diff options
author | Herb Derby <herb@google.com> | 2017-06-23 16:55:11 -0400 |
---|---|---|
committer | Skia Commit-Bot <skia-commit-bot@chromium.org> | 2017-06-23 21:21:59 +0000 |
commit | 51f6a0f89e55b2c0f102aa7963320a23c586e71d (patch) | |
tree | 949b4cf3a2afca6659fb7c31d829beb4cfa1a84d /src/core/SkLinearBitmapPipeline_sample.h | |
parent | 587d082f5044966d9766f43b2632169329986207 (diff) |
Remove deadcode for sRGB image shading.
Change-Id: I9d98da67d97b64ab55cf44b9ae447882dccda1ca
Reviewed-on: https://skia-review.googlesource.com/20695
Reviewed-by: Mike Klein <mtklein@chromium.org>
Commit-Queue: Herb Derby <herb@google.com>
Diffstat (limited to 'src/core/SkLinearBitmapPipeline_sample.h')
-rw-r--r-- | src/core/SkLinearBitmapPipeline_sample.h | 1041 |
1 files changed, 0 insertions, 1041 deletions
diff --git a/src/core/SkLinearBitmapPipeline_sample.h b/src/core/SkLinearBitmapPipeline_sample.h deleted file mode 100644 index a7f5d7383e..0000000000 --- a/src/core/SkLinearBitmapPipeline_sample.h +++ /dev/null @@ -1,1041 +0,0 @@ -/* - * Copyright 2016 Google Inc. - * - * Use of this source code is governed by a BSD-style license that can be - * found in the LICENSE file. - */ - -#ifndef SkLinearBitmapPipeline_sampler_DEFINED -#define SkLinearBitmapPipeline_sampler_DEFINED - -#include <tuple> - -#include "SkAutoMalloc.h" -#include "SkColor.h" -#include "SkColorPriv.h" -#include "SkFixed.h" // for SkFixed1 only. Don't use SkFixed in this file. -#include "SkHalf.h" -#include "SkLinearBitmapPipeline_core.h" -#include "SkNx.h" -#include "SkPM4fPriv.h" - -namespace { -// Explaination of the math: -// 1 - x x -// +--------+--------+ -// | | | -// 1 - y | px00 | px10 | -// | | | -// +--------+--------+ -// | | | -// y | px01 | px11 | -// | | | -// +--------+--------+ -// -// -// Given a pixelxy each is multiplied by a different factor derived from the fractional part of x -// and y: -// * px00 -> (1 - x)(1 - y) = 1 - x - y + xy -// * px10 -> x(1 - y) = x - xy -// * px01 -> (1 - x)y = y - xy -// * px11 -> xy -// So x * y is calculated first and then used to calculate all the other factors. -static Sk4s SK_VECTORCALL bilerp4(Sk4s xs, Sk4s ys, Sk4f px00, Sk4f px10, - Sk4f px01, Sk4f px11) { - // Calculate fractional xs and ys. - Sk4s fxs = xs - xs.floor(); - Sk4s fys = ys - ys.floor(); - Sk4s fxys{fxs * fys}; - Sk4f sum = px11 * fxys; - sum = sum + px01 * (fys - fxys); - sum = sum + px10 * (fxs - fxys); - sum = sum + px00 * (Sk4f{1.0f} - fxs - fys + fxys); - return sum; -} - -//////////////////////////////////////////////////////////////////////////////////////////////////// -// PixelGetter is the lowest level interface to the source data. There is a PixelConverter for each -// of the different SkColorTypes. -template <SkColorType, SkGammaType> class PixelConverter; - -// Alpha handling: -// The alpha from the paint (tintColor) is used in the blend part of the pipeline to modulate -// the entire bitmap. So, the tint color is given an alpha of 1.0 so that the later alpha can -// modulate this color later. -template <> -class PixelConverter<kAlpha_8_SkColorType, kLinear_SkGammaType> { -public: - using Element = uint8_t; - PixelConverter(const SkPixmap& srcPixmap, SkColor tintColor) { - fTintColor = SkColor4f::FromColor(tintColor); - fTintColor.fA = 1.0f; - } - - Sk4f toSk4f(const Element pixel) const { - return Sk4f::Load(&fTintColor) * (pixel * (1.0f/255.0f)); - } - -private: - SkColor4f fTintColor; -}; - -template <SkGammaType gammaType> -static inline Sk4f pmcolor_to_rgba(SkPMColor pixel) { - return swizzle_rb_if_bgra( - (gammaType == kSRGB_SkGammaType) ? Sk4f_fromS32(pixel) - : Sk4f_fromL32(pixel)); -} - -template <SkGammaType gammaType> -class PixelConverter<kRGB_565_SkColorType, gammaType> { -public: - using Element = uint16_t; - PixelConverter(const SkPixmap& srcPixmap) { } - - Sk4f toSk4f(Element pixel) const { - return pmcolor_to_rgba<gammaType>(SkPixel16ToPixel32(pixel)); - } -}; - -template <SkGammaType gammaType> -class PixelConverter<kARGB_4444_SkColorType, gammaType> { -public: - using Element = uint16_t; - PixelConverter(const SkPixmap& srcPixmap) { } - - Sk4f toSk4f(Element pixel) const { - return pmcolor_to_rgba<gammaType>(SkPixel4444ToPixel32(pixel)); - } -}; - -template <SkGammaType gammaType> -class PixelConverter<kRGBA_8888_SkColorType, gammaType> { -public: - using Element = uint32_t; - PixelConverter(const