeff3 = vreinterpret_s16_u8(vtbl1_u8(vreinterpret_u8_s16(coeffs), coeff_mask3));
+
+ uint8x16_t pixels;
+ int16x8_t p01_16, p23_16;
+ int32x4_t p0, p1, p2, p3;
+
+
+#define ITERATION(src, accum) \
+ pixels = vld1q_u8(src); \
+ p01_16 = vreinterpretq_s16_u16(vmovl_u8(vget_low_u8(pixels))); \
+ p23_16 = vreinterpretq_s16_u16(vmovl_u8(vget_high_u8(pixels))); \
+ p0 = vmull_s16(vget_low_s16(p01_16), coeff0); \
+ p1 = vmull_s16(vget_high_s16(p01_16), coeff1); \
+ p2 = vmull_s16(vget_low_s16(p23_16), coeff2); \
+ p3 = vmull_s16(vget_high_s16(p23_16), coeff3); \
+ accum += p0; \
+ accum += p1; \
+ accum += p2; \
+ accum += p3
+
+ ITERATION(srcData[0] + start, accum0);
+ ITERATION(srcData[1] + start, accum1);
+ ITERATION(srcData[2] + start, accum2);
+ ITERATION(srcData[3] + start, accum3);
+
+ start += 16;
+ filterValues += 4;
+ }
+
+ int r = filterLength & 3;
+ if (r) {
+ int16x4_t coeffs, coeff0, coeff1, coeff2, coeff3;
+ coeffs = vld1_s16(filterValues);
+ coeffs &= vreinterpret_s16_u16(vld1_u16(&mask[r][0]));
+ coeff0 = vreinterpret_s16_u8(vtbl1_u8(vreinterpret_u8_s16(coeffs), coeff_mask0));
+ coeff1 = vreinterpret_s16_u8(vtbl1_u8(vreinterpret_u8_s16(coeffs), coeff_mask1));
+ coeff2 = vreinterpret_s16_u8(vtbl1_u8(vreinterpret_u8_s16(coeffs), coeff_mask2));
+ coeff3 = vreinterpret_s16_u8(vtbl1_u8(vreinterpret_u8_s16(coeffs), coeff_mask3));
+
+ uint8x16_t pixels;
+ int16x8_t p01_16, p23_16;
+ int32x4_t p0, p1, p2, p3;
+
+ ITERATION(srcData[0] + start, accum0);
+ ITERATION(srcData[1] + start, accum1);
+ ITERATION(srcData[2] + start, accum2);
+ ITERATION(srcData[3] + start, accum3);
+ }
+
+ int16x4_t accum16;
+ uint8x8_t res0, res1, res2, res3;
+
+#define PACK_RESULT(accum, res) \
+ accum = vshrq_n_s32(accum, SkConvolutionFilter1D::kShiftBits); \
+ accum16 = vqmovn_s32(accum); \
+ res = vqmovun_s16(vcombine_s16(accum16, accum16));
+
+ PACK_RESULT(accum0, res0);
+ PACK_RESULT(accum1, res1);
+ PACK_RESULT(accum2, res2);
+ PACK_RESULT(accum3, res3);
+
+ vst1_lane_u32(reinterpret_cast<uint32_t*>(outRow[0]), vreinterpret_u32_u8(res0), 0);
+ vst1_lane_u32(reinterpret_cast<uint32_t*>(outRow[1]), vreinterpret_u32_u8(res1), 0);
+ vst1_lane_u32(reinterpret_cast<uint32_t*>(outRow[2]), vreinterpret_u32_u8(res2), 0);
+ vst1_lane_u32(reinterpret_cast<uint32_t*>(outRow[3]), vreinterpret_u32_u8(res3), 0);
+ outRow[0] += 4;
+ outRow[1] += 4;
+ outRow[2] += 4;
+ outRow[3] += 4;
+ }
+}
+
+void applySIMDPadding_neon(SkConvolutionFilter1D *filter) {
+ // Padding |paddingCount| of more dummy coefficients after the coefficients
+ // of last filter to prevent SIMD instructions which load 8 or 16 bytes
+ // together to access invalid memory areas. We are not trying to align the
+ // coefficients right now due to the opaqueness of <vector> implementation.
+ // This has to be done after all |AddFilter| calls.
