aboutsummaryrefslogtreecommitdiffhomepage
path: root/src
diff options
context:
space:
mode:
authorGravatar mtklein <mtklein@chromium.org>2015-04-20 10:52:26 -0700
committerGravatar Commit bot <commit-bot@chromium.org>2015-04-20 10:52:26 -0700
commit61221e7f87a99765b0e034020e06bb018e2a08c2 (patch)
treedeca5e11fdb2ffa348e39ee8eb1f5b60d961c437 /src
parent49124378913f3467eb67e653b3b48f80899a3f37 (diff)
Convert Color32 code to perfect blend.
Before we commit to blend_256_round_alt, let's make sure blend_perfect is really slower in practice (i.e. regresses on perf.skia.org). blend_perfect is really the most desirable algorithm if we can afford it. Not only is it correct, but it's easy to think about and break into correct pieces: for instance, its div255() doesn't require any coordination with the multiply. This looks like a 30% hit according to microbenches. That said, microbenches said my previous change would be a 20-25% perf improvement, but it didn't end up showing a significant effect at a high level. As for correctness, I see a bunch of off-by-1 compared to blend_256_round_alt (exactly what we'd expect), and one off-by-3 in a GM that looks like it has a bunch of overdraw. BUG=skia: Review URL: https://codereview.chromium.org/1098913002
Diffstat (limited to 'src')
-rw-r--r--src/core/SkBlitRow_D32.cpp27
-rw-r--r--src/opts/SkBlitRow_opts_SSE2.cpp43
-rw-r--r--src/opts/SkBlitRow_opts_arm_neon.cpp36
3 files changed, 42 insertions, 64 deletions
diff --git a/src/core/SkBlitRow_D32.cpp b/src/core/SkBlitRow_D32.cpp
index ac01e427bf..36bfa54095 100644
--- a/src/core/SkBlitRow_D32.cpp
+++ b/src/core/SkBlitRow_D32.cpp
@@ -142,11 +142,8 @@ SkBlitRow::Proc32 SkBlitRow::ColorProcFactory() {
#define SK_SUPPORT_LEGACY_COLOR32_MATHx
-// Color32 and its SIMD specializations use the blend_256_round_alt algorithm
-// from tests/BlendTest.cpp. It's not quite perfect, but it's never wrong in the
-// interesting edge cases, and it's quite a bit faster than blend_perfect.
-//
-// blend_256_round_alt is our currently blessed algorithm. Please use it or an analogous one.
+// Color32 and its SIMD specializations use the blend_perfect algorithm from tests/BlendTest.cpp.
+// An acceptable alternative is blend_256_round_alt, which is faster but not quite perfect.
void SkBlitRow::Color32(SkPMColor* SK_RESTRICT dst,
const SkPMColor* SK_RESTRICT src,
int count, SkPMColor color) {
@@ -156,19 +153,19 @@ void SkBlitRow::Color32(SkPMColor* SK_RESTRICT dst,
}
unsigned invA = 255 - SkGetPackedA32(color);
-#ifdef SK_SUPPORT_LEGACY_COLOR32_MATH // blend_256_plus1_trunc, busted
- unsigned round = 0;
-#else // blend_256_round_alt, good
- invA += invA >> 7;
- unsigned round = (128 << 16) + (128 << 0);
-#endif
-
while (count --> 0) {
// Our math is 16-bit, so we can do a little bit of SIMD in 32-bit registers.
