aboutsummaryrefslogtreecommitdiffhomepage
path: root/src/core/SkLinearBitmapPipeline_sample.h
diff options
context:
space:
mode:
authorGravatar Herb Derby <herb@google.com>2017-06-23 16:55:11 -0400
committerGravatar Skia Commit-Bot <skia-commit-bot@chromium.org>2017-06-23 21:21:59 +0000
commit51f6a0f89e55b2c0f102aa7963320a23c586e71d (patch)
tree949b4cf3a2afca6659fb7c31d829beb4cfa1a84d /src/core/SkLinearBitmapPipeline_sample.h
parent587d082f5044966d9766f43b2632169329986207 (diff)
Remove deadcode for sRGB image shading.
Change-Id: I9d98da67d97b64ab55cf44b9ae447882dccda1ca Reviewed-on: https://skia-review.googlesource.com/20695 Reviewed-by: Mike Klein <mtklein@chromium.org> Commit-Queue: Herb Derby <herb@google.com>
Diffstat (limited to 'src/core/SkLinearBitmapPipeline_sample.h')
-rw-r--r--src/core/SkLinearBitmapPipeline_sample.h1041
1 files changed, 0 insertions, 1041 deletions
diff --git a/src/core/SkLinearBitmapPipeline_sample.h b/src/core/SkLinearBitmapPipeline_sample.h
deleted file mode 100644
index a7f5d7383e..0000000000
--- a/src/core/SkLinearBitmapPipeline_sample.h
+++ /dev/null
@@ -1,1041 +0,0 @@
-/*
- * Copyright 2016 Google Inc.
- *
- * Use of this source code is governed by a BSD-style license that can be
- * found in the LICENSE file.
- */
-
-#ifndef SkLinearBitmapPipeline_sampler_DEFINED
-#define SkLinearBitmapPipeline_sampler_DEFINED
-
-#include <tuple>
-
-#include "SkAutoMalloc.h"
-#include "SkColor.h"
-#include "SkColorPriv.h"
-#include "SkFixed.h" // for SkFixed1 only. Don't use SkFixed in this file.
-#include "SkHalf.h"
-#include "SkLinearBitmapPipeline_core.h"
-#include "SkNx.h"
-#include "SkPM4fPriv.h"
-
-namespace {
-// Explaination of the math:
-// 1 - x x
-// +--------+--------+
-// | | |
-// 1 - y | px00 | px10 |
-// | | |
-// +--------+--------+
-// | | |
-// y | px01 | px11 |
-// | | |
-// +--------+--------+
-//
-//
-// Given a pixelxy each is multiplied by a different factor derived from the fractional part of x
-// and y:
-// * px00 -> (1 - x)(1 - y) = 1 - x - y + xy
-// * px10 -> x(1 - y) = x - xy
-// * px01 -> (1 - x)y = y - xy
-// * px11 -> xy
-// So x * y is calculated first and then used to calculate all the other factors.
-static Sk4s SK_VECTORCALL bilerp4(Sk4s xs, Sk4s ys, Sk4f px00, Sk4f px10,
- Sk4f px01, Sk4f px11) {
- // Calculate fractional xs and ys.
- Sk4s fxs = xs - xs.floor();
- Sk4s fys = ys - ys.floor();
- Sk4s fxys{fxs * fys};
- Sk4f sum = px11 * fxys;
- sum = sum + px01 * (fys - fxys);
- sum = sum + px10 * (fxs - fxys);
- sum = sum + px00 * (Sk4f{1.0f} - fxs - fys + fxys);
- return sum;
-}
-
-////////////////////////////////////////////////////////////////////////////////////////////////////
-// PixelGetter is the lowest level interface to the source data. There is a PixelConverter for each
-// of the different SkColorTypes.
-template <SkColorType, SkGammaType> class PixelConverter;
-
-// Alpha handling:
-// The alpha from the paint (tintColor) is used in the blend part of the pipeline to modulate
-// the entire bitmap. So, the tint color is given an alpha of 1.0 so that the later alpha can
-// modulate this color later.