+ for (int i = 0; i < 8; ++i) {
+ filter->addFilterValue(static_cast<SkConvolutionFilter1D::ConvolutionFixed>(0));
+ }
+}
+
+void platformConvolutionProcs_arm_neon(SkConvolutionProcs* procs) {
+ procs->fExtraHorizontalReads = 3;
+ procs->fConvolveVertically = &convolveVertically_neon;
+ procs->fConvolve4RowsHorizontally = &convolve4RowsHorizontally_neon;
+ procs->fConvolveHorizontally = &convolveHorizontally_neon;
+ procs->fApplySIMDPadding = &applySIMDPadding_neon;
+}
+
diff --git a/src/opts/SkBitmapProcState_opts_arm.cpp b/src/opts/SkBitmapProcState_opts_arm.cpp
index badb0f4d3b..96fbebd4e1 100644
--- a/src/opts/SkBitmapProcState_opts_arm.cpp
+++ b/src/opts/SkBitmapProcState_opts_arm.cpp
@@ -50,54 +50,54 @@ void SI8_D16_nofilter_DX_arm(const SkBitmapProcState& s,
const uint16_t* SK_RESTRICT xx = (const uint16_t*)(xy + 1);
asm volatile (
- "cmp %[count8], #0 \n\t" // compare loop counter with 0
- "beq 2f \n\t" // if loop counter == 0, exit
- "1: \n\t"
- "ldmia %[xx]!, {r5, r7, r9, r11} \n\t" // load ptrs to pixels 0-7
- "subs %[count8], %[count8], #1 \n\t" // decrement loop counter
- "uxth r4, r5 \n\t" // extract ptr 0
- "mov r5, r5, lsr #16 \n\t" // extract ptr 1
- "uxth r6, r7 \n\t" // extract ptr 2
- "mov r7, r7, lsr #16 \n\t" // extract ptr 3
- "ldrb r4, [%[srcAddr], r4] \n\t" // load pixel 0 from image
- "uxth r8, r9 \n\t" // extract ptr 4
- "ldrb r5, [%[srcAddr], r5] \n\t" // load pixel 1 from image
- "mov r9, r9, lsr #16 \n\t" // extract ptr 5
- "ldrb r6, [%[srcAddr], r6] \n\t" // load pixel 2 from image
- "uxth r10, r11 \n\t" // extract ptr 6
- "ldrb r7, [%[srcAddr], r7] \n\t" // load pixel 3 from image
- "mov r11, r11, lsr #16 \n\t" // extract ptr 7
- "ldrb r8, [%[srcAddr], r8] \n\t" // load pixel 4 from image
- "add r4, r4, r4 \n\t" // double pixel 0 for RGB565 lookup
- "ldrb r9, [%[srcAddr], r9] \n\t" // load pixel 5 from image
- "add r5, r5, r5 \n\t" // double pixel 1 for RGB565 lookup
- "ldrb r10, [%[srcAddr], r10] \n\t" // load pixel 6 from image
- "add r6, r6, r6 \n\t" // double pixel 2 for RGB565 lookup
- "ldrb r11, [%[srcAddr], r11] \n\t" // load pixel 7 from image
- "add r7, r7, r7 \n\t" // double pixel 3 for RGB565 lookup
- "ldrh r4, [%[table], r4] \n\t" // load pixel 0 RGB565 from colmap
- "add r8, r8, r8 \n\t" // double pixel 4 for RGB565 lookup
- "ldrh r5, [%[table], r5] \n\t" // load pixel 1 RGB565 from colmap
- "add r9, r9, r9 \n\t" // double pixel 5 for RGB565 lookup
- "ldrh r6, [%[table], r6] \n\t" // load pixel 2 RGB565 from colmap
- "add r10, r10, r10 \n\t" // double pixel 6 for RGB565 lookup
- "ldrh r7, [%[table], r7] \n\t" // load pixel 3 RGB565 from colmap
- "add r11, r11, r11 \n\t" // double pixel 7 for RGB565 lookup
- "ldrh r8, [%[table], r8] \n\t" // load pixel 4 RGB565 from colmap
- "ldrh r9, [%[table], r9] \n\t" // load pixel 5 RGB565 from colmap
- "ldrh r10, [%[table], r10] \n\t" // load pixel 6 RGB565 from colmap
- "ldrh r11, [%[table], r11] \n\t" // load pixel 7 RGB565 from colmap
