diff options
author | Cary Clark <caryclark@skia.org> | 2017-09-15 11:59:23 -0400 |
---|---|---|
committer | Skia Commit-Bot <skia-commit-bot@chromium.org> | 2017-09-15 16:31:35 +0000 |
commit | a4083c97d48e8a4f88e2797d7363f141e3d42553 (patch) | |
tree | ab01d3982edcf50b7d69dc3e4475568964daa5fe /include | |
parent | 3bf6366c6fc5d619358458e50909b60deb4cfe4a (diff) |
make most of SkColorPriv.h private
created new file src/core/SkColorData.h for
internal consumption. Note that many of the
functions there are unused as well.
Bug: skia: 6898
R: reed@google.com
Change-Id: I25bfd5a9c21f53558c4ca65a77eb5d322d897c6d
Reviewed-on: https://skia-review.googlesource.com/46848
Commit-Queue: Cary Clark <caryclark@google.com>
Reviewed-by: Mike Reed <reed@google.com>
Diffstat (limited to 'include')
-rw-r--r-- | include/core/SkColorPriv.h | 1014 |
1 files changed, 1 insertions, 1013 deletions
diff --git a/include/core/SkColorPriv.h b/include/core/SkColorPriv.h index 12c2277656..8ec4541754 100644 --- a/include/core/SkColorPriv.h +++ b/include/core/SkColorPriv.h @@ -8,171 +8,6 @@ #ifndef SkColorPriv_DEFINED #define SkColorPriv_DEFINED -// turn this own for extra debug checking when blending onto 565 -#ifdef SK_DEBUG - #define CHECK_FOR_565_OVERFLOW -#endif - -#include "SkColor.h" -#include "SkMath.h" - -////////////////////////////////////////////////////////////////////////////// - -#define SkASSERT_IS_BYTE(x) SkASSERT(0 == ((x) & ~0xFF)) - -/* - * Skia's 32bit backend only supports 1 sizzle order at a time (compile-time). - * This is specified by 4 defines SK_A32_SHIFT, SK_R32_SHIFT, ... for G and B. - * - * For easier compatibility with Skia's GPU backend, we further restrict these - * to either (in memory-byte-order) RGBA or BGRA. Note that this "order" does - * not directly correspond to the same shift-order, since we have to take endianess - * into account. - * - * Here we enforce this constraint. - */ - -#ifdef SK_CPU_BENDIAN - #define SK_RGBA_R32_SHIFT 24 - #define SK_RGBA_G32_SHIFT 16 - #define SK_RGBA_B32_SHIFT 8 - #define SK_RGBA_A32_SHIFT 0 - - #define SK_BGRA_B32_SHIFT 24 - #define SK_BGRA_G32_SHIFT 16 - #define SK_BGRA_R32_SHIFT 8 - #define SK_BGRA_A32_SHIFT 0 -#else - #define SK_RGBA_R32_SHIFT 0 - #define SK_RGBA_G32_SHIFT 8 - #define SK_RGBA_B32_SHIFT 16 - #define SK_RGBA_A32_SHIFT 24 - - #define SK_BGRA_B32_SHIFT 0 - #define SK_BGRA_G32_SHIFT 8 - #define SK_BGRA_R32_SHIFT 16 - #define SK_BGRA_A32_SHIFT 24 -#endif - -#if defined(SK_PMCOLOR_IS_RGBA) && defined(SK_PMCOLOR_IS_BGRA) - #error "can't define PMCOLOR to be RGBA and BGRA" -#endif - -#define LOCAL_PMCOLOR_SHIFTS_EQUIVALENT_TO_RGBA \ - (SK_A32_SHIFT == SK_RGBA_A32_SHIFT && \ - SK_R32_SHIFT == SK_RGBA_R32_SHIFT && \ - SK_G32_SHIFT == SK_RGBA_G32_SHIFT && \ - SK_B32_SHIFT == SK_RGBA_B32_SHIFT) - -#define LOCAL_PMCOLOR_SHIFTS_EQUIVALENT_TO_BGRA \ - (SK_A32_SHIFT == SK_BGRA_A32_SHIFT && \ - SK_R32_SHIFT == SK_BGRA_R32_SHIFT && \ - SK_G32_SHIFT == SK_BGRA_G32_SHIFT && \ - SK_B32_SHIFT == SK_BGRA_B32_SHIFT) - - -#define SK_A_INDEX (SK_A32_SHIFT/8) -#define SK_R_INDEX (SK_R32_SHIFT/8) -#define SK_G_INDEX (SK_G32_SHIFT/8) -#define SK_B_INDEX (SK_B32_SHIFT/8) - -#if defined(SK_PMCOLOR_IS_RGBA) && !LOCAL_PMCOLOR_SHIFTS_EQUIVALENT_TO_RGBA - #error "SK_PMCOLOR_IS_RGBA does not match SK_*32_SHIFT values" -#endif - -#if defined(SK_PMCOLOR_IS_BGRA) && !LOCAL_PMCOLOR_SHIFTS_EQUIVALENT_TO_BGRA - #error "SK_PMCOLOR_IS_BGRA does not match SK_*32_SHIFT values" -#endif - -#if !defined(SK_PMCOLOR_IS_RGBA) && !defined(SK_PMCOLOR_IS_BGRA) - // deduce which to define from the _SHIFT defines - - #if LOCAL_PMCOLOR_SHIFTS_EQUIVALENT_TO_RGBA - #define SK_PMCOLOR_IS_RGBA - #elif LOCAL_PMCOLOR_SHIFTS_EQUIVALENT_TO_BGRA - #define SK_PMCOLOR_IS_BGRA - #else - #error "need 