aboutsummaryrefslogtreecommitdiffhomepage
path: root/src/effects/GrCircleBlurFragmentProcessor.fp
diff options
context:
space:
mode:
authorGravatar Ethan Nicholas <ethannicholas@google.com>2017-07-10 15:40:20 -0400
committerGravatar Skia Commit-Bot <skia-commit-bot@chromium.org>2017-07-11 13:50:51 +0000
commitceb4d48ef4839aab9d99d0200dcfe403ccd0cdf3 (patch)
treefe8daf04d9a10810747e78e9a340e8d89ff90692 /src/effects/GrCircleBlurFragmentProcessor.fp
parent815486c42f1ca66c81e12d8ccc9fb142e3c10544 (diff)
Re-land "converted GrCircleBlurFragmentProcessor to sksl"
This reverts commit 818ac5a00dfd570d2b291b7524a70ecd4ef55770. Bug: skia: Change-Id: I9bd8a06bd2dbb40bd261d64d6d04daf864bc00a5 Reviewed-on: https://skia-review.googlesource.com/22075 Reviewed-by: Brian Salomon <bsalomon@google.com> Commit-Queue: Ethan Nicholas <ethannicholas@google.com>
Diffstat (limited to 'src/effects/GrCircleBlurFragmentProcessor.fp')
-rw-r--r--src/effects/GrCircleBlurFragmentProcessor.fp289
1 files changed, 289 insertions, 0 deletions
diff --git a/src/effects/GrCircleBlurFragmentProcessor.fp b/src/effects/GrCircleBlurFragmentProcessor.fp
new file mode 100644
index 0000000000..dec22e6c27
--- /dev/null
+++ b/src/effects/GrCircleBlurFragmentProcessor.fp
@@ -0,0 +1,289 @@
+in vec4 circleRect;
+in float textureRadius;
+in float solidRadius;
+in uniform sampler2D blurProfileSampler;
+
+// The data is formatted as:
+// x, y - the center of the circle
+// z - inner radius that should map to 0th entry in the texture.
+// w - the inverse of the distance over which the texture is stretched.
+uniform vec4 circleData;
+
+@optimizationFlags {
+ kCompatibleWithCoverageAsAlpha_OptimizationFlag
+}
+
+@constructorParams {
+ GrResourceProvider* resourceProvider
+}
+
+@make {
+ static sk_sp<GrFragmentProcessor> Make(GrResourceProvider* resourceProvider,
+ const SkRect& circle, float sigma);
+}
+
+@setData(data) {
+ data.set4f(circleData, circleRect.centerX(), circleRect.centerY(), solidRadius,
+ 1.f / textureRadius);
+}
+
+@cpp {
+ #include "GrResourceProvider.h"
+
+ // Computes an unnormalized half kernel (right side). Returns the summation of all the half
+ // kernel values.
+ static float make_unnormalized_half_kernel(float* halfKernel, int halfKernelSize, float sigma) {
+ const float invSigma = 1.f / sigma;
+ const float b = -0.5f * invSigma * invSigma;
+ float tot = 0.0f;
+ // Compute half kernel values at half pixel steps out from the center.
+ float t = 0.5f;
+ for (int i = 0; i < halfKernelSize; ++i) {
+ float value = expf(t * t * b);
+ tot += value;
+ halfKernel[i] = value;
+ t += 1.f;
+ }
+ return tot;
+ }
+
+ // Create a Gaussian half-kernel (right side) and a summed area table given a sigma and number
+ // of discrete steps. The half kernel is normalized to sum to 0.5.
+ static void make_half_kernel_and_summed_table(float* halfKernel, float* summedHalfKernel,
+ int halfKernelSize, float sigma) {
+ // The half kernel should sum to 0.5 not 1.0.
+ const float tot = 2.f * make_unnormalized_half_kernel(halfKernel, halfKernelSize, sigma);
+ float sum = 0.f;
+ for (int i = 0; i < halfKernelSize; ++i) {
+ halfKernel[i] /= tot;
+ sum += halfKernel[i];
+ summedHalfKernel[i] = sum;
+ }
+ }
+
+ // Applies the 1D half kernel vertically at points along the x axis to a circle centered at the
+ // origin with radius circleR.
+ void apply_kernel_in_y(float* results, int numSteps, float firstX, float circleR,
+ int halfKernelSize, const float* summedHalfKernelTable) {
+ float x = firstX;
+ for (int i = 0; i < numSteps; ++i, x += 1.f) {
+ if (x < -circleR || x > circleR) {
+ results[i] = 0;
+ continue;
+ }
+ float y = sqrtf(circleR * circleR - x * x);
+ // In the column at x we exit the circle at +y and -y
+ // The summed table entry j is actually reflects an offset of j + 0.5.
+ y -= 0.5f;
+ int yInt = SkScalarFloorToInt(y);
+ SkASSERT(yInt >= -1);
+ if (y < 0) {
+ results[i] = (y + 0.5f) * summedHalfKernelTable[0];
+ } else if (yInt >= halfKernelSize - 1) {
+ results[i] = 0.5f;
+ } else {
+ float yFrac = y - yInt;
+ results[i] = (1.f - yFrac) * summedHalfKernelTable[yInt] +
+ yFrac * summedHalfKernelTable[yInt + 1];
+ }
+ }
+ }
+
+ // Apply a Gaussian at point (evalX, 0) to a circle centered at the origin with radius circleR.