- "pkhbt r5, r4, r5, lsl #16 \n\t" // pack pixels 0 and 1
- "pkhbt r6, r6, r7, lsl #16 \n\t" // pack pixels 2 and 3
- "pkhbt r8, r8, r9, lsl #16 \n\t" // pack pixels 4 and 5
- "pkhbt r10, r10, r11, lsl #16 \n\t" // pack pixels 6 and 7
- "stmia %[colors]!, {r5, r6, r8, r10} \n\t" // store last 8 pixels
- "bgt 1b \n\t" // loop if counter > 0
- "2: \n\t"
- : [xx] "+r" (xx), [count8] "+r" (count8), [colors] "+r" (colors)
- : [table] "r" (table), [srcAddr] "r" (srcAddr)
- : "memory", "cc", "r4", "r5", "r6", "r7", "r8", "r9", "r10", "r11"
- );
+ "cmp %[count8], #0 \n\t" // compare loop counter with 0
+ "beq 2f \n\t" // if loop counter == 0, exit
+ "1: \n\t"
+ "ldmia %[xx]!, {r5, r7, r9, r11} \n\t" // load ptrs to pixels 0-7
+ "subs %[count8], %[count8], #1 \n\t" // decrement loop counter
+ "uxth r4, r5 \n\t" // extract ptr 0
+ "mov r5, r5, lsr #16 \n\t" // extract ptr 1
+ "uxth r6, r7 \n\t" // extract ptr 2
+ "mov r7, r7, lsr #16 \n\t" // extract ptr 3
+ "ldrb r4, [%[srcAddr], r4] \n\t" // load pixel 0 from image
+ "uxth r8, r9 \n\t" // extract ptr 4
+ "ldrb r5, [%[srcAddr], r5] \n\t" // load pixel 1 from image
+ "mov r9, r9, lsr #16 \n\t" // extract ptr 5
+ "ldrb r6, [%[srcAddr], r6] \n\t" // load pixel 2 from image
+ "uxth r10, r11 \n\t" // extract ptr 6
+ "ldrb r7, [%[srcAddr], r7] \n\t" // load pixel 3 from image
+ "mov r11, r11, lsr #16 \n\t" // extract ptr 7
+ "ldrb r8, [%[srcAddr], r8] \n\t" // load pixel 4 from image
+ "add r4, r4, r4 \n\t" // double pixel 0 for RGB565 lookup
+ "ldrb r9, [%[srcAddr], r9] \n\t" // load pixel 5 from image
+ "add r5, r5, r5 \n\t" // double pixel 1 for RGB565 lookup
+ "ldrb r10, [%[srcAddr], r10] \n\t" // load pixel 6 from image
+ "add r6, r6, r6 \n\t" // double pixel 2 for RGB565 lookup
+ "ldrb r11, [%[srcAddr], r11] \n\t" // load pixel 7 from image
+ "add r7, r7, r7 \n\t" // double pixel 3 for RGB565 lookup
+ "ldrh r4, [%[table], r4] \n\t" // load pixel 0 RGB565 from colmap
+ "add r8, r8, r8 \n\t" // double pixel 4 for RGB565 lookup
+ "ldrh r5, [%[table], r5] \n\t" // load pixel 1 RGB565 from colmap
+ "add r9, r9, r9 \n\t" // double pixel 5 for RGB565 lookup
+ "ldrh r6, [%[table], r6] \n\t" // load pixel 2 RGB565 from colmap
+ "add r10, r10, r10 \n\t" // double pixel 6 for RGB565 lookup
+ "ldrh r7, [%[table], r7] \n\t" // load pixel 3 RGB565 from colmap
+ "add r11, r11, r11 \n\t" // double pixel 7 for RGB565 lookup
+ "ldrh r8, [%[table], r8] \n\t" // load pixel 4 RGB565 from colmap
+ "ldrh r9, [%[table], r9] \n\t" // load pixel 5 RGB565 from colmap
+ "ldrh r10, [%[table], r10] \n\t" // load pixel 6 RGB565 from colmap
+ "ldrh r11, [%[table], r11] \n\t" // load pixel 7 RGB565 from colmap
+ "pkhbt r5, r4, r5, lsl #16 \n\t" // pack pixels 0 and 1
+ "pkhbt r6, r6, r7, lsl #16 \n\t" // pack pixels 2 and 3
+ "pkhbt r8, r8, r9, lsl #16 \n\t" // pack pixels 4 and 5
+ "pkhbt r10, r10, r11, lsl #16 \n\t" // pack pixels 6 and 7
+ "stmia %[colors]!, {r5, r6, r8, r10} \n\t" // store last 8 pixels
+ "bgt 1b \n\t" // loop if counter > 0