-template <>
-class PixelConverter<kAlpha_8_SkColorType, kLinear_SkGammaType> {
-public:
- using Element = uint8_t;
- PixelConverter(const SkPixmap& srcPixmap, SkColor tintColor) {
- fTintColor = SkColor4f::FromColor(tintColor);
- fTintColor.fA = 1.0f;
- }
-
- Sk4f toSk4f(const Element pixel) const {
- return Sk4f::Load(&fTintColor) * (pixel * (1.0f/255.0f));
- }
-
-private:
- SkColor4f fTintColor;
-};
-
-template <SkGammaType gammaType>
-static inline Sk4f pmcolor_to_rgba(SkPMColor pixel) {
- return swizzle_rb_if_bgra(
- (gammaType == kSRGB_SkGammaType) ? Sk4f_fromS32(pixel)
- : Sk4f_fromL32(pixel));
-}
-
-template <SkGammaType gammaType>
-class PixelConverter<kRGB_565_SkColorType, gammaType> {
-public:
- using Element = uint16_t;
- PixelConverter(const SkPixmap& srcPixmap) { }
-
- Sk4f toSk4f(Element pixel) const {
- return pmcolor_to_rgba<gammaType>(SkPixel16ToPixel32(pixel));
- }
-};
-
-template <SkGammaType gammaType>
-class PixelConverter<kARGB_4444_SkColorType, gammaType> {
-public:
- using Element = uint16_t;
- PixelConverter(const SkPixmap& srcPixmap) { }
-
- Sk4f toSk4f(Element pixel) const {
- return pmcolor_to_rgba<gammaType>(SkPixel4444ToPixel32(pixel));
- }
-};
-
-template <SkGammaType gammaType>
-class PixelConverter<kRGBA_8888_SkColorType, gammaType> {
-public:
- using Element = uint32_t;
- PixelConverter(const SkPixmap& srcPixmap) { }
-
- Sk4f toSk4f(Element pixel) const {
- return gammaType == kSRGB_SkGammaType
- ? Sk4f_fromS32(pixel)
- : Sk4f_fromL32(pixel);
- }
-};
-
-template <SkGammaType gammaType>
-class PixelConverter<kBGRA_8888_SkColorType, gammaType> {
-public:
- using Element = uint32_t;
- PixelConverter(const SkPixmap& srcPixmap) { }
-
- Sk4f toSk4f(Element pixel) const {
- return swizzle_rb(
- gammaType == kSRGB_SkGammaType ? Sk4f_fromS32(pixel) : Sk4f_fromL32(pixel));
- }
-};
-
-template <SkGammaType gammaType>
-class PixelConverter<kIndex_8_SkColorType, gammaType> {
-public:
- using Element = uint8_t;
- PixelConverter(const SkPixmap& srcPixmap)
- : fColorTableSize(srcPixmap.ctable()->count()){
- SkColorTable* skColorTable = srcPixmap.ctable();
- SkASSERT(skColorTable != nullptr);
-
- fColorTable = (Sk4f*)SkAlign16((intptr_t)fColorTableStorage.get());
- for (int i = 0; i < fColorTableSize; i++) {
- fColorTable[i] = pmcolor_to_rgba<gammaType>((*skColorTable)[i]);
- }
- }
-
- PixelConverter(const PixelConverter& strategy)
- : fColorTableSize{strategy.fColorTableSize}{
- fColorTable = (Sk4f*)SkAlign16((intptr_t)fColorTableStorage.get());
- for (int i = 0; i < fColorTableSize; i++) {
- fColorTable[i] = strategy.fColorTable[i];
- }
- }
-
- Sk4f toSk4f(Element index) const {
- return fColorTable[index];
- }
-
-private:
- static const size_t kColorTableSize = sizeof(Sk4f[256]) + 12;
- const int fColorTableSize;
- SkAutoMalloc fColorTableStorage{kColorTableSize};
- Sk4f* fColorTable;
-};
-
-template <SkGammaType gammaType>
-class PixelConverter<kGray_8_SkColorType, gammaType> {
-public:
- using Element = uint8_t;
- PixelConverter(const SkPixmap& srcPixmap) { }
-
- Sk4f toSk4f(Element pixel) const {
- float gray = (gammaType == kSRGB_SkGammaType)
- ? sk_linear_from_srgb[pixel]
- : pixel * (1/255.0f);
- return {gray, gray, gray, 1.0f};
- }
-};
-
-template <>
-class PixelConverter<kRGBA_F16_SkColorType, kLinear_SkGammaType> {
-public:
- using Element = uint64_t;
- PixelConverter(const SkPixmap& srcPixmap) { }
-
- Sk4f toSk4f(const Element pixel) const {
- return SkHalfToFloat_finite_ftz(pixel);
- }
-};
-
-class PixelAccessorShim {
-public:
- explicit PixelAccessorShim(SkLinearBitmapPipeline::PixelAccessorInterface* accessor)
- : fPixelAccessor(accessor) { }
-
- void SK_VECTORCALL getFewPixels(
- int n, Sk4i xs, Sk4i ys, Sk4f* px0, Sk4f* px1, Sk4f* px2) const {
- fPixelAccessor->getFewPixels(n, xs, ys, px0, px1, px2);
- }
-
- void SK_VECTORCALL get4Pixels(
- Sk4i xs, Sk4i ys, Sk4f* px0, Sk4f* px1, Sk4f* px2, Sk4f* px3) const {
- fPixelAccessor->get4Pixels(xs, ys, px0, px1, px2, px3);
- }
-
- void get4Pixels(
- const void* src, int index, Sk4f* px0, Sk4f* px1, Sk4f* px2, Sk4f* px3) const {
- fPixelAccessor->get4Pixels(src, index, px0, px1, px2, px3);
- }
-
- Sk4f getPixelFromRow(const void* row, int index) const {
- return fPixelAccessor->getPixelFromRow(row, index);
- }
-
- Sk4f getPixelAt(int index) const {
- return fPixelAccessor->getPixelAt(index);
- }
-
- const void* row(int y) const {
- return fPixelAccessor->row(y);
- }
-
-private:
- SkLinearBitmapPipeline::PixelAccessorInterface* const fPixelAccessor;
-};
-
-////////////////////////////////////////////////////////////////////////////////////////////////////
-// PixelAccessor handles all the same plumbing for all the PixelGetters.