SkPixmap& srcPixmap) { } - - Sk4f toSk4f(Element pixel) const { - return gammaType == kSRGB_SkGammaType - ? Sk4f_fromS32(pixel) - : Sk4f_fromL32(pixel); - } -}; - -template <SkGammaType gammaType> -class PixelConverter<kBGRA_8888_SkColorType, gammaType> { -public: - using Element = uint32_t; - PixelConverter(const SkPixmap& srcPixmap) { } - - Sk4f toSk4f(Element pixel) const { - return swizzle_rb( - gammaType == kSRGB_SkGammaType ? Sk4f_fromS32(pixel) : Sk4f_fromL32(pixel)); - } -}; - -template <SkGammaType gammaType> -class PixelConverter<kIndex_8_SkColorType, gammaType> { -public: - using Element = uint8_t; - PixelConverter(const SkPixmap& srcPixmap) - : fColorTableSize(srcPixmap.ctable()->count()){ - SkColorTable* skColorTable = srcPixmap.ctable(); - SkASSERT(skColorTable != nullptr); - - fColorTable = (Sk4f*)SkAlign16((intptr_t)fColorTableStorage.get()); - for (int i = 0; i < fColorTableSize; i++) { - fColorTable[i] = pmcolor_to_rgba<gammaType>((*skColorTable)[i]); - } - } - - PixelConverter(const PixelConverter& strategy) - : fColorTableSize{strategy.fColorTableSize}{ - fColorTable = (Sk4f*)SkAlign16((intptr_t)fColorTableStorage.get()); - for (int i = 0; i < fColorTableSize; i++) { - fColorTable[i] = strategy.fColorTable[i]; - } - } - - Sk4f toSk4f(Element index) const { - return fColorTable[index]; - } - -private: - static const size_t kColorTableSize = sizeof(Sk4f[256]) + 12; - const int fColorTableSize; - SkAutoMalloc fColorTableStorage{kColorTableSize}; - Sk4f* fColorTable; -}; - -template <SkGammaType gammaType> -class PixelConverter<kGray_8_SkColorType, gammaType> { -public: - using Element = uint8_t; - PixelConverter(const SkPixmap& srcPixmap) { } - - Sk4f toSk4f(Element pixel) const { - float gray = (gammaType == kSRGB_SkGammaType) - ? sk_linear_from_srgb[pixel] - : pixel * (1/255.0f); - return {gray, gray, gray, 1.0f}; - } -}; - -template <> -class PixelConverter<kRGBA_F16_SkColorType, kLinear_SkGammaType> { -public: - using Element = uint64_t; - PixelConverter(const SkPixmap& srcPixmap) { } - - Sk4f toSk4f(const Element pixel) const { - return SkHalfToFloat_finite_ftz(pixel); - } -}; - -class PixelAccessorShim { -public: - explicit PixelAccessorShim(SkLinearBitmapPipeline::PixelAccessorInterface* accessor) - : fPixelAccessor(accessor) { } - - void SK_VECTORCALL getFewPixels( - int n, Sk4i xs, Sk4i ys, Sk4f* px0, Sk4f* px1, Sk4f* px2) const { - fPixelAccessor->getFewPixels(n, xs, ys, px0, px1, px2); - } - - void SK_VECTORCALL get4Pixels( - Sk4i xs, Sk4i ys, Sk4f* px0, Sk4f* px1, Sk4f* px2, Sk4f* px3) const { - fPixelAccessor->get4Pixels(xs, ys, px0, px1, px2, px3); - } - - void get4Pixels( - const void* src, int index, Sk4f* px0, Sk4f* px1, Sk4f* px2, Sk4f* px3) const { - fPixelAccessor->get4Pixels(src, index, px0, px1, px2, px3); - } - - Sk4f getPixelFromRow(const void* row, int index) const { - return fPixelAccessor->getPixelFromRow(row, index); - } - - Sk4f getPixelAt(int index) const { - return fPixelAccessor->getPixelAt(index); - } - - const void* row(int y) const { - return fPixelAccessor->row(y); - } - -private: - SkLinearBitmapPipeline::PixelAccessorInterface* const fPixelAccessor; -}; - -//////////////////////////////////////////////////////////////////////////////////////////////////// -// PixelAccessor handles all the same plumbing for all the PixelGetters. -template <SkColorType colorType, SkGammaType gammaType> -class PixelAccessor final : public SkLinearBitmapPipeline::PixelAccessorInterface { - using Element = typename PixelConverter<colorType, gammaType>::Element; -public: - template <typename... Args> - PixelAccessor(const SkPixmap& srcPixmap, Args&&... args) - : fSrc{static_cast<const Element*>(srcPixmap.addr())} - , fWidth{srcPixmap.rowBytesAsPixels()} - , fConverter{srcPixmap, std::move<Args>(args)...