+ "2: \n\t"
+ : [xx] "+r" (xx), [count8] "+r" (count8), [colors] "+r" (colors)
+ : [table] "r" (table), [srcAddr] "r" (srcAddr)
+ : "memory", "cc", "r4", "r5", "r6", "r7", "r8", "r9", "r10", "r11"
+ );
for (i = (count & 7); i > 0; --i) {
src = srcAddr[*xx++]; *colors++ = table[src];
@@ -136,52 +136,52 @@ void SI8_opaque_D32_nofilter_DX_arm(const SkBitmapProcState& s,
const uint16_t* xx = (const uint16_t*)(xy + 1);
asm volatile (
- "subs %[count], %[count], #8 \n\t" // decrement count by 8, set flags
- "blt 2f \n\t" // if count < 0, branch to singles
- "1: \n\t" // eights loop
- "ldmia %[xx]!, {r5, r7, r9, r11} \n\t" // load ptrs to pixels 0-7
- "uxth r4, r5 \n\t" // extract ptr 0
- "mov r5, r5, lsr #16 \n\t" // extract ptr 1
- "uxth r6, r7 \n\t" // extract ptr 2
- "mov r7, r7, lsr #16 \n\t" // extract ptr 3
- "ldrb r4, [%[srcAddr], r4] \n\t" // load pixel 0 from image
- "uxth r8, r9 \n\t" // extract ptr 4
- "ldrb r5, [%[srcAddr], r5] \n\t" // load pixel 1 from image
- "mov r9, r9, lsr #16 \n\t" // extract ptr 5
- "ldrb r6, [%[srcAddr], r6] \n\t" // load pixel 2 from image
- "uxth r10, r11 \n\t" // extract ptr 6
- "ldrb r7, [%[srcAddr], r7] \n\t" // load pixel 3 from image
- "mov r11, r11, lsr #16 \n\t" // extract ptr 7
- "ldrb r8, [%[srcAddr], r8] \n\t" // load pixel 4 from image
- "ldrb r9, [%[srcAddr], r9] \n\t" // load pixel 5 from image
- "ldrb r10, [%[srcAddr], r10] \n\t" // load pixel 6 from image
- "ldrb r11, [%[srcAddr], r11] \n\t" // load pixel 7 from image
- "ldr r4, [%[table], r4, lsl #2] \n\t" // load pixel 0 SkPMColor from colmap
- "ldr r5, [%[table], r5, lsl #2] \n\t" // load pixel 1 SkPMColor from colmap
- "ldr r6, [%[table], r6, lsl #2] \n\t" // load pixel 2 SkPMColor from colmap
- "ldr r7, [%[table], r7, lsl #2] \n\t" // load pixel 3 SkPMColor from colmap
- "ldr r8, [%[table], r8, lsl #2] \n\t" // load pixel 4 SkPMColor from colmap
- "ldr r9, [%[table], r9, lsl #2] \n\t" // load pixel 5 SkPMColor from colmap
- "ldr r10, [%[table], r10, lsl #2] \n\t" // load pixel 6 SkPMColor from colmap
- "ldr r11, [%[table], r11, lsl #2] \n\t" // load pixel 7 SkPMColor from colmap
- "subs %[count], %[count], #8 \n\t" // decrement loop counter
- "stmia %[colors]!, {r4-r11} \n\t" // store 8 pixels
- "bge 1b \n\t" // loop if counter >= 0
- "2: \n\t"
- "adds %[count], %[count], #8 \n\t" // fix up counter, set flags
- "beq 4f \n\t" // if count == 0, branch to exit
- "3: \n\t" // singles loop
- "ldrh r4, [%[xx]], #2 \n\t" // load pixel ptr
- "subs %[count], %[count], #1 \n\t" // decrement loop counter
- "ldrb r5, [%[srcAddr], r4] \n\t" // load pixel from image
- "ldr r6, [%[table], r5, lsl #2] \n\t" // load SkPMColor from colmap
- "str r6, [%[colors]], #4 \n\t" // store pixel, update ptr
- "bne 3b \n\t" // loop if counter != 0
- "4: \n\t" // exit
- : [xx] "+r" (xx), [count] "+r" (count), [colors] "+r" (colors)
- : [table] "r" (table), [srcAddr] "r" (srcAddr)
- : "memory", "cc", "r4", "r5", "r6", "r7", "r8", "r9", "r10", "r11"