+ // This relies on having a half kernel computed for the Gaussian and a table of applications of
+ // the half kernel in y to columns at (evalX - halfKernel, evalX - halfKernel + 1, ..., evalX +
+ // halfKernel) passed in as yKernelEvaluations.
+ static uint8_t eval_at(float evalX, float circleR, const float* halfKernel, int halfKernelSize,
+ const float* yKernelEvaluations) {
+ float acc = 0;
+
+ float x = evalX - halfKernelSize;
+ for (int i = 0; i < halfKernelSize; ++i, x += 1.f) {
+ if (x < -circleR || x > circleR) {
+ continue;
+ }
+ float verticalEval = yKernelEvaluations[i];
+ acc += verticalEval * halfKernel[halfKernelSize - i - 1];
+ }
+ for (int i = 0; i < halfKernelSize; ++i, x += 1.f) {
+ if (x < -circleR || x > circleR) {
+ continue;
+ }
+ float verticalEval = yKernelEvaluations[i + halfKernelSize];
+ acc += verticalEval * halfKernel[i];
+ }
+ // Since we applied a half kernel in y we multiply acc by 2 (the circle is symmetric about
+ // the x axis).
+ return SkUnitScalarClampToByte(2.f * acc);
+ }
+
+ // This function creates a profile of a blurred circle. It does this by computing a kernel for
+ // half the Gaussian and a matching summed area table. The summed area table is used to compute
+ // an array of vertical applications of the half kernel to the circle along the x axis. The
+ // table of y evaluations has 2 * k + n entries where k is the size of the half kernel and n is
+ // the size of the profile being computed. Then for each of the n profile entries we walk out k
+ // steps in each horizontal direction multiplying the corresponding y evaluation by the half
+ // kernel entry and sum these values to compute the profile entry.
+ static uint8_t* create_circle_profile(float sigma, float circleR, int profileTextureWidth) {
+ const int numSteps = profileTextureWidth;
+ uint8_t* weights = new uint8_t[numSteps];
+
+ // The full kernel is 6 sigmas wide.
+ int halfKernelSize = SkScalarCeilToInt(6.0f*sigma);
+ // round up to next multiple of 2 and then divide by 2
+ halfKernelSize = ((halfKernelSize + 1) & ~1) >> 1;
+
+ // Number of x steps at which to apply kernel in y to cover all the profile samples in x.
+ int numYSteps = numSteps + 2 * halfKernelSize;
+
+ SkAutoTArray<float> bulkAlloc(halfKernelSize + halfKernelSize + numYSteps);
+ float* halfKernel = bulkAlloc.get();
+ float* summedKernel = bulkAlloc.get() + halfKernelSize;
+ float* yEvals = bulkAlloc.get() + 2 * halfKernelSize;
+ make_half_kernel_and_summed_table(halfKernel, summedKernel, halfKernelSize, sigma);
+
+ float firstX = -halfKernelSize + 0.5f;
+ apply_kernel_in_y(yEvals, numYSteps, firstX, circleR, halfKernelSize, summedKernel);
+
+ for (int i = 0; i < numSteps - 1; ++i) {
+ float evalX = i + 0.5f;
+ weights[i] = eval_at(evalX, circleR, halfKernel, halfKernelSize, yEvals + i);
+ }
+ // Ensure the tail of the Gaussian goes to zero.
+ weights[numSteps - 1] = 0;
+ return weights;
+ }
+
+ static uint8_t* create_half_plane_profile(int profileWidth) {
+ SkASSERT(!(profileWidth & 0x1));
+ // The full kernel is 6 sigmas wide.
+ float sigma = profileWidth / 6.f;
+ int halfKernelSize = profileWidth / 2;
+
+ SkAutoTArray<float> halfKernel(halfKernelSize);
+ uint8_t* profile = new uint8_t[profileWidth];
+
+ // The half kernel should sum to 0.5.
+ const float tot = 2.f * make_unnormalized_half_kernel(halfKernel.get(), halfKernelSize,
+ sigma);
+ float sum = 0.f;
+ // Populate the profile from the right edge to the middle.
+ for (int i = 0; i < halfKernelSize; ++i) {
+ halfKernel[halfKernelSize - i - 1] /= tot;
+ sum += halfKernel[halfKernelSize - i - 1];
+ profile[profileWidth - i - 1] = SkUnitScalarClampToByte(sum);
+ }
+ // Populate the profile from the middle to the left edge (by flipping the half kernel and
+ // continuing the summation).
+ for (int i = 0; i < halfKernelSize; ++i) {
+ sum += halfKernel[i];
+ profile[halfKernelSize - i - 1] = SkUnitScalarClampToByte(sum);
+ }
+ // Ensure tail goes to 0.
