aboutsummaryrefslogtreecommitdiffhomepage
path: root/src
diff options
context:
space:
mode:
authorGravatar dandov <dandov@google.com>2014-07-25 10:44:53 -0700
committerGravatar Commit bot <commit-bot@chromium.org>2014-07-25 10:44:54 -0700
commit50d715476b1d3a00fb43c13e34a80ea0a01d32bf (patch)
treee315f425dee5580112df9ded12da2e256b9e126f /src
parent75e62ea9d6d99ff06133d95c3451b698dff52a55 (diff)
Added classes SkPatch and SkPatchMesh which help encapsulate and generalize this new primitive. The functionality and responsability of each class is better explained in the comments of the files.
Each patch defines a method genMesh that produces the geometry to draw. To do this they receive a SkPatchMesh object which they need to initialize in order to set up how the data is going to be formatted. Later they call function like setColor or pointAt to set the values at a specific index, the SkMeshPatch object handles the indices based on the format and makes it transparent to the client. Added a slide to sample app to show how to set up this classes and how they interact. BUG=skia: R=jvanverth@google.com, egdaniel@google.com, bsalomon@google.com Author: dandov@google.com Review URL: https://codereview.chromium.org/405163003
Diffstat (limited to 'src')
-rw-r--r--src/core/SkPatch.cpp224
1 files changed, 224 insertions, 0 deletions
diff --git a/src/core/SkPatch.cpp b/src/core/SkPatch.cpp
new file mode 100644
index 0000000000..acd6cb9b57
--- /dev/null
+++ b/src/core/SkPatch.cpp
@@ -0,0 +1,224 @@
+/*
+ * Copyright 2014 Google Inc.
+ *
+ * Use of this source code is governed by a BSD-style license that can be
+ * found in the LICENSE file.
+ */
+
+#include "SkPatch.h"
+
+#include "SkGeometry.h"
+#include "SkColorPriv.h"
+
+////////////////////////////////////////////////////////////////////////////////
+
+/**
+ * Evaluator to sample the values of a cubic bezier using forward differences.
+ * Forward differences is a method for evaluating a nth degree polynomial at a uniform step by only
+ * adding precalculated values.
+ * For a linear example we have the function f(t) = m*t+b, then the value of that function at t+h
+ * would be f(t+h) = m*(t+h)+b. If we want to know the uniform step that we must add to the first
+ * evaluation f(t) then we need to substract f(t+h) - f(t) = m*t + m*h + b - m*t + b = mh. After
+ * obtaining this value (mh) we could just add this constant step to our first sampled point
+ * to compute the next one.
+ *
+ * For the cubic case the first difference gives as a result a quadratic polynomial to which we can
+ * apply again forward differences and get linear function to which we can apply again forward
+ * differences to get a constant difference. This is why we keep an array of size 4, the 0th
+ * position keeps the sampled value while the next ones keep the quadratic, linear and constant
+ * difference values.
+ */
+
+class FwDCubicEvaluator {
+
+public:
+ FwDCubicEvaluator() { }
+
+ /**
+ * Receives the 4 control points of the cubic bezier.
+ */
+ FwDCubicEvaluator(SkPoint a, SkPoint b, SkPoint c, SkPoint d) {
+ fPoints[0] = a;
+ fPoints[1] = b;
+ fPoints[2] = c;
+ fPoints[3] = d;
+
+ SkScalar cx[4], cy[4];
+ SkGetCubicCoeff(fPoints, cx, cy);
+ fCoefs[0].set(cx[0], cy[0]);
+ fCoefs[1].set(cx[1], cy[1]);
+ fCoefs[2].set(cx[2], cy[2]);
+ fCoefs[3].set(cx[3], cy[3]);
+
+ this->restart(1);
+ }
+
+ /**
+ * Restarts the forward differences evaluator to the first value of t = 0.