32bit packing to be either RGBA or BGRA" - #endif -#endif - -// hide these now that we're done -#undef LOCAL_PMCOLOR_SHIFTS_EQUIVALENT_TO_RGBA -#undef LOCAL_PMCOLOR_SHIFTS_EQUIVALENT_TO_BGRA - -////////////////////////////////////////////////////////////////////////////// - -// Reverse the bytes coorsponding to RED and BLUE in a packed pixels. Note the -// pair of them are in the same 2 slots in both RGBA and BGRA, thus there is -// no need to pass in the colortype to this function. -static inline uint32_t SkSwizzle_RB(uint32_t c) { - static const uint32_t kRBMask = (0xFF << SK_R32_SHIFT) | (0xFF << SK_B32_SHIFT); - - unsigned c0 = (c >> SK_R32_SHIFT) & 0xFF; - unsigned c1 = (c >> SK_B32_SHIFT) & 0xFF; - return (c & ~kRBMask) | (c0 << SK_B32_SHIFT) | (c1 << SK_R32_SHIFT); -} - -static inline uint32_t SkPackARGB_as_RGBA(U8CPU a, U8CPU r, U8CPU g, U8CPU b) { - SkASSERT_IS_BYTE(a); - SkASSERT_IS_BYTE(r); - SkASSERT_IS_BYTE(g); - SkASSERT_IS_BYTE(b); - return (a << SK_RGBA_A32_SHIFT) | (r << SK_RGBA_R32_SHIFT) | - (g << SK_RGBA_G32_SHIFT) | (b << SK_RGBA_B32_SHIFT); -} - -static inline uint32_t SkPackARGB_as_BGRA(U8CPU a, U8CPU r, U8CPU g, U8CPU b) { - SkASSERT_IS_BYTE(a); - SkASSERT_IS_BYTE(r); - SkASSERT_IS_BYTE(g); - SkASSERT_IS_BYTE(b); - return (a << SK_BGRA_A32_SHIFT) | (r << SK_BGRA_R32_SHIFT) | - (g << SK_BGRA_G32_SHIFT) | (b << SK_BGRA_B32_SHIFT); -} - -static inline SkPMColor SkSwizzle_RGBA_to_PMColor(uint32_t c) { -#ifdef SK_PMCOLOR_IS_RGBA - return c; -#else - return SkSwizzle_RB(c); -#endif -} - -static inline SkPMColor SkSwizzle_BGRA_to_PMColor(uint32_t c) { -#ifdef SK_PMCOLOR_IS_BGRA - return c; -#else - return SkSwizzle_RB(c); -#endif -} - -////////////////////////////////////////////////////////////////////////////// - -///@{ -/** See ITU-R Recommendation BT.709 at http://www.itu.int/rec/R-REC-BT.709/ .*/ -#define SK_ITU_BT709_LUM_COEFF_R (0.2126f) -#define SK_ITU_BT709_LUM_COEFF_G (0.7152f) -#define SK_ITU_BT709_LUM_COEFF_B (0.0722f) -///@} - -///@{ -/** A float value which specifies this channel's contribution to luminance. */ -#define SK_LUM_COEFF_R SK_ITU_BT709_LUM_COEFF_R -#define SK_LUM_COEFF_G SK_ITU_BT709_LUM_COEFF_G -#define SK_LUM_COEFF_B SK_ITU_BT709_LUM_COEFF_B -///@} - -/** Computes the luminance from the given r, g, and b in accordance with - SK_LUM_COEFF_X. For correct results, r, g, and b should be in linear space. -*/ -static inline U8CPU SkComputeLuminance(U8CPU r, U8CPU g, U8CPU b) { - //The following is - //r * SK_LUM_COEFF_R + g * SK_LUM_COEFF_G + b * SK_LUM_COEFF_B - //with SK_LUM_COEFF_X in 1.8 fixed point (rounding adjusted to sum to 256). - return (r * 54 + g * 183 + b * 19) >> 8; -} - /** Turn 0..255 into 0..256 by adding 1 at the half-way point. Used to turn a byte into a scale value, so that we can say scale * value >> 8 instead of alpha * value / 255. @@ -186,217 +21,16 @@ static inline unsigned SkAlpha255To256(U8CPU alpha) { return alpha + 1; } -/** - * Turn a 0..255 value into a 0..256 value, rounding up if the value is >= 0x80. - * This is slightly more accurate than SkAlpha255To256. - */ -static inline unsigned Sk255To256(U8CPU value) { - SkASSERT(SkToU8(value) == value); - return value + (value >> 7); -} - -/** Multiplify value by 0..256, and shift the result down 8 - (i.e. return (value * alpha256) >> 8) - */ -#define SkAlphaMul(value, alpha256) (((value) * (alpha256)) >> 8) - -/** Calculates 256 - (value * alpha256) / 255 in range [0,256], - * for [0,255] value and [0,256] alpha256. - */ -static inline U16CPU SkAlphaMulInv256(U16CPU value, U16CPU alpha256) { - unsigned prod = 0xFFFF - value * alpha256; - return (prod + (prod >> 8)) >> 8; -} - -// The caller may want negative values, so keep all params signed (int) -// so we don't accidentally slip