+ profile[profileWidth - 1] = 0;
+ return profile;
+ }
+
+ static sk_sp<GrTextureProxy> create_profile_texture(GrResourceProvider* resourceProvider,
+ const SkRect& circle,
+ float sigma,
+ float* solidRadius, float* textureRadius) {
+ float circleR = circle.width() / 2.0f;
+ // Profile textures are cached by the ratio of sigma to circle radius and by the size of the
+ // profile texture (binned by powers of 2).
+ SkScalar sigmaToCircleRRatio = sigma / circleR;
+ // When sigma is really small this becomes a equivalent to convolving a Gaussian with a
+ // half-plane. Similarly, in the extreme high ratio cases circle becomes a point WRT to the
+ // Guassian and the profile texture is a just a Gaussian evaluation. However, we haven't yet
+ // implemented this latter optimization.
+ sigmaToCircleRRatio = SkTMin(sigmaToCircleRRatio, 8.f);
+ SkFixed sigmaToCircleRRatioFixed;
+ static const SkScalar kHalfPlaneThreshold = 0.1f;
+ bool useHalfPlaneApprox = false;
+ if (sigmaToCircleRRatio <= kHalfPlaneThreshold) {
+ useHalfPlaneApprox = true;
+ sigmaToCircleRRatioFixed = 0;
+ *solidRadius = circleR - 3 * sigma;
+ *textureRadius = 6 * sigma;
+ } else {
+ // Convert to fixed point for the key.
+ sigmaToCircleRRatioFixed = SkScalarToFixed(sigmaToCircleRRatio);
+ // We shave off some bits to reduce the number of unique entries. We could probably
+ // shave off more than we do.
+ sigmaToCircleRRatioFixed &= ~0xff;
+ sigmaToCircleRRatio = SkFixedToScalar(sigmaToCircleRRatioFixed);
+ sigma = circleR * sigmaToCircleRRatio;
+ *solidRadius = 0;
+ *textureRadius = circleR + 3 * sigma;
+ }
+
+ static const GrUniqueKey::Domain kDomain = GrUniqueKey::GenerateDomain();
+ GrUniqueKey key;
+ GrUniqueKey::Builder builder(&key, kDomain, 1);
+ builder[0] = sigmaToCircleRRatioFixed;
+ builder.finish();
+
+ sk_sp<GrTextureProxy> blurProfile = resourceProvider->findProxyByUniqueKey(key);
+ if (!blurProfile) {
+ static constexpr int kProfileTextureWidth = 512;
+ GrSurfaceDesc texDesc;
+ texDesc.fWidth = kProfileTextureWidth;
+ texDesc.fHeight = 1;
+ texDesc.fConfig = kAlpha_8_GrPixelConfig;
+
+ std::unique_ptr<uint8_t[]> profile(nullptr);
+ if (useHalfPlaneApprox) {
+ profile.reset(create_half_plane_profile(kProfileTextureWidth));
+ } else {
+ // Rescale params to the size of the texture we're creating.
+ SkScalar scale = kProfileTextureWidth / *textureRadius;
+ profile.reset(create_circle_profile(sigma * scale, circleR * scale,
+ kProfileTextureWidth));
+ }
+
+ blurProfile = GrSurfaceProxy::MakeDeferred(resourceProvider,
+ texDesc, SkBudgeted::kYes, profile.get(), 0);
+ if (!blurProfile) {
+ return nullptr;
+ }
+
+ resourceProvider->assignUniqueKeyToProxy(key, blurProfile.get());
+ }
+
+ return blurProfile;
+ }
+
+ sk_sp<GrFragmentProcessor> GrCircleBlurFragmentProcessor::Make(
+ GrResourceProvider* resourceProvider,
+ const SkRect& circle,
+ float sigma) {
+ float solidRadius;
+ float textureRadius;
+ sk_sp<GrTextureProxy> profile(create_profile_texture(resourceProvider, circle, sigma,
+ &solidRadius, &textureRadius));
+ if (!profile) {
+ return nullptr;
+ }
+ return sk_sp<GrFragmentProcessor>(new GrCircleBlurFragmentProcessor(circle,
+ textureRadius,
+ solidRadius,
+ std::move(profile),
+ resourceProvider));
+ }
+}
+
+void main() {
+ // We just want to compute "(length(vec) - circleData.z + 0.5) * circleData.w" but need to
+ // rearrange for precision.
+ vec2 vec = vec2((sk_FragCoord.x - circleData.x) * circleData.w,
+ (sk_FragCoord.y - circleData.y) * circleData.w);
+ float dist = length(vec) + (0.5 - circleData.z) * circleData.w;
+ sk_OutColor = sk_InColor * texture(blurProfileSampler, vec2(dist, 0.5)).a;
+}
+
+@test(testData) {
+ SkScalar wh = testData->fRandom->nextRangeScalar(100.f, 1000.f);
+ SkScalar sigma = testData->fRandom->nextRangeF(1.f,10.f);
+ SkRect circle = SkRect::MakeWH(wh, wh);
+ return GrCircleBlurFragmentProcessor::Make(testData->resourceProvider(), circle, sigma);
+} \ No newline at end of file