} { } - - void SK_VECTORCALL getFewPixels ( - int n, Sk4i xs, Sk4i ys, Sk4f* px0, Sk4f* px1, Sk4f* px2) const override { - Sk4i bufferLoc = ys * fWidth + xs; - switch (n) { - case 3: - *px2 = this->getPixelAt(bufferLoc[2]); - case 2: - *px1 = this->getPixelAt(bufferLoc[1]); - case 1: - *px0 = this->getPixelAt(bufferLoc[0]); - default: - break; - } - } - - void SK_VECTORCALL get4Pixels( - Sk4i xs, Sk4i ys, Sk4f* px0, Sk4f* px1, Sk4f* px2, Sk4f* px3) const override { - Sk4i bufferLoc = ys * fWidth + xs; - *px0 = this->getPixelAt(bufferLoc[0]); - *px1 = this->getPixelAt(bufferLoc[1]); - *px2 = this->getPixelAt(bufferLoc[2]); - *px3 = this->getPixelAt(bufferLoc[3]); - } - - void get4Pixels( - const void* src, int index, Sk4f* px0, Sk4f* px1, Sk4f* px2, Sk4f* px3) const override { - *px0 = this->getPixelFromRow(src, index + 0); - *px1 = this->getPixelFromRow(src, index + 1); - *px2 = this->getPixelFromRow(src, index + 2); - *px3 = this->getPixelFromRow(src, index + 3); - } - - Sk4f getPixelFromRow(const void* row, int index) const override { - const Element* src = static_cast<const Element*>(row); - return fConverter.toSk4f(src[index]); - } - - Sk4f getPixelAt(int index) const override { - return this->getPixelFromRow(fSrc, index); - } - - const void* row(int y) const override { return fSrc + y * fWidth; } - -private: - const Element* const fSrc; - const int fWidth; - PixelConverter<colorType, gammaType> fConverter; -}; - -// We're moving through source space at a rate of 1 source pixel per 1 dst pixel. -// We'll never re-use pixels, but we can at least load contiguous pixels. -template <typename Next, typename Strategy> -static void src_strategy_blend(Span span, Next* next, Strategy* strategy) { - SkPoint start; - SkScalar length; - int count; - std::tie(start, length, count) = span; - int ix = SkScalarFloorToInt(X(start)); - const void* row = strategy->row((int)std::floor(Y(start))); - if (length > 0) { - while (count >= 4) { - Sk4f px0, px1, px2, px3; - strategy->get4Pixels(row, ix, &px0, &px1, &px2, &px3); - next->blend4Pixels(px0, px1, px2, px3); - ix += 4; - count -= 4; - } - - while (count > 0) { - next->blendPixel(strategy->getPixelFromRow(row, ix)); - ix += 1; - count -= 1; - } - } else { - while (count >= 4) { - Sk4f px0, px1, px2, px3; - strategy->get4Pixels(row, ix - 3, &px3, &px2, &px1, &px0); - next->blend4Pixels(px0, px1, px2, px3); - ix -= 4; - count -= 4; - } - - while (count > 0) { - next->blendPixel(strategy->getPixelFromRow(row, ix)); - ix -= 1; - count -= 1; - } - } -} - -// -- NearestNeighborSampler ----------------------------------------------------------------------- -// NearestNeighborSampler - use nearest neighbor filtering to create runs of destination pixels. -template<typename Accessor, typename Next> -class NearestNeighborSampler : public SkLinearBitmapPipeline::SampleProcessorInterface { -public: - template<typename... Args> - NearestNeighborSampler(SkLinearBitmapPipeline::BlendProcessorInterface* next, Args&& ... args) - : fNext{next}, fAccessor{std::forward<Args>(args)...} { } - - NearestNeighborSampler(SkLinearBitmapPipeline::BlendProcessorInterface* next, - const NearestNeighborSampler& sampler) - : fNext{next}, fAccessor{sampler.fAccessor} { } - - void SK_VECTORCALL pointListFew(int n, Sk4s xs, Sk4s ys) override { - SkASSERT(0 < n && n < 4); - Sk4f px0, px1, px2; - fAccessor.getFewPixels(n, SkNx_cast<int>(xs), SkNx_cast<int>(ys), &px0, &px1, &px2); - if (n >= 1) fNext->blendPixel(px0); - if (n >= 2) fNext->blendPixel(px1); - if (n >= 3) fNext->blendPixel(px2); - } - - void SK_VECTORCALL pointList4(Sk4s xs, Sk4s ys) override { - Sk4f px0, px1, px2, px3; - fAccessor.get4Pixels(SkNx_cast<int>(xs), SkNx_cast<int>(ys), &px0, &px1, &px2, &px3); - fNext->blend4Pixels(px0, px1, px2, px3); - } - - void pointSpan(Span span) override { - SkASSERT(!span.isEmpty()); - SkPoint start; - SkScalar length; - int count; - std::tie(start, length, count) = span; - SkScalar absLength = SkScalarAbs(length); - if (absLength < (count - 1)) { - this->spanSlowRate(span); - } else if (absLength == (count - 1)) { - src_strategy_blend(span, fNext, &fAccessor); - } else { - this->spanFastRate(span); - } - } - - void repeatSpan(Span span, int32_t repeatCount) override { - while (repeatCount > 0) { - this->pointSpan(span); - repeatCount--; - } - } - -private: - // When moving through source space more slowly than dst space (zoomed in), - // we'll be sampling from the same source pixel more than once. - void spanSlowRate(Span span) { - SkPoint start; SkScalar length; int count; - std::tie(start, length, count) = span; - SkScalar x = X(start); - // fx is a fixed 48.16 number. - int64_t fx = static_cast<int64_t>(x * SK_Fixed1); - SkScalar dx = length / (count - 1); - // fdx is a fixed 48.16 number. - int64_t fdx = static_cast<int64_t>(dx * SK_Fixed1); - - const void* row = fAccessor.row((int)std::floor(Y(start))); - Next* next = fNext; - - int64_t ix = fx >> 