aboutsummaryrefslogtreecommitdiffhomepage
path: root/src/core
diff options
context:
space:
mode:
authorGravatar commit-bot@chromium.org <commit-bot@chromium.org@2bbb7eff-a529-9590-31e7-b0007b416f81>2013-09-03 19:08:14 +0000
committerGravatar commit-bot@chromium.org <commit-bot@chromium.org@2bbb7eff-a529-9590-31e7-b0007b416f81>2013-09-03 19:08:14 +0000
commit5b2e2640ed345c4670b99b349f62eb6f9446ec1e (patch)
treeeafdb483c2d8f87ddffe03e2255d2fec03f31dd5 /src/core
parente2b103fba2bf631a81875e33a28fb9a0c70acc34 (diff)
Revise SVD code to remove arctangents.
Also added bench for timing matrix decomposition. R=reed@google.com Author: jvanverth@google.com Review URL: https://chromiumcodereview.appspot.com/23596006 git-svn-id: http://skia.googlecode.com/svn/trunk@11066 2bbb7eff-a529-9590-31e7-b0007b416f81
Diffstat (limited to 'src/core')
-rw-r--r--src/core/SkMatrix.cpp143
-rw-r--r--src/core/SkMatrixUtils.h16
2 files changed, 88 insertions, 71 deletions
diff --git a/src/core/SkMatrix.cpp b/src/core/SkMatrix.cpp
index e5d48f022f..e3e43ca690 100644
--- a/src/core/SkMatrix.cpp
+++ b/src/core/SkMatrix.cpp
@@ -2007,13 +2007,18 @@ bool SkTreatAsSprite(const SkMatrix& mat, int width, int height,
return isrc == idst;
}
+// A square matrix M can be decomposed (via polar decomposition) into two matrices --
+// an orthogonal matrix Q and a symmetric matrix S. In turn we can decompose S into U*W*U^T,
+// where U is another orthogonal matrix and W is a scale matrix. These can be recombined
+// to give M = (Q*U)*W*U^T, i.e., the product of two orthogonal matrices and a scale matrix.
+//
+// The one wrinkle is that traditionally Q may contain a reflection -- the
+// calculation has been rejiggered to put that reflection into W.
bool SkDecomposeUpper2x2(const SkMatrix& matrix,
- SkScalar* rotation0,
- SkScalar* xScale, SkScalar* yScale,
- SkScalar* rotation1) {
+ SkPoint* rotation1,
+ SkPoint* scale,
+ SkPoint* rotation2) {
- // borrowed from Jim Blinn's article "Consider the Lowly 2x2 Matrix"
- // Note: he uses row vectors, so we have to do some swapping of terms
SkScalar A = matrix[SkMatrix::kMScaleX];
SkScalar B = matrix[SkMatrix::kMSkewX];
SkScalar C = matrix[SkMatrix::kMSkewY];
@@ -2023,70 +2028,82 @@ bool SkDecomposeUpper2x2(const SkMatrix& matrix,
return false;
}
- SkScalar E = SK_ScalarHalf*(A + D);
- SkScalar F = SK_ScalarHalf*(A - D);
- SkScalar G = SK_ScalarHalf*(C + B);
- SkScalar H = SK_ScalarHalf*(C - B);
+ double w1, w2;
+ SkScalar cos1, sin1;
+ SkScalar cos2, sin2;
- SkScalar sqrt0 = SkScalarSqrt(E*E + H*H);
- SkScalar sqrt1 = SkScalarSqrt(F*F + G*G);
+ // do polar decomposition (M = Q*S)
+ SkScalar cosQ, sinQ;
+ double Sa, Sb, Sd;
+ // if M is already symmetric (i.e., M = I*S)
+ if (SkScalarNearlyEqual(B, C)) {
+ cosQ = SK_Scalar1;
+ sinQ = 0;
- SkScalar xs, ys, r0, r1;
-
- xs = sqrt0 + sqrt1;
- ys = sqrt0 - sqrt1;
- // can't have zero yScale, must be degenerate
- SkASSERT(!SkScalarNearlyZero(ys));
-
- // uniformly scaled rotation
- if (SkScalarNearlyZero(F) && SkScalarNearlyZero(G)) {
- SkASSERT(!SkScalarNearlyZero(E) || !SkScalarNearlyZero(H));
- r0 = SkScalarATan2(H, E);
- r1 = 0;
- // uniformly scaled reflection
- } else if (SkScalarNearlyZero(E) && SkScalarNearlyZero(H)) {
- SkASSERT(!SkScalarNearlyZero(F) || !SkScalarNearlyZero(G));
- r0 = -SkScalarATan2(G, F);
- r1 = 0;
+ Sa = A;
+ Sb = B;
+ Sd = D;
} else {