-template <SkColorType colorType, SkGammaType gammaType>
-class PixelAccessor final : public SkLinearBitmapPipeline::PixelAccessorInterface {
- using Element = typename PixelConverter<colorType, gammaType>::Element;
-public:
- template <typename... Args>
- PixelAccessor(const SkPixmap& srcPixmap, Args&&... args)
- : fSrc{static_cast<const Element*>(srcPixmap.addr())}
- , fWidth{srcPixmap.rowBytesAsPixels()}
- , fConverter{srcPixmap, std::move<Args>(args)...} { }
-
- void SK_VECTORCALL getFewPixels (
- int n, Sk4i xs, Sk4i ys, Sk4f* px0, Sk4f* px1, Sk4f* px2) const override {
- Sk4i bufferLoc = ys * fWidth + xs;
- switch (n) {
- case 3:
- *px2 = this->getPixelAt(bufferLoc[2]);
- case 2:
- *px1 = this->getPixelAt(bufferLoc[1]);
- case 1:
- *px0 = this->getPixelAt(bufferLoc[0]);
- default:
- break;
- }
- }
-
- void SK_VECTORCALL get4Pixels(
- Sk4i xs, Sk4i ys, Sk4f* px0, Sk4f* px1, Sk4f* px2, Sk4f* px3) const override {
- Sk4i bufferLoc = ys * fWidth + xs;
- *px0 = this->getPixelAt(bufferLoc[0]);
- *px1 = this->getPixelAt(bufferLoc[1]);
- *px2 = this->getPixelAt(bufferLoc[2]);
- *px3 = this->getPixelAt(bufferLoc[3]);
- }
-
- void get4Pixels(
- const void* src, int index, Sk4f* px0, Sk4f* px1, Sk4f* px2, Sk4f* px3) const override {
- *px0 = this->getPixelFromRow(src, index + 0);
- *px1 = this->getPixelFromRow(src, index + 1);
- *px2 = this->getPixelFromRow(src, index + 2);
- *px3 = this->getPixelFromRow(src, index + 3);
- }
-
- Sk4f getPixelFromRow(const void* row, int index) const override {
- const Element* src = static_cast<const Element*>(row);
- return fConverter.toSk4f(src[index]);
- }
-
- Sk4f getPixelAt(int index) const override {
- return this->getPixelFromRow(fSrc, index);
- }
-
- const void* row(int y) const override { return fSrc + y * fWidth; }
-
-private:
- const Element* const fSrc;
- const int fWidth;
- PixelConverter<colorType, gammaType> fConverter;
-};
-
-// We're moving through source space at a rate of 1 source pixel per 1 dst pixel.
-// We'll never re-use pixels, but we can at least load contiguous pixels.
-template <typename Next, typename Strategy>
-static void src_strategy_blend(Span span, Next* next, Strategy* strategy) {
- SkPoint start;
- SkScalar length;
- int count;
- std::tie(start, length, count) = span;
- int ix = SkScalarFloorToInt(X(start));
- const void* row = strategy->row((int)std::floor(Y(start)));
- if (length > 0) {
- while (count >= 4) {
- Sk4f px0, px1, px2, px3;
- strategy->get4Pixels(row, ix, &px0, &px1, &px2, &px3);
- next->blend4Pixels(px0, px1, px2, px3);
- ix += 4;
- count -= 4;
- }
-
- while (count > 0) {
- next->blendPixel(strategy->getPixelFromRow(row, ix));
- ix += 1;
- count -= 1;
- }
- } else {
- while (count >= 4) {
- Sk4f px0, px1, px2, px3;
- strategy->get4Pixels(row, ix - 3, &px3, &px2, &px1, &px0);
- next->blend4Pixels(px0, px1, px2, px3);
- ix -= 4;
- count -= 4;
- }
-
- while (count > 0) {
- next->blendPixel(strategy->getPixelFromRow(row, ix));
- ix -= 1;
- count -= 1;
- }
- }
-}
-
-// -- NearestNeighborSampler -----------------------------------------------------------------------
-// NearestNeighborSampler - use nearest neighbor filtering to create runs of destination pixels.
-template<typename Accessor, typename Next>
-class NearestNeighborSampler : public SkLinearBitmapPipeline::SampleProcessorInterface {
-public:
- template<typename... Args>
- NearestNeighborSampler(SkLinearBitmapPipeline::BlendProcessorInterface* next, Args&& ... args)
- : fNext{next}, fAccessor{std::forward<Args>(args)...} { }
-
- NearestNeighborSampler(SkLinearBitmapPipeline::BlendProcessorInterface* next,
- const NearestNeighborSampler& sampler)
- : fNext{next}, fAccessor{sampler.fAccessor} { }
-
- void SK_VECTORCALL pointListFew(int n, Sk4s xs, Sk4s ys) override {
- SkASSERT(0 < n && n < 4);
- Sk4f px0, px1, px2;
- fAccessor.getFewPixels(n, SkNx_cast<int>(xs), SkNx_cast<int>(ys), &px0, &px1, &px2);
- if (n >= 1) fNext->blendPixel(px0);
- if (n >= 2) fNext->blendPixel(px1);
- if (n >= 3) fNext->blendPixel(px2);
- }
-
- void SK_VECTORCALL pointList4(Sk4s xs, Sk4s ys) override {
- Sk4f px0, px1, px2, px3;
- fAccessor.get4Pixels(SkNx_cast<int>(xs), SkNx_cast<int>(ys), &px0, &px1, &px2, &px3);
- fNext->blend4Pixels(px0, px1, px2, px3);
- }
-
- void pointSpan(Span span) override {
- SkASSERT(!span.isEmpty());
- SkPoint start;
- SkScalar length;
- int count;
- std::tie(start, length, count) = span;
- SkScalar absLength = SkScalarAbs(length);
- if (absLength < (count - 1)) {
- this->spanSlowRate(span);
- } else if (absLength == (count - 1)) {
- src_strategy_blend(span, fNext, &fAccessor);
- } else {
- this->spanFastRate(span);
- }
- }
-
- void repeatSpan(Span span, int32_t repeatCount) override {
- while (repeatCount > 0) {
- this->pointSpan(span);
- repeatCount--;
- }
- }
-
-private:
- // When moving through source space more slowly than dst space (zoomed in),
- // we'll be sampling from the same source pixel more than once.