into unsigned math and lose the sign -// extension when we shift (in SkAlphaMul) -static inline int SkAlphaBlend(int src, int dst, int scale256) { - SkASSERT((unsigned)scale256 <= 256); - return dst + SkAlphaMul(src - dst, scale256); -} - -/** - * Returns (src * alpha + dst * (255 - alpha)) / 255 - * - * This is more accurate than SkAlphaBlend, but slightly slower - */ -static inline int SkAlphaBlend255(S16CPU src, S16CPU dst, U8CPU alpha) { - SkASSERT((int16_t)src == src); - SkASSERT((int16_t)dst == dst); - SkASSERT((uint8_t)alpha == alpha); - - int prod = (src - dst) * alpha + 128; - prod = (prod + (prod >> 8)) >> 8; - return dst + prod; -} - -static inline U8CPU SkUnitScalarClampToByte(SkScalar x) { - return static_cast<U8CPU>(SkScalarPin(x, 0, 1) * 255 + 0.5); -} - -#define SK_R16_BITS 5 -#define SK_G16_BITS 6 -#define SK_B16_BITS 5 - -#define SK_R16_SHIFT (SK_B16_BITS + SK_G16_BITS) -#define SK_G16_SHIFT (SK_B16_BITS) -#define SK_B16_SHIFT 0 - -#define SK_R16_MASK ((1 << SK_R16_BITS) - 1) -#define SK_G16_MASK ((1 << SK_G16_BITS) - 1) -#define SK_B16_MASK ((1 << SK_B16_BITS) - 1) - -#define SkGetPackedR16(color) (((unsigned)(color) >> SK_R16_SHIFT) & SK_R16_MASK) -#define SkGetPackedG16(color) (((unsigned)(color) >> SK_G16_SHIFT) & SK_G16_MASK) -#define SkGetPackedB16(color) (((unsigned)(color) >> SK_B16_SHIFT) & SK_B16_MASK) - -#define SkR16Assert(r) SkASSERT((unsigned)(r) <= SK_R16_MASK) -#define SkG16Assert(g) SkASSERT((unsigned)(g) <= SK_G16_MASK) -#define SkB16Assert(b) SkASSERT((unsigned)(b) <= SK_B16_MASK) - -static inline uint16_t SkPackRGB16(unsigned r, unsigned g, unsigned b) { - SkASSERT(r <= SK_R16_MASK); - SkASSERT(g <= SK_G16_MASK); - SkASSERT(b <= SK_B16_MASK); - - return SkToU16((r << SK_R16_SHIFT) | (g << SK_G16_SHIFT) | (b << SK_B16_SHIFT)); -} - -#define SK_R16_MASK_IN_PLACE (SK_R16_MASK << SK_R16_SHIFT) -#define SK_G16_MASK_IN_PLACE (SK_G16_MASK << SK_G16_SHIFT) -#define SK_B16_MASK_IN_PLACE (SK_B16_MASK << SK_B16_SHIFT) - -/** Expand the 16bit color into a 32bit value that can be scaled all at once - by a value up to 32. Used in conjunction with SkCompact_rgb_16. -*/ -static inline uint32_t SkExpand_rgb_16(U16CPU c) { - SkASSERT(c == (uint16_t)c); - - return ((c & SK_G16_MASK_IN_PLACE) << 16) | (c & ~SK_G16_MASK_IN_PLACE); -} - -/** Compress an expanded value (from SkExpand_rgb_16) back down to a 16bit - color value. The computation yields only 16bits of valid data, but we claim - to return 32bits, so that the compiler won't generate extra instructions to - "clean" the top 16bits. However, the top 16 can contain garbage, so it is - up to the caller to safely ignore them. -*/ -static inline U16CPU SkCompact_rgb_16(uint32_t c) { - return ((c >> 16) & SK_G16_MASK_IN_PLACE) | (c & ~SK_G16_MASK_IN_PLACE); -} - -/** Scale the 16bit color value by the 0..256 scale parameter. - The computation yields only 16bits of valid data, but we claim - to return 32bits, so that the compiler won't generate extra instructions to - "clean" the top 16bits. -*/ -static inline U16CPU SkAlphaMulRGB16(U16CPU c, unsigned scale) { - return SkCompact_rgb_16(SkExpand_rgb_16(c) * (scale >> 3) >> 5); -} - -// this helper explicitly returns a clean 16bit value (but slower) -#define SkAlphaMulRGB16_ToU16(c, s) (uint16_t)SkAlphaMulRGB16(c, s) - -/** Blend pre-expanded RGB32 with 16bit color value by the 0..32 scale parameter. - The computation yields only 16bits of valid data, but we claim to return - 32bits, so that the compiler won't generate extra instructions to "clean" - the top 16bits. -*/ -static inline U16CPU SkBlend32_RGB16(uint32_t src_expand, uint16_t dst, unsigned scale) { - uint32_t dst_expand = SkExpand_rgb_16(dst) * scale; - return SkCompact_rgb_16((src_expand + dst_expand) >> 5); -} - -/** Blend