- );
+ "subs %[count], %[count], #8 \n\t" // decrement count by 8, set flags
+ "blt 2f \n\t" // if count < 0, branch to singles
+ "1: \n\t" // eights loop
+ "ldmia %[xx]!, {r5, r7, r9, r11} \n\t" // load ptrs to pixels 0-7
+ "uxth r4, r5 \n\t" // extract ptr 0
+ "mov r5, r5, lsr #16 \n\t" // extract ptr 1
+ "uxth r6, r7 \n\t" // extract ptr 2
+ "mov r7, r7, lsr #16 \n\t" // extract ptr 3
+ "ldrb r4, [%[srcAddr], r4] \n\t" // load pixel 0 from image
+ "uxth r8, r9 \n\t" // extract ptr 4
+ "ldrb r5, [%[srcAddr], r5] \n\t" // load pixel 1 from image
+ "mov r9, r9, lsr #16 \n\t" // extract ptr 5
+ "ldrb r6, [%[srcAddr], r6] \n\t" // load pixel 2 from image
+ "uxth r10, r11 \n\t" // extract ptr 6
+ "ldrb r7, [%[srcAddr], r7] \n\t" // load pixel 3 from image
+ "mov r11, r11, lsr #16 \n\t" // extract ptr 7
+ "ldrb r8, [%[srcAddr], r8] \n\t" // load pixel 4 from image
+ "ldrb r9, [%[srcAddr], r9] \n\t" // load pixel 5 from image
+ "ldrb r10, [%[srcAddr], r10] \n\t" // load pixel 6 from image
+ "ldrb r11, [%[srcAddr], r11] \n\t" // load pixel 7 from image
+ "ldr r4, [%[table], r4, lsl #2] \n\t" // load pixel 0 SkPMColor from colmap
+ "ldr r5, [%[table], r5, lsl #2] \n\t" // load pixel 1 SkPMColor from colmap
+ "ldr r6, [%[table], r6, lsl #2] \n\t" // load pixel 2 SkPMColor from colmap
+ "ldr r7, [%[table], r7, lsl #2] \n\t" // load pixel 3 SkPMColor from colmap
+ "ldr r8, [%[table], r8, lsl #2] \n\t" // load pixel 4 SkPMColor from colmap
+ "ldr r9, [%[table], r9, lsl #2] \n\t" // load pixel 5 SkPMColor from colmap
+ "ldr r10, [%[table], r10, lsl #2] \n\t" // load pixel 6 SkPMColor from colmap
+ "ldr r11, [%[table], r11, lsl #2] \n\t" // load pixel 7 SkPMColor from colmap
+ "subs %[count], %[count], #8 \n\t" // decrement loop counter
+ "stmia %[colors]!, {r4-r11} \n\t" // store 8 pixels
+ "bge 1b \n\t" // loop if counter >= 0
+ "2: \n\t"
+ "adds %[count], %[count], #8 \n\t" // fix up counter, set flags
+ "beq 4f \n\t" // if count == 0, branch to exit
+ "3: \n\t" // singles loop
+ "ldrh r4, [%[xx]], #2 \n\t" // load pixel ptr
+ "subs %[count], %[count], #1 \n\t" // decrement loop counter
+ "ldrb r5, [%[srcAddr], r4] \n\t" // load pixel from image
+ "ldr r6, [%[table], r5, lsl #2] \n\t" // load SkPMColor from colmap
+ "str r6, [%[colors]], #4 \n\t" // store pixel, update ptr
+ "bne 3b \n\t" // loop if counter != 0
+ "4: \n\t" // exit
+ : [xx] "+r" (xx), [count] "+r" (count), [colors] "+r" (colors)
+ : [table] "r" (table), [srcAddr] "r" (srcAddr)
+ : "memory", "cc", "r4", "r5", "r6", "r7", "r8", "r9", "r10", "r11"
+ );
}
s.fBitmap->getColorTable()->unlockColors();
@@ -222,201 +222,13 @@ void SkBitmapProcState::platformProcs() {
}
}
-/////////////////////////////////////
-
-/* FUNCTIONS BELOW ARE SCALAR STUBS INTENDED FOR ARM DEVELOPERS TO REPLACE */
-
-/////////////////////////////////////
-
-
-static inline unsigned char ClampTo8(int a) {
- if (static_cast<unsigned>(a) < 256) {
- return a; // Avoid the extra check in the common case.