const uint32_t mask = 0x00FF00FF;
- uint32_t rb = (((*src >> 0) & mask) * invA + round) >> 8, // _r_b
- ag = (((*src >> 8) & mask) * invA + round) >> 0; // a_g_
- *dst = color + ((rb & mask) | (ag & ~mask));
+ uint32_t rb = (((*src >> 0) & mask) * invA), // r_b_
+ ag = (((*src >> 8) & mask) * invA); // a_g_
+ #ifndef SK_SUPPORT_LEGACY_COLOR32_MATH
+ uint32_t round = (128 << 16) + (128 << 0);
+ rb += round;
+ ag += round;
+ rb += (rb & ~mask) >> 8;
+ ag += (ag & ~mask) >> 8;
+ #endif
+ *dst = color + (((rb>>8) & mask) | ((ag>>0) & ~mask));
src++;
dst++;
}
diff --git a/src/opts/SkBlitRow_opts_SSE2.cpp b/src/opts/SkBlitRow_opts_SSE2.cpp
index 59375f1831..3fcb9e0e14 100644
--- a/src/opts/SkBlitRow_opts_SSE2.cpp
+++ b/src/opts/SkBlitRow_opts_SSE2.cpp
@@ -234,41 +234,30 @@ void S32A_Blend_BlitRow32_SSE2(SkPMColor* SK_RESTRICT dst,
#define SK_SUPPORT_LEGACY_COLOR32_MATHx
-/* SSE2 version of Color32()
- * portable version is in core/SkBlitRow_D32.cpp
- */
-// Color32 and its SIMD specializations use the blend_256_round_alt algorithm
-// from tests/BlendTest.cpp. It's not quite perfect, but it's never wrong in the
-// interesting edge cases, and it's quite a bit faster than blend_perfect.
-//
-// blend_256_round_alt is our currently blessed algorithm. Please use it or an analogous one.
+/* SSE2 version of Color32(), portable version is in core/SkBlitRow_D32.cpp */
+// Color32 and its SIMD specializations use the blend_perfect algorithm from tests/BlendTest.cpp.
+// An acceptable alternative is blend_256_round_alt, which is faster but not quite perfect.
void Color32_SSE2(SkPMColor dst[], const SkPMColor src[], int count, SkPMColor color) {
switch (SkGetPackedA32(color)) {
case 0: memmove(dst, src, count * sizeof(SkPMColor)); return;
case 255: sk_memset32(dst, color, count); return;
}
- __m128i colorHigh = _mm_unpacklo_epi8(_mm_setzero_si128(), _mm_set1_epi32(color));
-#ifdef SK_SUPPORT_LEGACY_COLOR32_MATH // blend_256_plus1_trunc, busted
- __m128i colorAndRound = colorHigh;
-#else // blend_256_round_alt, good
- __m128i colorAndRound = _mm_add_epi16(colorHigh, _mm_set1_epi16(128));
-#endif
-
- unsigned invA = 255 - SkGetPackedA32(color);
-#ifdef SK_SUPPORT_LEGACY_COLOR32_MATH // blend_256_plus1_trunc, busted
- __m128i invA16 = _mm_set1_epi16(invA);
-#else // blend_256_round_alt, good
- SkASSERT(invA + (invA >> 7) < 256); // We should still fit in the low byte here.
- __m128i invA16 = _mm_set1_epi16(invA + (invA >> 7));
-#endif
+ __m128i color_2x_high = _mm_unpacklo_epi8(_mm_setzero_si128(), _mm_set1_epi32(color)),
+ invA_8x = _mm_set1_epi16(255 - SkGetPackedA32(color));
// Does the core work of blending color onto 4 pixels, returning the resulting 4 pixels.
- auto kernel = [&](const __m128i& src4) -> __m128i {
- __m128i lo = _mm_mullo_epi16(invA16, _mm_unpacklo_epi8(src4, _mm_setzero_si128())),
- hi = _mm_mullo_epi16(invA16, _mm_unpackhi_epi8(src4, _mm_setzero_si128()));
- return _mm_packus_epi16(_mm_srli_epi16(_mm_add_epi16(colorAndRound, lo), 8),
- _mm_srli_epi16(_mm_add_epi16(colorAndRound, hi), 8));
+ auto kernel = [&](const __m128i& src_4x) -> __m128i {
+ __m128i lo = _mm_mullo_epi16(invA_8x, _mm_unpacklo_epi8(src_4x, _mm_setzero_si128())),
+ hi = _mm_mullo_epi16(invA_8x, _mm_unpackhi_epi8(src_4x, _mm_setzero_si128()));
+ #ifndef SK_SUPPORT_LEGACY_COLOR32_MATH
+ lo = _mm_add_epi16(lo, _mm_set1_epi16(128));
+ hi = _mm_add_epi16(hi, _mm_set1_epi16(128));
+ lo = _mm_add_epi16(lo, _mm_srli_epi16(lo, 8));
+ hi = _mm_add_epi16(hi, _mm_srli_epi16(hi, 8));
+ #endif
+ return _mm_packus_epi16(_mm_srli_epi16(_mm_add_epi16(color_2x_high, lo), 8),
+ _mm_srli_epi16(_mm_add_epi16(color_2x_high, hi), 8));
};
while (count >= 8) {
diff --git a/src/opts/SkBlitRow_opts_arm_neon.cpp b/src/opts/SkBlitRow_opts_arm_neon.cpp
index bd0c45f4c0..b11dd41fbc 100644
--- a/src/opts/SkBlitRow_opts_arm_neon.cpp
+++ b/src/opts/SkBlitRow_opts_arm_neon.cpp
@@ -1681,38 +1681,30 @@ void S32_D565_Opaque_Dither_neon(uint16_t* SK_RESTRICT dst,
#define SK_SUPPORT_LEGACY_COLOR32_MATHx
-// Color32 and its SIMD specializations use the blend_256_round_alt algorithm
-// from tests/BlendTest.cpp. It's not quite perfect, but it's never wrong in the
-// interesting edge cases, and it's quite a bit faster than blend_perfect.