- void spanSlowRate(Span span) {
- SkPoint start; SkScalar length; int count;
- std::tie(start, length, count) = span;
- SkScalar x = X(start);
- // fx is a fixed 48.16 number.
- int64_t fx = static_cast<int64_t>(x * SK_Fixed1);
- SkScalar dx = length / (count - 1);
- // fdx is a fixed 48.16 number.
- int64_t fdx = static_cast<int64_t>(dx * SK_Fixed1);
-
- const void* row = fAccessor.row((int)std::floor(Y(start)));
- Next* next = fNext;
-
- int64_t ix = fx >> 16;
- int64_t prevIX = ix;
- Sk4f fpixel = fAccessor.getPixelFromRow(row, ix);
-
- // When dx is less than one, each pixel is used more than once. Using the fixed point fx
- // allows the code to quickly check that the same pixel is being used. The code uses this
- // same pixel check to do the sRGB and normalization only once.
- auto getNextPixel = [&]() {
- if (ix != prevIX) {
- fpixel = fAccessor.getPixelFromRow(row, ix);
- prevIX = ix;
- }
- fx += fdx;
- ix = fx >> 16;
- return fpixel;
- };
-
- while (count >= 4) {
- Sk4f px0 = getNextPixel();
- Sk4f px1 = getNextPixel();
- Sk4f px2 = getNextPixel();
- Sk4f px3 = getNextPixel();
- next->blend4Pixels(px0, px1, px2, px3);
- count -= 4;
- }
- while (count > 0) {
- next->blendPixel(getNextPixel());
- count -= 1;
- }
- }
-
- // We're moving through source space at a rate of 1 source pixel per 1 dst pixel.
- // We'll never re-use pixels, but we can at least load contiguous pixels.
- void spanUnitRate(Span span) {
- src_strategy_blend(span, fNext, &fAccessor);
- }
-
- // We're moving through source space faster than dst (zoomed out),
- // so we'll never reuse a source pixel or be able to do contiguous loads.
- void spanFastRate(Span span) {
- span_fallback(span, this);
- }
-
- Next* const fNext;
- Accessor fAccessor;
-};
-
-// From an edgeType, the integer value of a pixel vs, and the integer value of the extreme edge
-// vMax, take the point which might be off the tile by one pixel and either wrap it or pin it to
-// generate the right pixel. The value vs is on the interval [-1, vMax + 1]. It produces a value
-// on the interval [0, vMax].
-// Note: vMax is not width or height, but width-1 or height-1 because it is the largest valid pixel.
-static inline int adjust_edge(SkShader::TileMode edgeType, int vs, int vMax) {
- SkASSERT(-1 <= vs && vs <= vMax + 1);
- switch (edgeType) {
- case SkShader::kClamp_TileMode:
- case SkShader::kMirror_TileMode:
- vs = std::max(vs, 0);
- vs = std::min(vs, vMax);
- break;
- case SkShader::kRepeat_TileMode:
- vs = (vs <= vMax) ? vs : 0;
- vs = (vs >= 0) ? vs : vMax;
- break;
- }
- SkASSERT(0 <= vs && vs <= vMax);
- return vs;
-}
-
-// From a sample point on the tile, return the top or left filter value.
-// The result r should be in the range (0, 1]. Since this represents the weight given to the top
-// left element, then if x == 0.5 the filter value should be 1.0.
-// The input sample point must be on the tile, therefore it must be >= 0.
-static SkScalar sample_to_filter(SkScalar x) {
- SkASSERT(x >= 0.0f);
- // The usual form of the top or left edge is x - .5, but since we are working on the unit
- // square, then x + .5 works just as well. This also guarantees that v > 0.0 allowing the use
- // of trunc.
- SkScalar v = x + 0.5f;
- // Produce the top or left offset a value on the range [0, 1).
- SkScalar f = v - SkScalarTruncToScalar(v);
- // Produce the filter value which is on the range (0, 1].
- SkScalar r = 1.0f - f;
- SkASSERT(0.0f < r && r <= 1.0f);
- return r;
-}
-
-// -- BilerpSampler --------------------------------------------------------------------------------
-// BilerpSampler - use a bilerp filter to create runs of destination pixels.
-// Note: in the code below, there are two types of points
-// * sample points - these are the points passed in by pointList* and Spans.
-// * filter points - are created from a sample point to form the coordinates of the points
-// to use in the filter and to generate the filter values.