- }
- if (a < 0) {
- return 0;
- }
- return 255;
-}
-
-// Convolves horizontally along a single row. The row data is given in
-// |srcData| and continues for the numValues() of the filter.
-void convolveHorizontally_arm(const unsigned char* srcData,
- const SkConvolutionFilter1D& filter,
- unsigned char* outRow,
- bool hasAlpha) {
- // Loop over each pixel on this row in the output image.
- int numValues = filter.numValues();
- for (int outX = 0; outX < numValues; outX++) {
- // Get the filter that determines the current output pixel.
- int filterOffset, filterLength;
- const SkConvolutionFilter1D::ConvolutionFixed* filterValues =
- filter.FilterForValue(outX, &filterOffset, &filterLength);
-
- // Compute the first pixel in this row that the filter affects. It will
- // touch |filterLength| pixels (4 bytes each) after this.
- const unsigned char* rowToFilter = &srcData[filterOffset * 4];
-
- // Apply the filter to the row to get the destination pixel in |accum|.
- int accum[4] = {0};
- for (int filterX = 0; filterX < filterLength; filterX++) {
- SkConvolutionFilter1D::ConvolutionFixed curFilter = filterValues[filterX];
- accum[0] += curFilter * rowToFilter[filterX * 4 + 0];
- accum[1] += curFilter * rowToFilter[filterX * 4 + 1];
- accum[2] += curFilter * rowToFilter[filterX * 4 + 2];
- if (hasAlpha) {
- accum[3] += curFilter * rowToFilter[filterX * 4 + 3];
- }
- }
-
- // Bring this value back in range. All of the filter scaling factors
- // are in fixed point with kShiftBits bits of fractional part.
- accum[0] >>= SkConvolutionFilter1D::kShiftBits;
- accum[1] >>= SkConvolutionFilter1D::kShiftBits;
- accum[2] >>= SkConvolutionFilter1D::kShiftBits;
- if (hasAlpha) {
- accum[3] >>= SkConvolutionFilter1D::kShiftBits;
- }
-
- // Store the new pixel.
- outRow[outX * 4 + 0] = ClampTo8(accum[0]);
- outRow[outX * 4 + 1] = ClampTo8(accum[1]);
- outRow[outX * 4 + 2] = ClampTo8(accum[2]);
- if (hasAlpha) {
- outRow[outX * 4 + 3] = ClampTo8(accum[3]);
- }
- }
-}
-
-// Does vertical convolution to produce one output row. The filter values and
-// length are given in the first two parameters. These are applied to each
-// of the rows pointed to in the |sourceDataRows| array, with each row
-// being |pixelWidth| wide.
-//
-// The output must have room for |pixelWidth * 4| bytes.
-template<bool hasAlpha>
- void convolveVertically_arm(const SkConvolutionFilter1D::ConvolutionFixed* filterValues,
- int filterLength,
- unsigned char* const* sourceDataRows,
- int pixelWidth,
- unsigned char* outRow) {
- // We go through each column in the output and do a vertical convolution,
- // generating one output pixel each time.
- for (int outX = 0; outX < pixelWidth; outX++) {
- // Compute the number of bytes over in each row that the current column
- // we're convolving starts at. The pixel will cover the next 4 bytes.
- int byteOffset = outX * 4;
-
- // Apply the filter to one column of pixels.
- int accum[4] = {0};
- for (int filterY = 0; filterY < filterLength; filterY++) {
- SkConvolutionFilter1D::ConvolutionFixed curFilter = filterValues[filterY];
- accum[0] += curFilter * sourceDataRows[filterY][byteOffset + 0];
- accum[1] += curFilter * sourceDataRows[filterY][byteOffset + 1];
- accum[2] += curFilter * sourceDataRows[filterY][byteOffset + 2];
- if (hasAlpha) {
- accum[3] += curFilter * sourceDataRows[filterY][byteOffset + 3];
- }
- }
-
- // Bring this value back in range. All of the filter scaling factors
- // are in fixed point with kShiftBits bits of precision.
