diff options
author | mtklein <mtklein@chromium.org> | 2015-03-20 09:25:26 -0700 |
---|---|---|
committer | Commit bot <commit-bot@chromium.org> | 2015-03-20 09:25:26 -0700 |
commit | b79ff56de23fef680ae7187040f2d6a9516b553d (patch) | |
tree | ecd0d00d5619b3b98abe0cfe8264d1da9ca6980f /src | |
parent | 70840cbd898df67f603987213164c798415d76bf (diff) |
Specialize Sk2d for ARM64
The implementation is nearly identical to Sk2f, with these changes:
- float32x2_t -> float64x2_t
- vfoo -> vfooq
- one extra Newton's method step in sqrt().
Also, generally fix NEON detection to be defined(SK_ARM_HAS_NEON).
SK_ARM_HAS_NEON is not being set on ARM64 bots right now (nor does the compiler
seem to set __ARM_NEON__), so this CL fixes everything up.
BUG=skia:
Committed: https://skia.googlesource.com/skia/+/e57b5cab261a243dcbefa74c91c896c28959bf09
CQ_EXTRA_TRYBOTS=client.skia.compile:Build-Mac10.7-Clang-Arm7-Debug-iOS-Trybot,Build-Ubuntu-GCC-Arm64-Release-Android-Trybot
Review URL: https://codereview.chromium.org/1020963002
Diffstat (limited to 'src')
-rw-r--r-- | src/core/Sk2x.h | 6 | ||||
-rw-r--r-- | src/core/SkPMFloat.h | 6 | ||||
-rw-r--r-- | src/core/SkUtilsArm.h | 4 | ||||
-rw-r--r-- | src/opts/Sk2x_neon.h | 94 | ||||
-rw-r--r-- | src/opts/Sk4x_neon.h | 38 |
5 files changed, 72 insertions, 76 deletions
diff --git a/src/core/Sk2x.h b/src/core/Sk2x.h index 3fbe76c37f..a64ad721a5 100644 --- a/src/core/Sk2x.h +++ b/src/core/Sk2x.h @@ -14,7 +14,7 @@ #define SK2X_PREAMBLE 1 #if SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SSE2 && !defined(SKNX_NO_SIMD) #include "../opts/Sk2x_sse.h" - #elif defined(__ARM_NEON__) && !defined(SKNX_NO_SIMD) + #elif defined(SK_ARM_HAS_NEON) && !defined(SKNX_NO_SIMD) #include "../opts/Sk2x_neon.h" #else #include "../opts/Sk2x_none.h" @@ -71,7 +71,7 @@ private: #define SK2X_PRIVATE 1 #if SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SSE2 && !defined(SKNX_NO_SIMD) #include "../opts/Sk2x_sse.h" - #elif defined(__ARM_NEON__) && !defined(SKNX_NO_SIMD) + #elif defined(SK_ARM_HAS_NEON) && !defined(SKNX_NO_SIMD) #include "../opts/Sk2x_neon.h" #else #include "../opts/Sk2x_none.h" @@ -81,7 +81,7 @@ private: #if SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SSE2 && !defined(SKNX_NO_SIMD) #include "../opts/Sk2x_sse.h" -#elif defined(__ARM_NEON__) && !defined(SKNX_NO_SIMD) +#elif defined(SK_ARM_HAS_NEON) && !defined(SKNX_NO_SIMD) #include "../opts/Sk2x_neon.h" #else #include "../opts/Sk2x_none.h" diff --git a/src/core/SkPMFloat.h b/src/core/SkPMFloat.h index 04323ad1fc..699f85b2c4 100644 --- a/src/core/SkPMFloat.h +++ b/src/core/SkPMFloat.h @@ -8,7 +8,7 @@ #if SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SSE2 #include <immintrin.h> -#elif defined(__ARM_NEON__) +#elif defined(SK_ARM_HAS_NEON) #include <arm_neon.h> #endif @@ -66,7 +66,7 @@ private: float fColor[4]; #if SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SSE2 __m128 fColors; -#elif defined(__ARM_NEON__) +#elif defined(SK_ARM_HAS_NEON) float32x4_t fColors; #endif }; @@ -76,7 +76,7 @@ private: #include "../opts/SkPMFloat_SSSE3.h" #elif SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SSE2 #include "../opts/SkPMFloat_SSE2.h" -#elif defined(__ARM_NEON__) +#elif defined(SK_ARM_HAS_NEON) #include "../opts/SkPMFloat_neon.h" #else #include "../opts/SkPMFloat_none.h" diff --git a/src/core/SkUtilsArm.h b/src/core/SkUtilsArm.h index f15648136c..51ae7e4a95 100644 --- a/src/core/SkUtilsArm.h +++ b/src/core/SkUtilsArm.h @@ -21,9 +21,9 @@ #define SK_ARM_NEON_MODE_ALWAYS 1 #define SK_ARM_NEON_MODE_DYNAMIC 2 -#if defined(SK_CPU_ARM32) && defined(SK_ARM_HAS_OPTIONAL_NEON) +#if defined(SK_ARM_HAS_OPTIONAL_NEON) # define SK_ARM_NEON_MODE SK_ARM_NEON_MODE_DYNAMIC -#elif defined(SK_CPU_ARM32) && defined(SK_ARM_HAS_NEON) || defined(SK_CPU_ARM64) +#elif defined(SK_ARM_HAS_NEON) # define SK_ARM_NEON_MODE SK_ARM_NEON_MODE_ALWAYS #else # define SK_ARM_NEON_MODE SK_ARM_NEON_MODE_NONE diff --git a/src/opts/Sk2x_neon.h b/src/opts/Sk2x_neon.h index cc4e799490..00ab00aeaa 100644 --- a/src/opts/Sk2x_neon.h +++ b/src/opts/Sk2x_neon.h @@ -15,7 +15,11 @@ #include <math.h> template <typename T> struct SkScalarToSIMD; template <> struct SkScalarToSIMD< float> { typedef float32x2_t Type; }; - template <> struct SkScalarToSIMD<double> { typedef double Type[2]; }; + #if defined(SK_CPU_ARM64) + template <> struct SkScalarToSIMD<double> { typedef float64x2_t Type; }; + #else + template <> struct SkScalarToSIMD<double> { typedef double Type[2]; }; + #endif #elif defined(SK2X_PRIVATE) @@ -28,10 +32,7 @@ M() Sk2x() {} M() Sk2x(float val) { fVec = vdup_n_f32(val); } -M() Sk2x(float a, float b) { - fVec = vset_lane_f32(a, fVec, 0); - fVec = vset_lane_f32(b, fVec, 1); -} +M() Sk2x(float a, float b) { fVec = (float32x2_t) { a, b }; } M(Sk2f&) operator=(const Sk2f& o) { fVec = o.fVec; return *this; } M(Sk2f) Load(const float vals[2]) { return vld1_f32(vals); } @@ -60,33 +61,62 @@ M(Sk2f) sqrt() const { #define M(...) template <> inline __VA_ARGS__ Sk2x<double>:: -// TODO: #ifdef SK_CPU_ARM64 use float64x2_t for Sk2d. - -M() Sk2x() {} -M() Sk2x(double val) { fVec[0] = fVec[1] = val; } -M() Sk2x(double a, double b) { fVec[0] = a; fVec[1] = b; } -M(Sk2d&) operator=(const Sk2d& o) { - fVec[0] = o.fVec[0]; - fVec[1] = o.fVec[1]; - return *this; -} - -M(Sk2d) Load(const double vals[2]) { return Sk2d(vals[0], vals[1]); } -M(void) store(double vals[2]) const { vals[0] = fVec[0]; vals[1] = fVec[1]; } - -M(Sk2d) add(const Sk2d& o) const { return Sk2d(fVec[0] + o.fVec[0], fVec[1] + o.fVec[1]); } -M(Sk2d) subtract(const Sk2d& o) const { return Sk2d(fVec[0] - o.fVec[0], fVec[1] - o.fVec[1]); } -M(Sk2d) multiply(const Sk2d& o) const { return Sk2d(fVec[0] * o.fVec[0], fVec[1] * o.fVec[1]); } - -M(Sk2d) Min(const Sk2d& a, const Sk2d& b) { - return Sk2d(SkTMin(a.fVec[0], b.fVec[0]), SkTMin(a.fVec[1], b.fVec[1])); -} -M(Sk2d) Max(const Sk2d& a, const Sk2d& b) { - return Sk2d(SkTMax(a.fVec[0], b.fVec[0]), SkTMax(a.fVec[1], b.fVec[1])); -} - -M(Sk2d) rsqrt() const { return Sk2d(1.0/::sqrt(fVec[0]), 1.0/::sqrt(fVec[1])); } -M(Sk2d) sqrt() const { return Sk2d( ::sqrt(fVec[0]), ::sqrt(fVec[1])); } +#if defined(SK_CPU_ARM64) + M() Sk2x() {} + M() Sk2x(double val) { fVec = vdupq_n_f64(val); } + M() Sk2x(double a, double b) { fVec = (float64x2_t) { a, b }; } + M(Sk2d&) operator=(const Sk2d& o) { fVec = o.fVec; return *this; } + + M(Sk2d) Load(const double vals[2]) { return vld1q_f64(vals); } + M(void) store(double vals[2]) const { vst1q_f64(vals, fVec); } + + M(Sk2d) add(const Sk2d& o) const { return vaddq_f64(fVec, o.fVec); } + M(Sk2d) subtract(const Sk2d& o) const { return vsubq_f64(fVec, o.fVec); } + M(Sk2d) multiply(const Sk2d& o) const { return vmulq_f64(fVec, o.fVec); } + + M(Sk2d) Min(const Sk2d& a, const Sk2d& b) { return vminq_f64(a.fVec, b.fVec); } + M(Sk2d) Max(const Sk2d& a, const Sk2d& b) { return vmaxq_f64(a.fVec, b.fVec); } + + M(Sk2d) rsqrt() const { + float64x2_t est0 = vrsqrteq_f64(fVec), + est1 = vmulq_f64(vrsqrtsq_f64(fVec, vmulq_f64(est0, est0)), est0); + return est1; + } + M(Sk2d) sqrt() const { + float64x2_t est1 = this->rsqrt().fVec, + // Two extra steps of Newton's method to refine the estimate of 1/sqrt(this). + est2 = vmulq_f64(vrsqrtsq_f64(fVec, vmulq_f64(est1, est1)), est1), + est3 = vmulq_f64(vrsqrtsq_f64(fVec, vmulq_f64(est2, est2)), est2); + return vmulq_f64(fVec, est3); + } + +#else // Scalar implementation for 32-bit chips, which don't have float64x2_t. + M() Sk2x() {} + M() Sk2x(double val) { fVec[0] = fVec[1] = val; } + M() Sk2x(double a, double b) { fVec[0] = a; fVec[1] = b; } + M(Sk2d&) operator=(const Sk2d& o) { + fVec[0] = o.fVec[0]; + fVec[1] = o.fVec[1]; + return *this; + } + + M(Sk2d) Load(const double vals[2]) { return Sk2d(vals[0], vals[1]); } + M(void) store(double vals[2]) const { vals[0] = fVec[0]; vals[1] = fVec[1]; } + + M(Sk2d) add(const Sk2d& o) const { return Sk2d(fVec[0] + o.fVec[0], fVec[1] + o.fVec[1]); } + M(Sk2d) subtract(const Sk2d& o) const { return Sk2d(fVec[0] - o.fVec[0], fVec[1] - o.fVec[1]); } + M(Sk2d) multiply(const Sk2d& o) const { return Sk2d(fVec[0] * o.fVec[0], fVec[1] * o.fVec[1]); } + + M(Sk2d) Min(const Sk2d& a, const Sk2d& b) { + return Sk2d(SkTMin(a.fVec[0], b.fVec[0]), SkTMin(a.fVec[1], b.fVec[1])); + } + M(Sk2d) Max(const Sk2d& a, const Sk2d& b) { + return Sk2d(SkTMax(a.fVec[0], b.fVec[0]), SkTMax(a.fVec[1], b.fVec[1])); + } + + M(Sk2d) rsqrt() const { return Sk2d(1.0/::sqrt(fVec[0]), 1.0/::sqrt(fVec[1])); } + M(Sk2d) sqrt() const { return Sk2d( ::sqrt(fVec[0]), ::sqrt(fVec[1])); } +#endif #undef M diff --git a/src/opts/Sk4x_neon.h b/src/opts/Sk4x_neon.h index 3f35fe785b..92cde11711 100644 --- a/src/opts/Sk4x_neon.h +++ b/src/opts/Sk4x_neon.h @@ -37,20 +37,7 @@ template <typename T> Sk4x<T>& Sk4x<T>::operator=(const Sk4x<T>& other) { #define M(...) template <> inline __VA_ARGS__ Sk4f:: M() Sk4x(float v) : fVec(vdupq_n_f32(v)) {} -M() Sk4x(float a, float b, float c, float d) { - // NEON lacks an intrinsic to make this easy. It is recommended to avoid - // this constructor unless it is absolutely necessary. - - // I am choosing to use the set lane intrinsics. Particularly, in the case - // of floating point, it is likely that the values are already in the right - // register file, so this may be the best approach. However, I am not - // certain that this is the fastest approach and experimentation might be - // useful. - fVec = vsetq_lane_f32(a, fVec, 0); - fVec = vsetq_lane_f32(b, fVec, 1); - fVec = vsetq_lane_f32(c, fVec, 2); - fVec = vsetq_lane_f32(d, fVec, 3); -} +M() Sk4x(float a, float b, float c, float d) { fVec = (float32x4_t) { a, b, c, d }; } // As far as I can tell, it's not possible to provide an alignment hint to // NEON using intrinsics. However, I think it is possible at the assembly @@ -130,28 +117,7 @@ M(Sk4f) ZWCD(const Sk4f& xyzw, const Sk4f& abcd) { #define M(...) template <> inline __VA_ARGS__ Sk4i:: M() Sk4x(int32_t v) : fVec(vdupq_n_s32(v)) {} -M() Sk4x(int32_t a, int32_t b, int32_t c, int32_t d) { - // NEON lacks an intrinsic to make this easy. It is recommended to avoid - // this constructor unless it is absolutely necessary. - - // There are a few different implementation strategies. - - // uint64_t ab_i = ((uint32_t) a) | (((uint64_t) b) << 32); - // uint64_t cd_i = ((uint32_t) c) | (((uint64_t) d) << 32); - // int32x2_t ab = vcreate_s32(ab_i); - // int32x2_t cd = vcreate_s32(cd_i); - // fVec = vcombine_s32(ab, cd); - // This might not be a bad idea for the integer case. Either way I think, - // we will need to move values from general registers to NEON registers. - - // I am choosing to use the set lane intrinsics. I am not certain that - // this is the fastest approach. It may be useful to try the above code - // for integers. - fVec = vsetq_lane_s32(a, fVec, 0); - fVec = vsetq_lane_s32(b, fVec, 1); - fVec = vsetq_lane_s32(c, fVec, 2); - fVec = vsetq_lane_s32(d, fVec, 3); -} +M() Sk4x(int32_t a, int32_t b, int32_t c, int32_t d) { fVec = (int32x4_t) { a, b, c, d }; } // As far as I can tell, it's not possible to provide an alignment hint to // NEON using intrinsics. However, I think it is possible at the assembly |