-template<typename Accessor, typename Next>
-class BilerpSampler : public SkLinearBitmapPipeline::SampleProcessorInterface {
-public:
- template<typename... Args>
- BilerpSampler(
- SkLinearBitmapPipeline::BlendProcessorInterface* next,
- SkISize dimensions,
- SkShader::TileMode xTile, SkShader::TileMode yTile,
- Args&& ... args
- )
- : fNext{next}
- , fXEdgeType{xTile}
- , fXMax{dimensions.width() - 1}
- , fYEdgeType{yTile}
- , fYMax{dimensions.height() - 1}
- , fAccessor{std::forward<Args>(args)...} { }
-
- BilerpSampler(SkLinearBitmapPipeline::BlendProcessorInterface* next,
- const BilerpSampler& sampler)
- : fNext{next}
- , fXEdgeType{sampler.fXEdgeType}
- , fXMax{sampler.fXMax}
- , fYEdgeType{sampler.fYEdgeType}
- , fYMax{sampler.fYMax}
- , fAccessor{sampler.fAccessor} { }
-
- void SK_VECTORCALL pointListFew(int n, Sk4s xs, Sk4s ys) override {
- SkASSERT(0 < n && n < 4);
- auto bilerpPixel = [&](int index) {
- return this->bilerpSamplePoint(SkPoint{xs[index], ys[index]});
- };
-
- if (n >= 1) fNext->blendPixel(bilerpPixel(0));
- if (n >= 2) fNext->blendPixel(bilerpPixel(1));
- if (n >= 3) fNext->blendPixel(bilerpPixel(2));
- }
-
- void SK_VECTORCALL pointList4(Sk4s xs, Sk4s ys) override {
- auto bilerpPixel = [&](int index) {
- return this->bilerpSamplePoint(SkPoint{xs[index], ys[index]});
- };
- fNext->blend4Pixels(bilerpPixel(0), bilerpPixel(1), bilerpPixel(2), bilerpPixel(3));
- }
-
- void pointSpan(Span span) override {
- SkASSERT(!span.isEmpty());
- SkPoint start;
- SkScalar length;
- int count;
- std::tie(start, length, count) = span;
-
- // Nothing to do.
- if (count == 0) {
- return;
- }
-
- // Trivial case. No sample points are generated other than start.
- if (count == 1) {
- fNext->blendPixel(this->bilerpSamplePoint(start));
- return;
- }
-
- // Note: the following code could be done in terms of dx = length / (count -1), but that
- // would introduce a divide that is not needed for the most common dx == 1 cases.
- SkScalar absLength = SkScalarAbs(length);
- if (absLength == 0.0f) {
- // |dx| == 0
- // length is zero, so clamp an edge pixel.
- this->spanZeroRate(span);
- } else if (absLength < (count - 1)) {
- // 0 < |dx| < 1.
- this->spanSlowRate(span);
- } else if (absLength == (count - 1)) {
- // |dx| == 1.
- if (sample_to_filter(span.startX()) == 1.0f
- && sample_to_filter(span.startY()) == 1.0f) {
- // All the pixels are aligned with the dest; go fast.
- src_strategy_blend(span, fNext, &fAccessor);
- } else {
- // There is some sub-pixel offsets, so bilerp.
- this->spanUnitRate(span);
- }
- } else if (absLength < 2.0f * (count - 1)) {
- // 1 < |dx| < 2.
- this->spanMediumRate(span);
- } else {
- // |dx| >= 2.
- this->spanFastRate(span);
- }
- }
-
- void repeatSpan(Span span, int32_t repeatCount) override {
- while (repeatCount > 0) {
- this->pointSpan(span);
- repeatCount--;
- }
- }
-
-private:
-
- // Convert a sample point to the points used by the filter.
- void filterPoints(SkPoint sample, Sk4i* filterXs, Sk4i* filterYs) {
- // May be less than zero. Be careful to use Floor.
- int x0 = adjust_edge(fXEdgeType, SkScalarFloorToInt(X(sample) - 0.5), fXMax);
- // Always greater than zero. Use the faster Trunc.
- int x1 = adjust_edge(fXEdgeType, SkScalarTruncToInt(X(sample) + 0.5), fXMax);
- int y0 = adjust_edge(fYEdgeType, SkScalarFloorToInt(Y(sample) - 0.5), fYMax);
- int y1 = adjust_edge(fYEdgeType, SkScalarTruncToInt(Y(sample) + 0.5), fYMax);
-
- *filterXs = Sk4i{x0, x1, x0, x1};
- *filterYs = Sk4i{y0, y0, y1, y1};
- }
-
- // Given a sample point, generate a color by bilerping the four filter points.
- Sk4f bilerpSamplePoint(SkPoint sample) {
- Sk4i iXs, iYs;
- filterPoints(sample, &iXs, &iYs);
- Sk4f px00, px10, px01, px11;
- fAccessor.get4Pixels(iXs, iYs, &px00, &px10, &px01, &px11);
- return bilerp4(Sk4f{X(sample) - 0.5f}, Sk4f{Y(sample) - 0.5f}, px00, px10, px01, px11);
- }
-
- // Get two pixels at x from row0 and row1.
- void get2PixelColumn(const void* row0, const void* row1, int x, Sk4f* px0, Sk4f* px1) {
- *px0 = fAccessor.getPixelFromRow(row0, x);
- *px1 = fAccessor.getPixelFromRow(row1, x);
- }
-
- // |dx| == 0. This code assumes that length is zero.
- void spanZeroRate(Span span) {
- SkPoint start; SkScalar length; int count;
- std::tie(start, length, count) = span;
- SkASSERT(length == 0.0f);
-
- // Filter for the blending of the top and bottom pixels.
- SkScalar filterY = sample_to_filter(Y(start));
-
- // Generate the four filter points from the sample point start. Generate the row* values.