- SkASSERT(!SkScalarNearlyZero(E) || !SkScalarNearlyZero(H));
- SkASSERT(!SkScalarNearlyZero(F) || !SkScalarNearlyZero(G));
-
- SkScalar arctan0 = SkScalarATan2(H, E);
- SkScalar arctan1 = SkScalarATan2(G, F);
- r0 = SK_ScalarHalf*(arctan0 - arctan1);
- r1 = SK_ScalarHalf*(arctan0 + arctan1);
-
- // simplify the results
- const SkScalar kHalfPI = SK_ScalarHalf*SK_ScalarPI;
- if (SkScalarNearlyEqual(SkScalarAbs(r0), kHalfPI)) {
- SkScalar tmp = xs;
- xs = ys;
- ys = tmp;
-
- r1 += r0;
- r0 = 0;
- } else if (SkScalarNearlyEqual(SkScalarAbs(r1), kHalfPI)) {
- SkScalar tmp = xs;
- xs = ys;
- ys = tmp;
-
- r0 += r1;
- r1 = 0;
+ cosQ = A + D;
+ sinQ = C - B;
+ SkScalar reciplen = SK_Scalar1/SkScalarSqrt(cosQ*cosQ + sinQ*sinQ);
+ cosQ *= reciplen;
+ sinQ *= reciplen;
+
+ // S = Q^-1*M
+ // we don't calc Sc since it's symmetric
+ Sa = A*cosQ + C*sinQ;
+ Sb = B*cosQ + D*sinQ;
+ Sd = -B*sinQ + D*cosQ;
+ }
+
+ // Now we need to compute eigenvalues of S (our scale factors)
+ // and eigenvectors (bases for our rotation)
+ // From this, should be able to reconstruct S as U*W*U^T
+ if (SkScalarNearlyZero(Sb)) {
+ // already diagonalized
+ cos1 = SK_Scalar1;
+ sin1 = 0;
+ w1 = Sa;
+ w2 = Sd;
+ cos2 = cosQ;
+ sin2 = sinQ;
+ } else {
+ double diff = Sa - Sd;
+ double discriminant = sqrt(diff*diff + 4.0*Sb*Sb);
+ double trace = Sa + Sd;
+ if (diff > 0) {
+ w1 = 0.5*(trace + discriminant);
+ w2 = 0.5*(trace - discriminant);
+ } else {
+ w1 = 0.5*(trace - discriminant);
+ w2 = 0.5*(trace + discriminant);
}
- }
-
- if (NULL != xScale) {
- *xScale = xs;
- }
- if (NULL != yScale) {
- *yScale = ys;
- }
- if (NULL != rotation0) {
- *rotation0 = r0;
+
+ cos1 = Sb; sin1 = w1 - Sa;
+ SkScalar reciplen = SK_Scalar1/SkScalarSqrt(cos1*cos1 + sin1*sin1);
+ cos1 *= reciplen;
+ sin1 *= reciplen;
+
+ // rotation 2 is composition of Q and U
+ cos2 = cos1*cosQ - sin1*sinQ;
+ sin2 = sin1*cosQ + cos1*sinQ;
+
+ // rotation 1 is U^T
+ sin1 = -sin1;
+ }
+
+ if (NULL != scale) {
+ scale->fX = w1;
+ scale->fY = w2;
}
if (NULL != rotation1) {
- *rotation1 = r1;
+ rotation1->fX = cos1;
+ rotation1->fY = sin1;
+ }
+ if (NULL != rotation2) {
+ rotation2->fX = cos2;
+ rotation2->fY = sin2;
}
return true;
diff --git a/src/core/SkMatrixUtils.h b/src/core/SkMatrixUtils.h
index 37341f289e..3fc1440e15 100644
--- a/src/core/SkMatrixUtils.h
+++ b/src/core/SkMatrixUtils.h
@@ -40,15 +40,15 @@ static inline bool SkTreatAsSpriteFilter(const SkMatrix& matrix,
return SkTreatAsSprite(matrix, width, height, kSkSubPixelBitsForBilerp);
}
-/** Decomposes the upper-left 2x2 of the matrix into a rotation, followed by a non-uniform scale,
- followed by another rotation. Returns true if successful.
- If the scale factors are uniform, then rotation1 will be 0.
- If there is a reflection, yScale will be negative.
- Returns false if the matrix is degenerate.
+/** Decomposes the upper-left 2x2 of the matrix into a rotation (represented by
+ the cosine and sine of the rotation angle), followed by a non-uniform scale,
+ followed by another rotation. If there is a reflection, one of the scale
+ factors will be negative.
+ Returns true if successful. Returns false if the matrix is degenerate.
*/
bool SkDecomposeUpper2x2(const SkMatrix& matrix,
- SkScalar* rotation0,
- SkScalar* xScale, SkScalar* yScale,
- SkScalar* rotation1);
+ SkPoint* rotation1,
+ SkPoint* scale,
+ SkPoint* rotation2);
#endif