+ */
+ void restart(int divisions) {
+ fDivisions = divisions;
+ SkScalar h = 1.f / fDivisions;
+ fCurrent = 0;
+ fMax = fDivisions + 1;
+ fFwDiff[0] = fCoefs[3];
+ SkScalar h2 = h * h;
+ SkScalar h3 = h2 * h;
+
+ fFwDiff[3].set(6.f * fCoefs[0].x() * h3, 6.f * fCoefs[0].y() * h3); //6ah^3
+ fFwDiff[2].set(fFwDiff[3].x() + 2.f * fCoefs[1].x() * h2, //6ah^3 + 2bh^2
+ fFwDiff[3].y() + 2.f * fCoefs[1].y() * h2);
+ fFwDiff[1].set(fCoefs[0].x() * h3 + fCoefs[1].x() * h2 + fCoefs[2].x() * h,//ah^3 + bh^2 +ch
+ fCoefs[0].y() * h3 + fCoefs[1].y() * h2 + fCoefs[2].y() * h);
+ }
+
+ /**
+ * Check if the evaluator is still within the range of 0<=t<=1
+ */
+ bool done() const {
+ return fCurrent > fMax;
+ }
+
+ /**
+ * Call next to obtain the SkPoint sampled and move to the next one.
+ */
+ SkPoint next() {
+ SkPoint point = fFwDiff[0];
+ fFwDiff[0] += fFwDiff[1];
+ fFwDiff[1] += fFwDiff[2];
+ fFwDiff[2] += fFwDiff[3];
+ fCurrent++;
+ return point;
+ }
+
+ const SkPoint* getCtrlPoints() const {
+ return fPoints;
+ }
+
+private:
+ int fMax, fCurrent, fDivisions;
+ SkPoint fFwDiff[4], fCoefs[4], fPoints[4];
+};
+
+////////////////////////////////////////////////////////////////////////////////
+
+SkPatch::SkPatch(SkPoint points[12], SkColor colors[4]) {
+
+ for (int i = 0; i<12; i++) {
+ fCtrlPoints[i] = points[i];
+ }
+
+ fCornerColors[0] = SkPreMultiplyColor(colors[0]);
+ fCornerColors[1] = SkPreMultiplyColor(colors[1]);
+ fCornerColors[2] = SkPreMultiplyColor(colors[2]);
+ fCornerColors[3] = SkPreMultiplyColor(colors[3]);
+}
+
+uint8_t bilinear(SkScalar tx, SkScalar ty, SkScalar c00, SkScalar c10, SkScalar c01, SkScalar c11) {
+ SkScalar a = c00 * (1.f - tx) + c10 * tx;
+ SkScalar b = c01 * (1.f - tx) + c11 * tx;
+ return uint8_t(a * (1.f - ty) + b * ty);
+}
+
+bool SkPatch::getVertexData(SkPatch::VertexData* data, int divisions) {
+
+ if (divisions < 1) {
+ return false;
+ }
+
+ int divX = divisions, divY = divisions;
+
+ data->fVertexCount = (divX + 1) * (divY + 1);
+ data->fIndexCount = divX * divY * 6;
+
+ data->fPoints = SkNEW_ARRAY(SkPoint, data->fVertexCount);
+ data->fColors = SkNEW_ARRAY(uint32_t, data->fVertexCount);
+ data->fTexCoords = SkNEW_ARRAY(SkPoint, data->fVertexCount);
+ data->fIndices = SkNEW_ARRAY(uint16_t, data->fIndexCount);
+
+ FwDCubicEvaluator fBottom(fCtrlPoints[kBottomP0_CubicCtrlPts],
+ fCtrlPoints[kBottomP1_CubicCtrlPts],
+ fCtrlPoints[kBottomP2_CubicCtrlPts],
+ fCtrlPoints[kBottomP3_CubicCtrlPts]),
+ fTop(fCtrlPoints[kTopP0_CubicCtrlPts],
+ fCtrlPoints[kTopP1_CubicCtrlPts],
+ fCtrlPoints[kTopP2_CubicCtrlPts],
+ fCtrlPoints[kTopP2_CubicCtrlPts]),
+ fLeft(fCtrlPoints[kLeftP0_CubicCtrlPts],