- Sk4i iXs, iYs;
- this->filterPoints(start, &iXs, &iYs);
- const void* const row0 = fAccessor.row(iYs[0]);
- const void* const row1 = fAccessor.row(iYs[2]);
-
- // Get the two pixels that make up the clamping pixel.
- Sk4f pxTop, pxBottom;
- this->get2PixelColumn(row0, row1, SkScalarFloorToInt(X(start)), &pxTop, &pxBottom);
- Sk4f pixel = pxTop * filterY + (1.0f - filterY) * pxBottom;
-
- while (count >= 4) {
- fNext->blend4Pixels(pixel, pixel, pixel, pixel);
- count -= 4;
- }
- while (count > 0) {
- fNext->blendPixel(pixel);
- count -= 1;
- }
- }
-
- // 0 < |dx| < 1. This code reuses the calculations from previous pixels to reduce
- // computation. In particular, several destination pixels maybe generated from the same four
- // source pixels.
- // In the following code a "part" is a combination of two pixels from the same column of the
- // filter.
- void spanSlowRate(Span span) {
- SkPoint start; SkScalar length; int count;
- std::tie(start, length, count) = span;
-
- // Calculate the distance between each sample point.
- const SkScalar dx = length / (count - 1);
- SkASSERT(-1.0f < dx && dx < 1.0f && dx != 0.0f);
-
- // Generate the filter values for the top-left corner.
- // Note: these values are in filter space; this has implications about how to adjust
- // these values at each step. For example, as the sample point increases, the filter
- // value decreases, this is because the filter and position are related by
- // (1 - (X(sample) - .5)) % 1. The (1 - stuff) causes the filter to move in the opposite
- // direction of the sample point which is increasing by dx.
- SkScalar filterX = sample_to_filter(X(start));
- SkScalar filterY = sample_to_filter(Y(start));
-
- // Generate the four filter points from the sample point start. Generate the row* values.
- Sk4i iXs, iYs;
- this->filterPoints(start, &iXs, &iYs);
- const void* const row0 = fAccessor.row(iYs[0]);
- const void* const row1 = fAccessor.row(iYs[2]);
-
- // Generate part of the filter value at xColumn.
- auto partAtColumn = [&](int xColumn) {
- int adjustedColumn = adjust_edge(fXEdgeType, xColumn, fXMax);
- Sk4f pxTop, pxBottom;
- this->get2PixelColumn(row0, row1, adjustedColumn, &pxTop, &pxBottom);
- return pxTop * filterY + (1.0f - filterY) * pxBottom;
- };
-
- // The leftPart is made up of two pixels from the left column of the filter, right part
- // is similar. The top and bottom pixels in the *Part are created as a linear blend of
- // the top and bottom pixels using filterY. See the partAtColumn function above.
- Sk4f leftPart = partAtColumn(iXs[0]);
- Sk4f rightPart = partAtColumn(iXs[1]);
-
- // Create a destination color by blending together a left and right part using filterX.
- auto bilerp = [&](const Sk4f& leftPart, const Sk4f& rightPart) {
- Sk4f pixel = leftPart * filterX + rightPart * (1.0f - filterX);
- return check_pixel(pixel);
- };
-
- // Send the first pixel to the destination. This simplifies the loop structure so that no
- // extra pixels are fetched for the last iteration of the loop.
- fNext->blendPixel(bilerp(leftPart, rightPart));
- count -= 1;
-
- if (dx > 0.0f) {
- // * positive direction - generate destination pixels by sliding the filter from left
- // to right.
- int rightPartCursor = iXs[1];
-
- // Advance the filter from left to right. Remember that moving the top-left corner of
- // the filter to the right actually makes the filter value smaller.
- auto advanceFilter = [&]() {
- filterX -= dx;
- if (filterX <= 0.0f) {
- filterX += 1.0f;
- leftPart = rightPart;
- rightPartCursor += 1;
- rightPart = partAtColumn(rightPartCursor);
- }
- SkASSERT(0.0f < filterX && filterX <= 1.0f);
-
- return bilerp(leftPart, rightPart);
- };
-
- while (count >= 4) {
- Sk4f px0 = advanceFilter(),
- px1 = advanceFilter(),
- px2 = advanceFilter(),
- px3 = advanceFilter();
- fNext->blend4Pixels(px0, px1, px2, px3);
- count -= 4;
- }
-
- while (count > 0) {
- fNext->blendPixel(advanceFilter());
- count -= 1;
- }
- } else {
- // * negative direction - generate destination pixels by sliding the filter from
- // right to left.
- int leftPartCursor = iXs[0];
-
- // Advance the filter from right to left. Remember that moving the top-left corner of
- // the filter to the left actually makes the filter value larger.
- auto advanceFilter = [&]() {
- // Remember, dx < 0 therefore this adds |dx| to filterX.
- filterX -= dx;
- // At this point filterX may be > 1, and needs to be wrapped back on to the filter
- // interval, and the next column in the filter is calculated.
- if (filterX > 1.0f) {
- filterX -= 1.0f;
- rightPart = leftPart;
- leftPartCursor -= 1;
- leftPart = partAtColumn(leftPartCursor);
- }
- SkASSERT(0.0f < filterX && filterX <= 1.0f);
-
- return bilerp(leftPart, rightPart);
- };
-
- while (count >= 4) {
- Sk4f px0 = advanceFilter(),
- px1 = advanceFilter(),
- px2 = advanceFilter(),
- px3 = advanceFilter();
- fNext->blend4Pixels(px0, px1, px2, px3);
- count -= 4;
- }
-
- while (count > 0) {
- fNext->blendPixel(advanceFilter());
- count -= 1;
- }
- }
- }
-
- // |dx| == 1. Moving through source space at a rate of 1 source pixel per 1 dst pixel.