src and dst 16bit colors by the 0..256 scale parameter. - The computation yields only 16bits of valid data, but we claim - to return 32bits, so that the compiler won't generate extra instructions to - "clean" the top 16bits. -*/ -static inline U16CPU SkBlendRGB16(U16CPU src, U16CPU dst, int srcScale) { - SkASSERT((unsigned)srcScale <= 256); - - srcScale >>= 3; - - uint32_t src32 = SkExpand_rgb_16(src); - uint32_t dst32 = SkExpand_rgb_16(dst); - return SkCompact_rgb_16(dst32 + ((src32 - dst32) * srcScale >> 5)); -} - -static inline void SkBlendRGB16(const uint16_t src[], uint16_t dst[], - int srcScale, int count) { - SkASSERT(count > 0); - SkASSERT((unsigned)srcScale <= 256); - - srcScale >>= 3; - - do { - uint32_t src32 = SkExpand_rgb_16(*src++); - uint32_t dst32 = SkExpand_rgb_16(*dst); - *dst++ = static_cast<uint16_t>( - SkCompact_rgb_16(dst32 + ((src32 - dst32) * srcScale >> 5))); - } while (--count > 0); -} - -#ifdef SK_DEBUG - static inline U16CPU SkRGB16Add(U16CPU a, U16CPU b) { - SkASSERT(SkGetPackedR16(a) + SkGetPackedR16(b) <= SK_R16_MASK); - SkASSERT(SkGetPackedG16(a) + SkGetPackedG16(b) <= SK_G16_MASK); - SkASSERT(SkGetPackedB16(a) + SkGetPackedB16(b) <= SK_B16_MASK); - - return a + b; - } -#else - #define SkRGB16Add(a, b) ((a) + (b)) -#endif - -/////////////////////////////////////////////////////////////////////////////// - #define SK_A32_BITS 8 -#define SK_R32_BITS 8 -#define SK_G32_BITS 8 -#define SK_B32_BITS 8 #define SK_A32_MASK ((1 << SK_A32_BITS) - 1) -#define SK_R32_MASK ((1 << SK_R32_BITS) - 1) -#define SK_G32_MASK ((1 << SK_G32_BITS) - 1) -#define SK_B32_MASK ((1 << SK_B32_BITS) - 1) -#define SkGetPackedA32(packed) ((uint32_t)((packed) << (24 - SK_A32_SHIFT)) >> 24) +#define SkGetPackedA32(packed) ((uint32_t)((packed) << (24 - SK_A32_SHIFT)) >> 24) #define SkGetPackedR32(packed) ((uint32_t)((packed) << (24 - SK_R32_SHIFT)) >> 24) #define SkGetPackedG32(packed) ((uint32_t)((packed) << (24 - SK_G32_SHIFT)) >> 24) #define SkGetPackedB32(packed) ((uint32_t)((packed) << (24 - SK_B32_SHIFT)) >> 24) #define SkA32Assert(a) SkASSERT((unsigned)(a) <= SK_A32_MASK) -#define SkR32Assert(r) SkASSERT((unsigned)(r) <= SK_R32_MASK) -#define SkG32Assert(g) SkASSERT((unsigned)(g) <= SK_G32_MASK) -#define SkB32Assert(b) SkASSERT((unsigned)(b) <= SK_B32_MASK) - -#ifdef SK_DEBUG - #define SkPMColorAssert(color_value) \ - do { \ - SkPMColor pm_color_value = (color_value); \ - uint32_t alpha_color_value = SkGetPackedA32(pm_color_value); \ - SkA32Assert(alpha_color_value); \ - SkASSERT(SkGetPackedR32(pm_color_value) <= alpha_color_value); \ - SkASSERT(SkGetPackedG32(pm_color_value) <= alpha_color_value); \ - SkASSERT(SkGetPackedB32(pm_color_value) <= alpha_color_value); \ - } while (false) -#else - #define SkPMColorAssert(c) -#endif - -static inline bool SkPMColorValid(SkPMColor c) { - auto a = SkGetPackedA32(c); - bool valid = a <= SK_A32_MASK - && SkGetPackedR32(c) <= a - && SkGetPackedG32(c) <= a - && SkGetPackedB32(c) <= a; - if (valid) { - SkPMColorAssert(c); // Make sure we're consistent when it counts. - } - return valid; -} /** * Pack the components into a SkPMColor, checking (in the debug version) that @@ -412,132 +46,6 @@ static inline SkPMColor SkPackARGB32(U8CPU a, U8CPU r, U8CPU g, U8CPU b) { (g << SK_G32_SHIFT) | (b << SK_B32_SHIFT); } -static inline uint32_t SkPackPMColor_as_RGBA(SkPMColor c) { - return SkPackARGB_as_RGBA(SkGetPackedA32(c), SkGetPackedR32(c), - SkGetPackedG32(c), SkGetPackedB32(c)); -} - -static inline uint32_t SkPackPMColor_as_BGRA(SkPMColor c) { - return SkPackARGB_as_BGRA(SkGetPackedA32(c), SkGetPackedR32(c), - SkGetPackedG32(c), SkGetPackedB32(c)); -} - -/** - * Abstract 4-byte interpolation, implemented on top of SkPMColor - * utility functions. Third