16; - int64_t prevIX = ix; - Sk4f fpixel = fAccessor.getPixelFromRow(row, ix); - - // When dx is less than one, each pixel is used more than once. Using the fixed point fx - // allows the code to quickly check that the same pixel is being used. The code uses this - // same pixel check to do the sRGB and normalization only once. - auto getNextPixel = [&]() { - if (ix != prevIX) { - fpixel = fAccessor.getPixelFromRow(row, ix); - prevIX = ix; - } - fx += fdx; - ix = fx >> 16; - return fpixel; - }; - - while (count >= 4) { - Sk4f px0 = getNextPixel(); - Sk4f px1 = getNextPixel(); - Sk4f px2 = getNextPixel(); - Sk4f px3 = getNextPixel(); - next->blend4Pixels(px0, px1, px2, px3); - count -= 4; - } - while (count > 0) { - next->blendPixel(getNextPixel()); - count -= 1; - } - } - - // We're moving through source space at a rate of 1 source pixel per 1 dst pixel. - // We'll never re-use pixels, but we can at least load contiguous pixels. - void spanUnitRate(Span span) { - src_strategy_blend(span, fNext, &fAccessor); - } - - // We're moving through source space faster than dst (zoomed out), - // so we'll never reuse a source pixel or be able to do contiguous loads. - void spanFastRate(Span span) { - span_fallback(span, this); - } - - Next* const fNext; - Accessor fAccessor; -}; - -// From an edgeType, the integer value of a pixel vs, and the integer value of the extreme edge -// vMax, take the point which might be off the tile by one pixel and either wrap it or pin it to -// generate the right pixel. The value vs is on the interval [-1, vMax + 1]. It produces a value -// on the interval [0, vMax]. -// Note: vMax is not width or height, but width-1 or height-1 because it is the largest valid pixel. -static inline int adjust_edge(SkShader::TileMode edgeType, int vs, int vMax) { - SkASSERT(-1 <= vs && vs <= vMax + 1); - switch (edgeType) { - case SkShader::kClamp_TileMode: - case SkShader::kMirror_TileMode: - vs = std::max(vs, 0); - vs = std::min(vs, vMax); - break; - case SkShader::kRepeat_TileMode: - vs = (vs <= vMax) ? vs : 0; - vs = (vs >= 0) ? vs : vMax; - break; - } - SkASSERT(0 <= vs && vs <= vMax); - return vs; -} - -// From a sample point on the tile, return the top or left filter value. -// The result r should be in the range (0, 1]. Since this represents the weight given to the top -// left element, then if x == 0.5 the filter value should be 1.0. -// The input sample point must be on the tile, therefore it must be >= 0. -static SkScalar sample_to_filter(SkScalar x) { - SkASSERT(x >= 0.0f); - // The usual form of the top or left edge is x - .5, but since we are working on the unit - // square, then x + .5 works just as well. This also guarantees that v > 0.0 allowing the use - // of trunc. - SkScalar v = x + 0.5f; - // Produce the top or left offset a value on the range [0, 1). - SkScalar f = v - SkScalarTruncToScalar(v); - // Produce the filter value which is on the range (0, 1]. - SkScalar r = 1.0f - f; - SkASSERT(0.0f < r && r <= 1.0f); - return r; -} - -// -- BilerpSampler -------------------------------------------------------------------------------- -// BilerpSampler - use a bilerp filter to create runs of destination pixels. -// Note: in the code below, there are two types of points -// * sample points - these are the points passed in by pointList* and Spans. -// * filter points - are created from a sample point to form the coordinates of the points -// to use in the filter and to generate the filter values. -template<typename Accessor, typename Next> -class BilerpSampler : public SkLinearBitmapPipeline::SampleProcessorInterface { -public: - template<typename... Args> - BilerpSampler( - SkLinearBitmapPipeline::BlendProcessorInterface* next, - SkISize dimensions, - SkShader::TileMode xTile, SkShader::TileMode yTile, - Args&& ... args - ) - : fNext{next} - , fXEdgeType{xTile} - , fXMax{dimensions.width() - 1} - , fYEdgeType{yTile} - , fYMax{dimensions.height() - 1} - , fAccessor{std::forward<Args>(args)...