- // Every filter part is used for two destination pixels, and the code can bulk load four
- // pixels at a time.
- void spanUnitRate(Span span) {
- SkPoint start; SkScalar length; int count;
- std::tie(start, length, count) = span;
- SkASSERT(SkScalarAbs(length) == (count - 1));
-
- // Calculate the four filter points of start, and use the two different Y values to
- // generate the row pointers.
- Sk4i iXs, iYs;
- filterPoints(start, &iXs, &iYs);
- const void* row0 = fAccessor.row(iYs[0]);
- const void* row1 = fAccessor.row(iYs[2]);
-
- // Calculate the filter values for the top-left filter element.
- const SkScalar filterX = sample_to_filter(X(start));
- const SkScalar filterY = sample_to_filter(Y(start));
-
- // Generate part of the filter value at xColumn.
- auto partAtColumn = [&](int xColumn) {
- int adjustedColumn = adjust_edge(fXEdgeType, xColumn, fXMax);
- Sk4f pxTop, pxBottom;
- this->get2PixelColumn(row0, row1, adjustedColumn, &pxTop, &pxBottom);
- return pxTop * filterY + (1.0f - filterY) * pxBottom;
- };
-
- auto get4Parts = [&](int ix, Sk4f* part0, Sk4f* part1, Sk4f* part2, Sk4f* part3) {
- // Check if the pixels needed are near the edges. If not go fast using bulk pixels,
- // otherwise be careful.
- if (0 <= ix && ix <= fXMax - 3) {
- Sk4f px00, px10, px20, px30,
- px01, px11, px21, px31;
- fAccessor.get4Pixels(row0, ix, &px00, &px10, &px20, &px30);
- fAccessor.get4Pixels(row1, ix, &px01, &px11, &px21, &px31);
- *part0 = filterY * px00 + (1.0f - filterY) * px01;
- *part1 = filterY * px10 + (1.0f - filterY) * px11;
- *part2 = filterY * px20 + (1.0f - filterY) * px21;
- *part3 = filterY * px30 + (1.0f - filterY) * px31;
- } else {
- *part0 = partAtColumn(ix + 0);
- *part1 = partAtColumn(ix + 1);
- *part2 = partAtColumn(ix + 2);
- *part3 = partAtColumn(ix + 3);
- }
- };
-
- auto bilerp = [&](const Sk4f& part0, const Sk4f& part1) {
- return part0 * filterX + part1 * (1.0f - filterX);
- };
-
- if (length > 0) {
- // * positive direction - generate destination pixels by sliding the filter from left
- // to right.
-
- // overlapPart is the filter part from the end of the previous four pixels used at
- // the start of the next four pixels.
- Sk4f overlapPart = partAtColumn(iXs[0]);
- int rightColumnCursor = iXs[1];
- while (count >= 4) {
- Sk4f part0, part1, part2, part3;
- get4Parts(rightColumnCursor, &part0, &part1, &part2, &part3);
- Sk4f px0 = bilerp(overlapPart, part0);
- Sk4f px1 = bilerp(part0, part1);
- Sk4f px2 = bilerp(part1, part2);
- Sk4f px3 = bilerp(part2, part3);
- overlapPart = part3;
- fNext->blend4Pixels(px0, px1, px2, px3);
- rightColumnCursor += 4;
- count -= 4;
- }
-
- while (count > 0) {
- Sk4f rightPart = partAtColumn(rightColumnCursor);
-
- fNext->blendPixel(bilerp(overlapPart, rightPart));
- overlapPart = rightPart;
- rightColumnCursor += 1;
- count -= 1;
- }
- } else {
- // * negative direction - generate destination pixels by sliding the filter from
- // right to left.
- Sk4f overlapPart = partAtColumn(iXs[1]);
- int leftColumnCursor = iXs[0];
-
- while (count >= 4) {
- Sk4f part0, part1, part2, part3;
- get4Parts(leftColumnCursor - 3, &part3, &part2, &part1, &part0);
- Sk4f px0 = bilerp(part0, overlapPart);
- Sk4f px1 = bilerp(part1, part0);
- Sk4f px2 = bilerp(part2, part1);
- Sk4f px3 = bilerp(part3, part2);
- overlapPart = part3;
- fNext->blend4Pixels(px0, px1, px2, px3);
- leftColumnCursor -= 4;
- count -= 4;
- }
-
- while (count > 0) {
- Sk4f leftPart = partAtColumn(leftColumnCursor);
-
- fNext->blendPixel(bilerp(leftPart, overlapPart));
- overlapPart = leftPart;
- leftColumnCursor -= 1;
- count -= 1;
- }
- }
- }
-
- // 1 < |dx| < 2. Going through the source pixels at a faster rate than the dest pixels, but
- // still slow enough to take advantage of previous calculations.
- void spanMediumRate(Span span) {
- SkPoint start; SkScalar length; int count;
- std::tie(start, length, count) = span;
-
- // Calculate the distance between each sample point.
- const SkScalar dx = length / (count - 1);
- SkASSERT((-2.0f < dx && dx < -1.0f) || (1.0f < dx && dx < 2.0f));
-
- // Generate the filter values for the top-left corner.