-//
-// blend_256_round_alt is our currently blessed algorithm. Please use it or an analogous one.
+/* NEON version of Color32(), portable version is in core/SkBlitRow_D32.cpp */
+// Color32 and its SIMD specializations use the blend_perfect algorithm from tests/BlendTest.cpp.
+// An acceptable alternative is blend_256_round_alt, which is faster but not quite perfect.
void Color32_arm_neon(SkPMColor* dst, const SkPMColor* src, int count, SkPMColor color) {
switch (SkGetPackedA32(color)) {
case 0: memmove(dst, src, count * sizeof(SkPMColor)); return;
case 255: sk_memset32(dst, color, count); return;
}
- uint16x8_t colorHigh = vshll_n_u8((uint8x8_t)vdup_n_u32(color), 8);
-#ifdef SK_SUPPORT_LEGACY_COLOR32_MATH // blend_256_plus1_trunc, busted
- uint16x8_t colorAndRound = colorHigh;
-#else // blend_256_round_alt, good
- uint16x8_t colorAndRound = vaddq_u16(colorHigh, vdupq_n_u16(128));
-#endif
-
- unsigned invA = 255 - SkGetPackedA32(color);
-#ifdef SK_SUPPORT_LEGACY_COLOR32_MATH // blend_256_plus1_trunc, busted
- uint8x8_t invA8 = vdup_n_u8(invA);
-#else // blend_256_round_alt, good
- SkASSERT(invA + (invA >> 7) < 256); // This next part only works if alpha is not 0.
- uint8x8_t invA8 = vdup_n_u8(invA + (invA >> 7));
-#endif
+ uint16x8_t color_2x_high = vshll_n_u8((uint8x8_t)vdup_n_u32(color), 8);
+ uint8x8_t invA_8x = vdup_n_u8(255 - SkGetPackedA32(color));
// Does the core work of blending color onto 4 pixels, returning the resulting 4 pixels.
auto kernel = [&](const uint32x4_t& src4) -> uint32x4_t {
- uint16x8_t lo = vmull_u8(vget_low_u8( (uint8x16_t)src4), invA8),
- hi = vmull_u8(vget_high_u8((uint8x16_t)src4), invA8);
+ uint16x8_t lo = vmull_u8(vget_low_u8( (uint8x16_t)src4), invA_8x),
+ hi = vmull_u8(vget_high_u8((uint8x16_t)src4), invA_8x);
+ #ifndef SK_SUPPORT_LEGACY_COLOR32_MATH
+ lo = vaddq_u16(lo, vdupq_n_u16(128));
+ hi = vaddq_u16(hi, vdupq_n_u16(128));
+ lo = vaddq_u16(lo, vshrq_n_u16(lo, 8));
+ hi = vaddq_u16(hi, vshrq_n_u16(hi, 8));
+ #endif
return (uint32x4_t)
- vcombine_u8(vaddhn_u16(colorAndRound, lo), vaddhn_u16(colorAndRound, hi));
+ vcombine_u8(vaddhn_u16(color_2x_high, lo), vaddhn_u16(color_2x_high, hi));
};
while (count >= 8) {