parameter controls blending of the first two: - * (src, dst, 0) returns dst - * (src, dst, 0xFF) returns src - * srcWeight is [0..256], unlike SkFourByteInterp which takes [0..255] - */ -static inline SkPMColor SkFourByteInterp256(SkPMColor src, SkPMColor dst, - unsigned scale) { - unsigned a = SkAlphaBlend(SkGetPackedA32(src), SkGetPackedA32(dst), scale); - unsigned r = SkAlphaBlend(SkGetPackedR32(src), SkGetPackedR32(dst), scale); - unsigned g = SkAlphaBlend(SkGetPackedG32(src), SkGetPackedG32(dst), scale); - unsigned b = SkAlphaBlend(SkGetPackedB32(src), SkGetPackedB32(dst), scale); - - return SkPackARGB32(a, r, g, b); -} - -/** - * Abstract 4-byte interpolation, implemented on top of SkPMColor - * utility functions. Third parameter controls blending of the first two: - * (src, dst, 0) returns dst - * (src, dst, 0xFF) returns src - */ -static inline SkPMColor SkFourByteInterp(SkPMColor src, SkPMColor dst, - U8CPU srcWeight) { - unsigned scale = SkAlpha255To256(srcWeight); - return SkFourByteInterp256(src, dst, scale); -} - -/** - * 0xAARRGGBB -> 0x00AA00GG, 0x00RR00BB - */ -static inline void SkSplay(uint32_t color, uint32_t* ag, uint32_t* rb) { - const uint32_t mask = 0x00FF00FF; - *ag = (color >> 8) & mask; - *rb = color & mask; -} - -/** - * 0xAARRGGBB -> 0x00AA00GG00RR00BB - * (note, ARGB -> AGRB) - */ -static inline uint64_t SkSplay(uint32_t color) { - const uint32_t mask = 0x00FF00FF; - uint64_t agrb = (color >> 8) & mask; // 0x0000000000AA00GG - agrb <<= 32; // 0x00AA00GG00000000 - agrb |= color & mask; // 0x00AA00GG00RR00BB - return agrb; -} - -/** - * 0xAAxxGGxx, 0xRRxxBBxx-> 0xAARRGGBB - */ -static inline uint32_t SkUnsplay(uint32_t ag, uint32_t rb) { - const uint32_t mask = 0xFF00FF00; - return (ag & mask) | ((rb & mask) >> 8); -} - -/** - * 0xAAxxGGxxRRxxBBxx -> 0xAARRGGBB - * (note, AGRB -> ARGB) - */ -static inline uint32_t SkUnsplay(uint64_t agrb) { - const uint32_t mask = 0xFF00FF00; - return SkPMColor( - ((agrb & mask) >> 8) | // 0x00RR00BB - ((agrb >> 32) & mask)); // 0xAARRGGBB -} - -static inline SkPMColor SkFastFourByteInterp256_32(SkPMColor src, SkPMColor dst, unsigned scale) { - SkASSERT(scale <= 256); - - // Two 8-bit blends per two 32-bit registers, with space to make sure the math doesn't collide. - uint32_t src_ag, src_rb, dst_ag, dst_rb; - SkSplay(src, &src_ag, &src_rb); - SkSplay(dst, &dst_ag, &dst_rb); - - const uint32_t ret_ag = src_ag * scale + (256 - scale) * dst_ag; - const uint32_t ret_rb = src_rb * scale + (256 - scale) * dst_rb; - - return SkUnsplay(ret_ag, ret_rb); -} - -static inline SkPMColor SkFastFourByteInterp256_64(SkPMColor src, SkPMColor dst, unsigned scale) { - SkASSERT(scale <= 256); - // Four 8-bit blends in one 64-bit register, with space to make sure the math doesn't collide. - return SkUnsplay(SkSplay(src) * scale + (256-scale) * SkSplay(dst)); -} - -// TODO(mtklein): Replace slow versions with fast versions, using scale + (scale>>7) everywhere. - -/** - * Same as SkFourByteInterp256, but faster. - */ -static inline SkPMColor SkFastFourByteInterp256(SkPMColor src, SkPMColor dst, unsigned scale) { - // On a 64-bit machine, _64 is about 10% faster than _32, but ~40% slower on a 32-bit machine. - if (sizeof(void*) == 4) { - return SkFastFourByteInterp256_32(src, dst, scale); - } else { - return SkFastFourByteInterp256_64(src, dst, scale); - } -} - -/** - * Nearly the same as SkFourByteInterp, but faster and a touch more accurate, due to better - * srcWeight scaling to [0, 256]. - */ -static inline SkPMColor SkFastFourByteInterp(SkPMColor src, - SkPMColor dst, - U8CPU srcWeight) { - SkASSERT(srcWeight <= 255); - // scale = srcWeight + (srcWeight >> 7) is more accurate than - // scale = srcWeight + 1, but 7% slower - return