- // Note: these values are in filter space; this has implications about how to adjust
- // these values at each step. For example, as the sample point increases, the filter
- // value decreases, this is because the filter and position are related by
- // (1 - (X(sample) - .5)) % 1. The (1 - stuff) causes the filter to move in the opposite
- // direction of the sample point which is increasing by dx.
- SkScalar filterX = sample_to_filter(X(start));
- SkScalar filterY = sample_to_filter(Y(start));
-
- // Generate the four filter points from the sample point start. Generate the row* values.
- Sk4i iXs, iYs;
- this->filterPoints(start, &iXs, &iYs);
- const void* const row0 = fAccessor.row(iYs[0]);
- const void* const row1 = fAccessor.row(iYs[2]);
-
- // Generate part of the filter value at xColumn.
- auto partAtColumn = [&](int xColumn) {
- int adjustedColumn = adjust_edge(fXEdgeType, xColumn, fXMax);
- Sk4f pxTop, pxBottom;
- this->get2PixelColumn(row0, row1, adjustedColumn, &pxTop, &pxBottom);
- return pxTop * filterY + (1.0f - filterY) * pxBottom;
- };
-
- // The leftPart is made up of two pixels from the left column of the filter, right part
- // is similar. The top and bottom pixels in the *Part are created as a linear blend of
- // the top and bottom pixels using filterY. See the nextPart function below.
- Sk4f leftPart = partAtColumn(iXs[0]);
- Sk4f rightPart = partAtColumn(iXs[1]);
-
- // Create a destination color by blending together a left and right part using filterX.
- auto bilerp = [&](const Sk4f& leftPart, const Sk4f& rightPart) {
- Sk4f pixel = leftPart * filterX + rightPart * (1.0f - filterX);
- return check_pixel(pixel);
- };
-
- // Send the first pixel to the destination. This simplifies the loop structure so that no
- // extra pixels are fetched for the last iteration of the loop.
- fNext->blendPixel(bilerp(leftPart, rightPart));
- count -= 1;
-
- if (dx > 0.0f) {
- // * positive direction - generate destination pixels by sliding the filter from left
- // to right.
- int rightPartCursor = iXs[1];
-
- // Advance the filter from left to right. Remember that moving the top-left corner of
- // the filter to the right actually makes the filter value smaller.
- auto advanceFilter = [&]() {
- filterX -= dx;
- // At this point filterX is less than zero, but might actually be less than -1.
- if (filterX > -1.0f) {
- filterX += 1.0f;
- leftPart = rightPart;
- rightPartCursor += 1;
- rightPart = partAtColumn(rightPartCursor);
- } else {
- filterX += 2.0f;
- rightPartCursor += 2;
- leftPart = partAtColumn(rightPartCursor - 1);
- rightPart = partAtColumn(rightPartCursor);
- }
- SkASSERT(0.0f < filterX && filterX <= 1.0f);
-
- return bilerp(leftPart, rightPart);
- };
-
- while (count >= 4) {
- Sk4f px0 = advanceFilter(),
- px1 = advanceFilter(),
- px2 = advanceFilter(),
- px3 = advanceFilter();
- fNext->blend4Pixels(px0, px1, px2, px3);
- count -= 4;
- }
-
- while (count > 0) {
- fNext->blendPixel(advanceFilter());
- count -= 1;
- }
- } else {
- // * negative direction - generate destination pixels by sliding the filter from
- // right to left.
- int leftPartCursor = iXs[0];
-
- auto advanceFilter = [&]() {
- // Remember, dx < 0 therefore this adds |dx| to filterX.
- filterX -= dx;
- // At this point, filterX is greater than one, but may actually be greater than two.
- if (filterX < 2.0f) {
- filterX -= 1.0f;
- rightPart = leftPart;
- leftPartCursor -= 1;
- leftPart = partAtColumn(leftPartCursor);
- } else {
- filterX -= 2.0f;
- leftPartCursor -= 2;
- rightPart = partAtColumn(leftPartCursor - 1);
- leftPart = partAtColumn(leftPartCursor);
- }
- SkASSERT(0.0f < filterX && filterX <= 1.0f);
- return bilerp(leftPart, rightPart);
- };
-
- while (count >= 4) {
- Sk4f px0 = advanceFilter(),
- px1 = advanceFilter(),
- px2 = advanceFilter(),
- px3 = advanceFilter();
- fNext->blend4Pixels(px0, px1, px2, px3);
- count -= 4;
- }
-
- while (count > 0) {
- fNext->blendPixel(advanceFilter());
- count -= 1;
- }
- }
- }
-
- // We're moving through source space faster than dst (zoomed out),
- // so we'll never reuse a source pixel or be able to do contiguous loads.
- void spanFastRate(Span span) {
- SkPoint start; SkScalar length; int count;
- std::tie(start, length, count) = span;
- SkScalar x = X(start);
- SkScalar y = Y(start);
-
- SkScalar dx = length / (count - 1);
- while (count > 0) {
- fNext->blendPixel(this->bilerpSamplePoint(SkPoint{x, y}));
- x += dx;
- count -= 1;
- }
- }
-
- Next* const fNext;
- const SkShader::TileMode fXEdgeType;
- const int fXMax;
- const SkShader::TileMode fYEdgeType;
- const int fYMax;
- Accessor fAccessor;
-};
-
-} // namespace
-
-#endif // SkLinearBitmapPipeline_sampler_DEFINED