- accum[0] >>= SkConvolutionFilter1D::kShiftBits;
- accum[1] >>= SkConvolutionFilter1D::kShiftBits;
- accum[2] >>= SkConvolutionFilter1D::kShiftBits;
- if (hasAlpha) {
- accum[3] >>= SkConvolutionFilter1D::kShiftBits;
- }
-
- // Store the new pixel.
- outRow[byteOffset + 0] = ClampTo8(accum[0]);
- outRow[byteOffset + 1] = ClampTo8(accum[1]);
- outRow[byteOffset + 2] = ClampTo8(accum[2]);
- if (hasAlpha) {
- unsigned char alpha = ClampTo8(accum[3]);
-
- // Make sure the alpha channel doesn't come out smaller than any of the
- // color channels. We use premultipled alpha channels, so this should
- // never happen, but rounding errors will cause this from time to time.
- // These "impossible" colors will cause overflows (and hence random pixel
- // values) when the resulting bitmap is drawn to the screen.
- //
- // We only need to do this when generating the final output row (here).
- int maxColorChannel = SkTMax(outRow[byteOffset + 0],
- SkTMax(outRow[byteOffset + 1],
- outRow[byteOffset + 2]));
- if (alpha < maxColorChannel) {
- outRow[byteOffset + 3] = maxColorChannel;
- } else {
- outRow[byteOffset + 3] = alpha;
- }
- } else {
- // No alpha channel, the image is opaque.
- outRow[byteOffset + 3] = 0xff;
- }
- }
- }
-
-void convolveVertically_arm(const SkConvolutionFilter1D::ConvolutionFixed* filterValues,
- int filterLength,
- unsigned char* const* sourceDataRows,
- int pixelWidth,
- unsigned char* outRow,
- bool sourceHasAlpha) {
- if (sourceHasAlpha) {
- convolveVertically_arm<true>(filterValues, filterLength,
- sourceDataRows, pixelWidth,
- outRow);
- } else {
- convolveVertically_arm<false>(filterValues, filterLength,
- sourceDataRows, pixelWidth,
- outRow);
- }
-}
-
-// Convolves horizontally along four rows. The row data is given in
-// |src_data| and continues for the num_values() of the filter.
-// The algorithm is almost same as |ConvolveHorizontally_SSE2|. Please
-// refer to that function for detailed comments.
-void convolve4RowsHorizontally_arm(const unsigned char* src_data[4],
- const SkConvolutionFilter1D& filter,
- unsigned char* out_row[4]) {
-}
-
-///////////////////////////
-
-/* STOP REWRITING FUNCTIONS HERE, BUT DON'T FORGET TO EDIT THE
- PLATFORM CONVOLUTION PROCS BELOW */
+///////////////////////////////////////////////////////////////////////////////
-///////////////////////////
+extern void platformConvolutionProcs_arm_neon(SkConvolutionProcs* procs);
-void applySIMDPadding_arm(SkConvolutionFilter1D *filter) {
- // Padding |paddingCount| of more dummy coefficients after the coefficients
- // of last filter to prevent SIMD instructions which load 8 or 16 bytes
- // together to access invalid memory areas. We are not trying to align the
- // coefficients right now due to the opaqueness of <vector> implementation.
- // This has to be done after all |AddFilter| calls.
- for (int i = 0; i < 8; ++i) {
- filter->addFilterValue(static_cast<SkConvolutionFilter1D::ConvolutionFixed>(0));
- }
+void platformConvolutionProcs_arm(SkConvolutionProcs* procs) {
}
void SkBitmapProcState::platformConvolutionProcs(SkConvolutionProcs* procs) {
- if (sk_cpu_arm_has_neon()) {
- procs->fExtraHorizontalReads = 3;
- procs->fConvolveVertically = &convolveVertically_arm;
-
- // next line is commented out because the four-row convolution function above is
- // just a no-op. Please see the comment above its definition, and the SSE implementation
- // in SkBitmapProcState_opts_SSE2.cpp for guidance on its semantics.
- // leaving it as NULL will just cause the convolution system to not attempt
- // to operate on four rows at once, which is correct but not performance-optimal.
-
- // procs->fConvolve4RowsHorizontally = &convolve4RowsHorizontally_arm;
-
- procs->fConvolve4RowsHorizontally = NULL;
-
- procs->fConvolveHorizontally = &convolveHorizontally_arm;
- procs->fApplySIMDPadding = &applySIMDPadding_arm;
- }
+ SK_ARM_NEON_WRAP(platformConvolutionProcs_arm)(procs);
}