} { } - - BilerpSampler(SkLinearBitmapPipeline::BlendProcessorInterface* next, - const BilerpSampler& sampler) - : fNext{next} - , fXEdgeType{sampler.fXEdgeType} - , fXMax{sampler.fXMax} - , fYEdgeType{sampler.fYEdgeType} - , fYMax{sampler.fYMax} - , fAccessor{sampler.fAccessor} { } - - void SK_VECTORCALL pointListFew(int n, Sk4s xs, Sk4s ys) override { - SkASSERT(0 < n && n < 4); - auto bilerpPixel = [&](int index) { - return this->bilerpSamplePoint(SkPoint{xs[index], ys[index]}); - }; - - if (n >= 1) fNext->blendPixel(bilerpPixel(0)); - if (n >= 2) fNext->blendPixel(bilerpPixel(1)); - if (n >= 3) fNext->blendPixel(bilerpPixel(2)); - } - - void SK_VECTORCALL pointList4(Sk4s xs, Sk4s ys) override { - auto bilerpPixel = [&](int index) { - return this->bilerpSamplePoint(SkPoint{xs[index], ys[index]}); - }; - fNext->blend4Pixels(bilerpPixel(0), bilerpPixel(1), bilerpPixel(2), bilerpPixel(3)); - } - - void pointSpan(Span span) override { - SkASSERT(!span.isEmpty()); - SkPoint start; - SkScalar length; - int count; - std::tie(start, length, count) = span; - - // Nothing to do. - if (count == 0) { - return; - } - - // Trivial case. No sample points are generated other than start. - if (count == 1) { - fNext->blendPixel(this->bilerpSamplePoint(start)); - return; - } - - // Note: the following code could be done in terms of dx = length / (count -1), but that - // would introduce a divide that is not needed for the most common dx == 1 cases. - SkScalar absLength = SkScalarAbs(length); - if (absLength == 0.0f) { - // |dx| == 0 - // length is zero, so clamp an edge pixel. - this->spanZeroRate(span); - } else if (absLength < (count - 1)) { - // 0 < |dx| < 1. - this->spanSlowRate(span); - } else if (absLength == (count - 1)) { - // |dx| == 1. - if (sample_to_filter(span.startX()) == 1.0f - && sample_to_filter(span.startY()) == 1.0f) { - // All the pixels are aligned with the dest; go fast. - src_strategy_blend(span, fNext, &fAccessor); - } else { - // There is some sub-pixel offsets, so bilerp. - this->spanUnitRate(span); - } - } else if (absLength < 2.0f * (count - 1)) { - // 1 < |dx| < 2. - this->spanMediumRate(span); - } else { - // |dx| >= 2. - this->spanFastRate(span); - } - } - - void repeatSpan(Span span, int32_t repeatCount) override { - while (repeatCount > 0) { - this->pointSpan(span); - repeatCount--; - } - } - -private: - - // Convert a sample point to the points used by the filter. - void filterPoints(SkPoint sample, Sk4i* filterXs, Sk4i* filterYs) { - // May be less than zero. Be careful to use Floor. - int x0 = adjust_edge(fXEdgeType, SkScalarFloorToInt(X(sample) - 0.5), fXMax); - // Always greater than zero. Use the faster Trunc. - int x1 = adjust_edge(fXEdgeType, SkScalarTruncToInt(X(sample) + 0.5), fXMax); - int y0 = adjust_edge(fYEdgeType, SkScalarFloorToInt(Y(sample) - 0.5), fYMax); - int y1 = adjust_edge(fYEdgeType, SkScalarTruncToInt(Y(sample) + 0.5), fYMax); - - *filterXs = Sk4i{x0, x1, x0, x1}; - *filterYs = Sk4i{y0, y0, y1, y1}; - } - - // Given a sample point, generate a color by bilerping the four filter points. - Sk4f bilerpSamplePoint(SkPoint sample) { - Sk4i iXs, iYs; - filterPoints(sample, &iXs, &iYs); - Sk4f px00, px10, px01, px11; - fAccessor.get4Pixels(iXs, iYs, &px00, &px10, &px01, &px11); - return bilerp4(Sk4f{X(sample) - 0.5f}, Sk4f{Y(sample) - 0.5f}, px00, px10, px01, px11); - } - - // Get two pixels at x from row0 and row1. - void get2PixelColumn(const void* row0, const void* row1, int x, Sk4f* px0, Sk4f* px1) { - *px0 = fAccessor.getPixelFromRow(row0, x); - *px1 = fAccessor.getPixelFromRow(row1, x); - } - - // |dx| == 0. This code assumes that length is zero. - void spanZeroRate(Span span) { - SkPoint start; SkScalar length; int count; - std::tie(start, length, count) = span; - SkASSERT(length == 0.0f); - - // Filter for the blending of the top and bottom pixels. - SkScalar filterY = sample_to_filter(Y(start)); - - // Generate the four filter points from the sample point start. Generate the row* values. - Sk4i iXs, iYs; - this->filterPoints(start, &iXs, &iYs); - const void* const row0 = fAccessor.row(iYs[0]); - const void* const row1 = fAccessor.row(iYs[2]); - - // Get the two pixels that make up the clamping pixel. - Sk4f pxTop, pxBottom; - this->get2PixelColumn(row0, row1, SkScalarFloorToInt(X(start)), &pxTop, &pxBottom); - Sk4f pixel = pxTop * filterY + (1.0f - filterY) * pxBottom; - - while (count >= 4) { - fNext->blend4Pixels(pixel, pixel, pixel, pixel); - count -= 4; - } - while (count > 0) { - fNext->blendPixel(pixel); - count -= 1; - } - } - - // 0 < |dx| < 1. This code reuses the calculations from previous pixels to reduce - // computation. In particular, several destination pixels maybe generated from the same four - // source pixels. - // In the following code a "part" is a combination of two pixels from the same column of the - // filter. - void spanSlowRate(Span span) { - SkPoint start; SkScalar length; int count; - std::tie(start, length, count) = span; - - // Calculate the distance between each sample point. - const SkScalar dx = length / (count - 1); - SkASSERT(-1.0f < dx && dx < 1.0f && dx != 0.0f); - - // Generate the filter values for the top-left corner. - // Note: these values are in filter space; this has implications about how to adjust - // these values at each step. For example, as the sample point increases, the filter - // value decreases, this is because the filter and position are related by - // (1 - (X(sample) - .5)) % 1. The (1 - stuff) causes the filter to move in the opposite - // direction of the sample point which is increasing by dx. - SkScalar filterX = sample_to_filter(X(start)); - SkScalar filterY = sample_to_filter(Y(start)); - - // Generate the four filter points from the sample point start. Generate the row* values. - Sk4i iXs, iYs; - this->filterPoints(start, &iXs, &iYs); - const void* const row0 = fAccessor.row(iYs[0]); - const void* const row1 = fAccessor.row(iYs[2]); - - // Generate part of the filter value at xColumn. - auto partAtColumn = [&](int xColumn) { - int adjustedColumn = adjust_edge(fXEdgeType, xColumn, fXMax); - Sk4f pxTop, pxBottom; - this->get2PixelColumn(row0, row1, adjustedColumn, &pxTop, &pxBottom); - return pxTop * filterY + (1.0f - filterY) * pxBottom; - }; - - // The leftPart is made up of two pixels from the left column of the filter, right part - // is similar. The top and bottom pixels in the *Part are created as a linear blend of - // the top and bottom pixels using filterY. See the partAtColumn function above. - Sk4f leftPart = partAtColumn(iXs[0]); - Sk4f rightPart = partAtColumn(iXs[1]); - - // Create a destination color by blending together a left and right part using filterX. - auto bilerp = [&](const Sk4f& leftPart, const Sk4f& rightPart) { - Sk4f pixel = leftPart * filterX + rightPart * (1.0f - filterX); - return check_pixel(pixel); - }; - - // Send the first pixel to the destination. This simplifies the loop structure so that no - // extra pixels are fetched for the last iteration of the loop. - fNext->blendPixel(bilerp(leftPart, rightPart)); - count -= 1; - - if (dx > 0.0f) { - // * positive direction - generate destination pixels by sliding the filter from left - // to right. - int rightPartCursor = iXs[1]; - - // Advance the filter from left to right. Remember that moving the top-left corner of - // the filter to the right actually makes the filter value smaller. - auto advanceFilter = [&]() { - filterX -= dx; - if (filterX <= 0.0f) { - filterX += 1.0f; - leftPart = rightPart; - rightPartCursor += 1; - rightPart = partAtColumn(rightPartCursor); - } - SkASSERT(0.0f < filterX && filterX <= 1.0f); - - return bilerp(leftPart, rightPart); - }; - - while (count >= 4) { - Sk4f px0 = advanceFilter(), - px1 = advanceFilter(), - px2 = advanceFilter(), - px3 = advanceFilter(); - fNext->blend4Pixels(px0, px1, px2, px3); - count -= 4; - } - - while (count > 0) { - fNext->blendPixel(advanceFilter()); - count -= 1; - } - } else { - // * negative direction - generate destination pixels by sliding the filter from - // right to left. - int leftPartCursor = iXs[0]; - - // Advance the filter from right to left. Remember that moving the top-left corner of - // the filter to the left actually makes the filter value larger. - auto advanceFilter = [&]() { - // Remember, dx < 0 therefore this adds |dx| to filterX. - filterX -= dx; - // At this point filterX may be > 1, and needs to be wrapped back on to the filter - // interval, and the next column in the filter is calculated. - if (filterX > 1.0f) { - filterX -= 1.0f; - rightPart = leftPart; - leftPartCursor -= 1; - leftPart = partAtColumn(leftPartCursor); - } - SkASSERT(0.0f < filterX && filterX <= 1.0f); - - return bilerp(leftPart, rightPart); - }; - - while (count >= 4) { - Sk4f px0 = advanceFilter(), - px1 = advanceFilter(), - px2 = advanceFilter(), - px3 = advanceFilter(); - fNext->blend4Pixels(px0, px1, px2, px3); - count -= 4; - } - - while (count > 0) { - fNext->blendPixel(advanceFilter()); - count -= 1; - } - } - } - - // |dx| == 1. Moving through source space at a rate of 1 source pixel per 1 dst pixel. - // Every filter part is used for two destination