SkFastFourByteInterp256(src, dst, srcWeight + (srcWeight >> 7)); -} - /** * Same as SkPackARGB32, but this version guarantees to not check that the * values are premultiplied in the debug version. @@ -547,21 +55,6 @@ static inline SkPMColor SkPackARGB32NoCheck(U8CPU a, U8CPU r, U8CPU g, U8CPU b) (g << SK_G32_SHIFT) | (b << SK_B32_SHIFT); } -static inline -SkPMColor SkPremultiplyARGBInline(U8CPU a, U8CPU r, U8CPU g, U8CPU b) { - SkA32Assert(a); - SkR32Assert(r); - SkG32Assert(g); - SkB32Assert(b); - - if (a != 255) { - r = SkMulDiv255Round(r, a); - g = SkMulDiv255Round(g, a); - b = SkMulDiv255Round(b, a); - } - return SkPackARGB32(a, r, g, b); -} - // When Android is compiled optimizing for size, SkAlphaMulQ doesn't get // inlined; forcing inlining significantly improves performance. static SK_ALWAYS_INLINE uint32_t SkAlphaMulQ(uint32_t c, unsigned scale) { @@ -576,509 +69,4 @@ static inline SkPMColor SkPMSrcOver(SkPMColor src, SkPMColor dst) { return src + SkAlphaMulQ(dst, SkAlpha255To256(255 - SkGetPackedA32(src))); } -/** - * Interpolates between colors src and dst using [0,256] scale. - */ -static inline SkPMColor SkPMLerp(SkPMColor src, SkPMColor dst, unsigned scale) { - return SkFastFourByteInterp256(src, dst, scale); -} - -static inline SkPMColor SkBlendARGB32(SkPMColor src, SkPMColor dst, U8CPU aa) { - SkASSERT((unsigned)aa <= 255); - - unsigned src_scale = SkAlpha255To256(aa); - unsigned dst_scale = SkAlphaMulInv256(SkGetPackedA32(src), src_scale); - - const uint32_t mask = 0xFF00FF; - - uint32_t src_rb = (src & mask) * src_scale; - uint32_t src_ag = ((src >> 8) & mask) * src_scale; - - uint32_t dst_rb = (dst & mask) * dst_scale; - uint32_t dst_ag = ((dst >> 8) & mask) * dst_scale; - - return (((src_rb + dst_rb) >> 8) & mask) | ((src_ag + dst_ag) & ~mask); -} - -//////////////////////////////////////////////////////////////////////////////////////////// -// Convert a 32bit pixel to a 16bit pixel (no dither) - -#define SkR32ToR16_MACRO(r) ((unsigned)(r) >> (SK_R32_BITS - SK_R16_BITS)) -#define SkG32ToG16_MACRO(g) ((unsigned)(g) >> (SK_G32_BITS - SK_G16_BITS)) -#define SkB32ToB16_MACRO(b) ((unsigned)(b) >> (SK_B32_BITS - SK_B16_BITS)) - -#ifdef SK_DEBUG - static inline unsigned SkR32ToR16(unsigned r) { - SkR32Assert(r); - return SkR32ToR16_MACRO(r); - } - static inline unsigned SkG32ToG16(unsigned g) { - SkG32Assert(g); - return SkG32ToG16_MACRO(g); - } - static inline unsigned SkB32ToB16(unsigned b) { - SkB32Assert(b); - return SkB32ToB16_MACRO(b); - } -#else - #define SkR32ToR16(r) SkR32ToR16_MACRO(r) - #define SkG32ToG16(g) SkG32ToG16_MACRO(g) - #define SkB32ToB16(b) SkB32ToB16_MACRO(b) -#endif - -#define SkPacked32ToR16(c) (((unsigned)(c) >> (SK_R32_SHIFT + SK_R32_BITS - SK_R16_BITS)) & SK_R16_MASK) -#define SkPacked32ToG16(c) (((unsigned)(c) >> (SK_G32_SHIFT + SK_G32_BITS - SK_G16_BITS)) & SK_G16_MASK) -#define SkPacked32ToB16(c) (((unsigned)(c) >> (SK_B32_SHIFT + SK_B32_BITS - SK_B16_BITS)) & SK_B16_MASK) - -static inline U16CPU SkPixel32ToPixel16(SkPMColor c) { - unsigned r = ((c >> (SK_R32_SHIFT + (8 - SK_R16_BITS))) & SK_R16_MASK) << SK_R16_SHIFT; - unsigned g = ((c >> (SK_G32_SHIFT + (8 - SK_G16_BITS))) & SK_G16_MASK) << SK_G16_SHIFT; - unsigned b = ((c >> (SK_B32_SHIFT + (8 - SK_B16_BITS))) & SK_B16_MASK) << SK_B16_SHIFT; - return r | g | b; -} - -static inline U16CPU SkPack888ToRGB16(U8CPU r, U8CPU g, U8CPU b) { - return (SkR32ToR16(r) << SK_R16_SHIFT) | - (SkG32ToG16(g) << SK_G16_SHIFT) | - (SkB32ToB16(b) << SK_B16_SHIFT); -} - -#define SkPixel32ToPixel16_ToU16(src) SkToU16(SkPixel32ToPixel16(src)) - -///////////////////////////////////////////////////////////////////////////////////////// -// Fast dither from 32->16 - -#define SkShouldDitherXY(x, y) (((x) ^ (y)) & 1) - -static inline uint16_t