+ fCtrlPoints[kLeftP1_CubicCtrlPts],
+ fCtrlPoints[kLeftP2_CubicCtrlPts],
+ fCtrlPoints[kLeftP3_CubicCtrlPts]),
+ fRight(fCtrlPoints[kRightP0_CubicCtrlPts],
+ fCtrlPoints[kRightP1_CubicCtrlPts],
+ fCtrlPoints[kRightP2_CubicCtrlPts],
+ fCtrlPoints[kRightP3_CubicCtrlPts]);
+
+ fBottom.restart(divX);
+ fTop.restart(divX);
+
+ SkScalar u = 0.0f;
+ int stride = divY + 1;
+ for (int x = 0; x <= divX; x++) {
+ SkPoint bottom = fBottom.next(), top = fTop.next();
+ fLeft.restart(divY);
+ fRight.restart(divY);
+ SkScalar v = 0.f;
+ for (int y = 0; y <= divY; y++) {
+ int dataIndex = x * (divX + 1) + y;
+
+ SkPoint left = fLeft.next(), right = fRight.next();
+
+ SkPoint s0 = SkPoint::Make((1.0f - v) * top.x() + v * bottom.x(),
+ (1.0f - v) * top.y() + v * bottom.y());
+ SkPoint s1 = SkPoint::Make((1.0f - u) * left.x() + u * right.x(),
+ (1.0f - u) * left.y() + u * right.y());
+ SkPoint s2 = SkPoint::Make(
+ (1.0f - v) * ((1.0f - u) * fTop.getCtrlPoints()[0].x()
+ + u * fTop.getCtrlPoints()[3].x())
+ + v * ((1.0f - u) * fBottom.getCtrlPoints()[0].x()
+ + u * fBottom.getCtrlPoints()[3].x()),
+ (1.0f - v) * ((1.0f - u) * fTop.getCtrlPoints()[0].y()
+ + u * fTop.getCtrlPoints()[3].y())
+ + v * ((1.0f - u) * fBottom.getCtrlPoints()[0].y()
+ + u * fBottom.getCtrlPoints()[3].y()));
+ data->fPoints[dataIndex] = s0 + s1 - s2;
+
+ uint8_t a = bilinear(u, v,
+ SkScalar(SkColorGetA(fCornerColors[0])),
+ SkScalar(SkColorGetA(fCornerColors[1])),
+ SkScalar(SkColorGetA(fCornerColors[2])),
+ SkScalar(SkColorGetA(fCornerColors[3])));
+ uint8_t r = bilinear(u, v,
+ SkScalar(SkColorGetR(fCornerColors[0])),
+ SkScalar(SkColorGetR(fCornerColors[1])),
+ SkScalar(SkColorGetR(fCornerColors[2])),
+ SkScalar(SkColorGetR(fCornerColors[3])));
+ uint8_t g = bilinear(u, v,
+ SkScalar(SkColorGetG(fCornerColors[0])),
+ SkScalar(SkColorGetG(fCornerColors[1])),
+ SkScalar(SkColorGetG(fCornerColors[2])),
+ SkScalar(SkColorGetG(fCornerColors[3])));
+ uint8_t b = bilinear(u, v,
+ SkScalar(SkColorGetB(fCornerColors[0])),
+ SkScalar(SkColorGetB(fCornerColors[1])),
+ SkScalar(SkColorGetB(fCornerColors[2])),
+ SkScalar(SkColorGetB(fCornerColors[3])));
+ data->fColors[dataIndex] = SkPackARGB32(a,r,g,b);
+
+ data->fTexCoords[dataIndex] = SkPoint::Make(u, v);
+
+ if(x < divX && y < divY) {
+ int i = 6 * (x * divY + y);
+ data->fIndices[i] = x * stride + y;
+ data->fIndices[i + 1] = x * stride + 1 + y;
+ data->fIndices[i + 2] = (x + 1) * stride + 1 + y;
+ data->fIndices[i + 3] = data->fIndices[i];
+ data->fIndices[i + 4] = data->fIndices[i + 2];
+ data->fIndices[i + 5] = (x + 1) * stride + y;
+ }
+ v += 1.f / divY;
+ }
+ u += 1.f / divX;
+ }
+ return true;
+}