pixels, and the code can bulk load four - // pixels at a time. - void spanUnitRate(Span span) { - SkPoint start; SkScalar length; int count; - std::tie(start, length, count) = span; - SkASSERT(SkScalarAbs(length) == (count - 1)); - - // Calculate the four filter points of start, and use the two different Y values to - // generate the row pointers. - Sk4i iXs, iYs; - filterPoints(start, &iXs, &iYs); - const void* row0 = fAccessor.row(iYs[0]); - const void* row1 = fAccessor.row(iYs[2]); - - // Calculate the filter values for the top-left filter element. - const SkScalar filterX = sample_to_filter(X(start)); - const SkScalar filterY = sample_to_filter(Y(start)); - - // Generate part of the filter value at xColumn. - auto partAtColumn = [&](int xColumn) { - int adjustedColumn = adjust_edge(fXEdgeType, xColumn, fXMax); - Sk4f pxTop, pxBottom; - this->get2PixelColumn(row0, row1, adjustedColumn, &pxTop, &pxBottom); - return pxTop * filterY + (1.0f - filterY) * pxBottom; - }; - - auto get4Parts = [&](int ix, Sk4f* part0, Sk4f* part1, Sk4f* part2, Sk4f* part3) { - // Check if the pixels needed are near the edges. If not go fast using bulk pixels, - // otherwise be careful. - if (0 <= ix && ix <= fXMax - 3) { - Sk4f px00, px10, px20, px30, - px01, px11, px21, px31; - fAccessor.get4Pixels(row0, ix, &px00, &px10, &px20, &px30); - fAccessor.get4Pixels(row1, ix, &px01, &px11, &px21, &px31); - *part0 = filterY * px00 + (1.0f - filterY) * px01; - *part1 = filterY * px10 + (1.0f - filterY) * px11; - *part2 = filterY * px20 + (1.0f - filterY) * px21; - *part3 = filterY * px30 + (1.0f - filterY) * px31; - } else { - *part0 = partAtColumn(ix + 0); - *part1 = partAtColumn(ix + 1); - *part2 = partAtColumn(ix + 2); - *part3 = partAtColumn(ix + 3); - } - }; - - auto bilerp = [&](const Sk4f& part0, const Sk4f& part1) { - return part0 * filterX + part1 * (1.0f - filterX); - }; - - if (length > 0) { - // * positive direction - generate destination pixels by sliding the filter from left - // to right. - - // overlapPart is the filter part from the end of the previous four pixels used at - // the start of the next four pixels. - Sk4f overlapPart = partAtColumn(iXs[0]); - int rightColumnCursor = iXs[1]; - while (count >= 4) { - Sk4f part0, part1, part2, part3; - get4Parts(rightColumnCursor, &part0, &part1, &part2, &part3); - Sk4f px0 = bilerp(overlapPart, part0); - Sk4f px1 = bilerp(part0, part1); - Sk4f px2 = bilerp(part1, part2); - Sk4f px3 = bilerp(part2, part3); - overlapPart = part3; - fNext->blend4Pixels(px0, px1, px2, px3); - rightColumnCursor += 4; - count -= 4; - } - - while (count > 0) { - Sk4f rightPart = partAtColumn(rightColumnCursor); - - fNext->blendPixel(bilerp(overlapPart, rightPart)); - overlapPart = rightPart; - rightColumnCursor += 1; - count -= 1; - } - } else { - // * negative direction - generate destination pixels by sliding the filter from - // right to left. - Sk4f overlapPart = partAtColumn(iXs[1]); - int leftColumnCursor = iXs[0]; - - while (count >= 4) { - Sk4f part0, part1, part2, part3; - get4Parts(leftColumnCursor - 3, &part3, &part2, &part1, &part0); - Sk4f px0 = bilerp(part0, overlapPart); - Sk4f px1 = bilerp(part1, part0); - Sk4f px2 = bilerp(part2, part1); - Sk4f px3 = bilerp(part3, part2); - overlapPart = part3; - fNext->blend4Pixels(px0, px1, px2, px3); - leftColumnCursor -= 4; - count -= 4; - } - - while (count > 0) { - Sk4f leftPart = partAtColumn(leftColumnCursor); - - fNext->blendPixel(bilerp(leftPart, overlapPart)); - overlapPart = leftPart; - leftColumnCursor -= 1; - count -= 1; - } - } - } - - // 1 < |dx| < 2. Going through the source pixels at a faster rate than the dest pixels, but - // still slow enough to take advantage of previous calculations. - void spanMediumRate(Span span) { - SkPoint start; SkScalar length; int count; - std::tie(start, length, count) = span; - - // Calculate the distance between each sample point. - const SkScalar dx = length / (count - 1); - SkASSERT((-2.0f < dx && dx < -1.0f) || (1.0f < dx && dx < 2.0f)); - - // Generate the filter values for the top-left corner. - // Note: these values are in filter space; this has implications about how to adjust - // these values at each step. For example, as the sample point increases, the filter - // value decreases, this is because the filter and position are related by - // (1 - (X(sample) - .5)) % 1. The (1 - stuff) causes the filter to move in the opposite - // direction of the sample point which is increasing by dx. - SkScalar filterX = sample_to_filter(X(start)); - SkScalar filterY = sample_to_filter(Y(start)); - - // Generate the four filter points from the sample point start. Generate the row* values. - Sk4i iXs, iYs; - this->filterPoints(start, &iXs, &iYs); - const void* const row0 = fAccessor.row(iYs[0]); - const void* const row1 = fAccessor.row(iYs[2]); - - // Generate part of the filter value at xColumn. - auto partAtColumn = [&](int xColumn) { - int adjustedColumn = adjust_edge(fXEdgeType, xColumn, fXMax); - Sk4f pxTop, pxBottom; - this->get2PixelColumn(row0, row1, adjustedColumn, &pxTop, &pxBottom); - return pxTop * filterY + (1.0f - filterY) * pxBottom; - }; - - // The leftPart is made up of two pixels from the left column of the filter, right part - // is similar. The top and bottom pixels in the *Part are created as a linear blend of - // the top and bottom pixels using filterY. See the nextPart function below. - Sk4f leftPart = partAtColumn(iXs[0]); - Sk4f rightPart = partAtColumn(iXs[1]); - - // Create a destination color by blending together a left and right part using filterX. - auto bilerp = [&](const Sk4f& leftPart, const Sk4f& rightPart) { - Sk4f pixel = leftPart * filterX + rightPart * (1.0f - filterX); - return check_pixel(pixel); - }; - - // Send the first pixel to the destination. This simplifies the loop structure so that no - // extra pixels are fetched for the last iteration of the loop. - fNext->blendPixel(bilerp(leftPart, rightPart)); - count -= 1; - - if (dx > 0.0f) { - // * positive direction - generate destination pixels by sliding the filter from left - // to right. - int rightPartCursor = iXs[1]; - - // Advance the filter from left to right. Remember that moving the top-left corner of - // the filter to the right actually makes the filter value smaller. - auto advanceFilter = [&]() { - filterX -= dx; - // At this point filterX is less than zero, but might actually be less than -1. - if (filterX > -1.0f) { - filterX += 1.0f; - leftPart = rightPart; - rightPartCursor += 1; - rightPart = partAtColumn(rightPartCursor); - } else { - filterX += 2.0f; - rightPartCursor += 2; - leftPart = partAtColumn(rightPartCursor - 1); - rightPart = partAtColumn(rightPartCursor); - } - SkASSERT(0.0f < filterX && filterX <= 1.0f); - - return bilerp(leftPart, rightPart); - }; - - while (count >= 4) { - Sk4f px0 = advanceFilter(), - px1 = advanceFilter(), - px2 = advanceFilter(), - px3 = advanceFilter(); - fNext->blend4Pixels(px0, px1, px2, px3); - count -= 4; - } - - while (count > 0) { - fNext->blendPixel(advanceFilter()); - count -= 1; - } - } else { - // * negative direction - generate destination pixels by sliding the filter from - // right to left. - int leftPartCursor = iXs[0]; - - auto advanceFilter = [&]() { - // Remember, dx < 0 therefore this adds |dx| to filterX. - filterX -= dx; - // At this point, filterX is greater than one, but may actually be greater than two. - if (filterX < 2.0f) { - filterX -= 1.0f; - rightPart = leftPart; - leftPartCursor -= 1; - leftPart = partAtColumn(leftPartCursor); - } else { - filterX -= 2.0f; - leftPartCursor -= 2; - rightPart = partAtColumn(leftPartCursor - 1); - leftPart = partAtColumn(leftPartCursor); - } - SkASSERT(0.0f < filterX && filterX <= 1.0f); - return bilerp(leftPart, rightPart); - }; - - while (count >= 4) { - Sk4f px0 = advanceFilter(), - px1 = advanceFilter(), - px2 = advanceFilter(), - px3 = advanceFilter(); - fNext->blend4Pixels(px0, px1, px2, px3); - count -= 4; - } - - while (count > 0) { - fNext->blendPixel(advanceFilter()); - count -= 1; - } - } - } - - // We're moving through source space faster than dst (zoomed out), - // so we'll never reuse a source pixel or be able to do contiguous loads. - void spanFastRate(Span span) { - SkPoint start; SkScalar length; int count; - std::tie(start, length, count) = span; - SkScalar x = X(start); - SkScalar y = Y(start); - - SkScalar dx = length / (count - 1); - while (count > 0) { - fNext->blendPixel(this->bilerpSamplePoint(SkPoint{x, y})); - x += dx; - count -= 1; - } - } - - Next* const fNext; - const SkShader::TileMode fXEdgeType; - const int fXMax; - const SkShader::TileMode fYEdgeType; - const int fYMax; - Accessor fAccessor; -}; - -} // namespace - -#endif // SkLinearBitmapPipeline_sampler_DEFINED |