SkDitherPack888ToRGB16(U8CPU r, U8CPU g, U8CPU b) { - r = ((r << 1) - ((r >> (8 - SK_R16_BITS) << (8 - SK_R16_BITS)) | (r >> SK_R16_BITS))) >> (8 - SK_R16_BITS); - g = ((g << 1) - ((g >> (8 - SK_G16_BITS) << (8 - SK_G16_BITS)) | (g >> SK_G16_BITS))) >> (8 - SK_G16_BITS); - b = ((b << 1) - ((b >> (8 - SK_B16_BITS) << (8 - SK_B16_BITS)) | (b >> SK_B16_BITS))) >> (8 - SK_B16_BITS); - - return SkPackRGB16(r, g, b); -} - -static inline uint16_t SkDitherPixel32ToPixel16(SkPMColor c) { - return SkDitherPack888ToRGB16(SkGetPackedR32(c), SkGetPackedG32(c), SkGetPackedB32(c)); -} - -/* Return c in expanded_rgb_16 format, but also scaled up by 32 (5 bits) - It is now suitable for combining with a scaled expanded_rgb_16 color - as in SkSrcOver32To16(). - We must do this 565 high-bit replication, in order for the subsequent add - to saturate properly (and not overflow). If we take the 8 bits as is, it is - possible to overflow. -*/ -static inline uint32_t SkPMColorToExpanded16x5(SkPMColor c) { - unsigned sr = SkPacked32ToR16(c); - unsigned sg = SkPacked32ToG16(c); - unsigned sb = SkPacked32ToB16(c); - - sr = (sr << 5) | sr; - sg = (sg << 5) | (sg >> 1); - sb = (sb << 5) | sb; - return (sr << 11) | (sg << 21) | (sb << 0); -} - -/* SrcOver the 32bit src color with the 16bit dst, returning a 16bit value - (with dirt in the high 16bits, so caller beware). -*/ -static inline U16CPU SkSrcOver32To16(SkPMColor src, uint16_t dst) { - unsigned sr = SkGetPackedR32(src); - unsigned sg = SkGetPackedG32(src); - unsigned sb = SkGetPackedB32(src); - - unsigned dr = SkGetPackedR16(dst); - unsigned dg = SkGetPackedG16(dst); - unsigned db = SkGetPackedB16(dst); - - unsigned isa = 255 - SkGetPackedA32(src); - - dr = (sr + SkMul16ShiftRound(dr, isa, SK_R16_BITS)) >> (8 - SK_R16_BITS); - dg = (sg + SkMul16ShiftRound(dg, isa, SK_G16_BITS)) >> (8 - SK_G16_BITS); - db = (sb + SkMul16ShiftRound(db, isa, SK_B16_BITS)) >> (8 - SK_B16_BITS); - - return SkPackRGB16(dr, dg, db); -} - -//////////////////////////////////////////////////////////////////////////////////////////// -// Convert a 16bit pixel to a 32bit pixel - -static inline unsigned SkR16ToR32(unsigned r) { - return (r << (8 - SK_R16_BITS)) | (r >> (2 * SK_R16_BITS - 8)); -} - -static inline unsigned SkG16ToG32(unsigned g) { - return (g << (8 - SK_G16_BITS)) | (g >> (2 * SK_G16_BITS - 8)); -} - -static inline unsigned SkB16ToB32(unsigned b) { - return (b << (8 - SK_B16_BITS)) | (b >> (2 * SK_B16_BITS - 8)); -} - -#define SkPacked16ToR32(c) SkR16ToR32(SkGetPackedR16(c)) -#define SkPacked16ToG32(c) SkG16ToG32(SkGetPackedG16(c)) -#define SkPacked16ToB32(c) SkB16ToB32(SkGetPackedB16(c)) - -static inline SkPMColor SkPixel16ToPixel32(U16CPU src) { - SkASSERT(src == SkToU16(src)); - - unsigned r = SkPacked16ToR32(src); - unsigned g = SkPacked16ToG32(src); - unsigned b = SkPacked16ToB32(src); - - SkASSERT((r >> (8 - SK_R16_BITS)) == SkGetPackedR16(src)); - SkASSERT((g >> (8 - SK_G16_BITS)) == SkGetPackedG16(src)); - SkASSERT((b >> (8 - SK_B16_BITS)) == SkGetPackedB16(src)); - - return SkPackARGB32(0xFF, r, g, b); -} - -// similar to SkPixel16ToPixel32, but returns SkColor instead of SkPMColor -static inline SkColor SkPixel16ToColor(U16CPU src) { - SkASSERT(src == SkToU16(src)); - - unsigned r = SkPacked16ToR32(src); - unsigned g = SkPacked16ToG32(src); - unsigned b = SkPacked16ToB32(src); - - SkASSERT((r >> (8 - SK_R16_BITS)) == SkGetPackedR16(src)); - SkASSERT((g >> (8 - SK_G16_BITS)) == SkGetPackedG16(src)); - SkASSERT((b >> (8 - SK_B16_BITS)) == SkGetPackedB16(src)); - - return SkColorSetRGB(r, g, b); -} - -/////////////////////////////////////////////////////////////////////////////// - -typedef uint16_t SkPMColor16; - -// Put in OpenGL order (r g b a) -#define SK_A4444_SHIFT 0 -#define SK_R4444_SHIFT 12 -#define SK_G4444_SHIFT 8 -#define SK_B4444_SHIFT 4 - -#define SkA32To4444(a) ((unsigned)(a) >> 4) -#define SkR32To4444(r) ((unsigned)(r) >> 4) -#define SkG32To4444(g) ((unsigned)(g) >> 4) -#define SkB32To4444(b) ((unsigned)(b) >> 4) - -static inline U8CPU SkReplicateNibble(unsigned nib) { - SkASSERT(nib <= 0xF); - return (nib << 4) | nib; -} - -#define SkA4444ToA32(a) SkReplicateNibble(a) -#define SkR4444ToR32(r) SkReplicateNibble(r) -#define SkG4444ToG32(g) SkReplicateNibble(g) -#define SkB4444ToB32(b) SkReplicateNibble(b) - -#define SkGetPackedA4444(c) (((unsigned)(c) >> SK_A4444_SHIFT) & 0xF) -#define SkGetPackedR4444(c) (((unsigned)(c) >> SK_R4444_SHIFT) & 0xF) -#define SkGetPackedG4444(c) (((unsigned)(c) >> SK_G4444_SHIFT) & 0xF) -#define SkGetPackedB4444(c) (((unsigned)(c) >> SK_B4444_SHIFT) & 0xF) - -#define SkPacked4444ToA32(c) SkReplicateNibble(SkGetPackedA4444(c)) -#define SkPacked4444ToR32(c) SkReplicateNibble(SkGetPackedR4444(c)) -#define SkPacked4444ToG32(c) SkReplicateNibble(SkGetPackedG4444(c)) -#define SkPacked4444ToB32(c) SkReplicateNibble(SkGetPackedB4444(c)) - -#ifdef SK_DEBUG -static inline void SkPMColor16Assert(U16CPU c) { - unsigned a = SkGetPackedA4444(c); - unsigned r = SkGetPackedR4444(c); - unsigned g = SkGetPackedG4444(c); - unsigned b = SkGetPackedB4444(c); - - SkASSERT(a <= 0xF); - SkASSERT(r <= a); - SkASSERT(g <= a); - SkASSERT(b <= a); -} -#else -#define SkPMColor16Assert(c) -#endif - -static inline unsigned SkAlpha15To16(unsigned a) { - SkASSERT(a <= 0xF); - return a + (a >> 3); -} - -#ifdef SK_DEBUG - static inline int SkAlphaMul4(int value, int scale) { - SkASSERT((unsigned)scale <= 0x10); - return value * scale >> 4; - } -#else - #define SkAlphaMul4(value, scale) ((value) * (scale) >> 4) -#endif - -static inline unsigned SkR4444ToR565(unsigned r) { - SkASSERT(r <= 0xF); - return (r << (SK_R16_BITS - 4)) | (r >> (8 - SK_R16_BITS)); -} - -static inline unsigned SkG4444ToG565(unsigned g) { - SkASSERT(g <= 0xF); - return (g << (SK_G16_BITS - 4)) | (g >> (8 - SK_G16_BITS)); -} - -static inline unsigned SkB4444ToB565(unsigned b) { - SkASSERT(b <= 0xF); - return (b << (SK_B16_BITS - 4)) | (b >> (8 - SK_B16_BITS)); -} - -static inline SkPMColor16 SkPackARGB4444(unsigned a, unsigned r, - unsigned g, unsigned b) { - SkASSERT(a <= 0xF); - SkASSERT(r <= a); - SkASSERT(g <= a); - SkASSERT(b <= a); - - return (SkPMColor16)((a << SK_A4444_SHIFT) | (r << SK_R4444_SHIFT) | - (g << SK_G4444_SHIFT) | (b << SK_B4444_SHIFT)); -} - -static inline SkPMColor16 SkAlphaMulQ4(SkPMColor16 c, int scale) { - SkASSERT(scale <= 16); - - const unsigned mask = 0xF0F; //gMask_0F0F; - -#if 0 - unsigned rb = ((c & mask) * scale) >> 4; - unsigned ag = ((c >> 4) & mask) * scale; - return (rb & mask) | (ag & ~mask); -#else - unsigned expanded_c = (c & mask) | ((c & (mask << 4)) << 12); - unsigned scaled_c = (expanded_c * scale) >> 4; - return (scaled_c & mask) | ((scaled_c >> 12) & (mask << 4)); -#endif -} - -/** Expand the SkPMColor16 color into a 32bit value that can be scaled all at - once by a value up to 16. -*/ -static inline uint32_t SkExpand_4444(U16CPU c) { - SkASSERT(c == (uint16_t)c); - - const unsigned mask = 0xF0F; //gMask_0F0F; - return (c & mask) | ((c & ~mask) << 12); -} - -static inline uint16_t SkSrcOver4444To16(SkPMColor16 s, uint16_t d) { - unsigned sa = SkGetPackedA4444(s); - unsigned sr = SkR4444ToR565(SkGetPackedR4444(s)); - unsigned sg = SkG4444ToG565(SkGetPackedG4444(s)); - unsigned sb = SkB4444ToB565(SkGetPackedB4444(s)); - - // To avoid overflow, we have to clear the low bit of the synthetic sg - // if the src alpha is <= 7. - // to see why, try blending 0x4444 on top of 565-white and watch green - // overflow (sum == 64) - sg &= ~(~(sa >> 3) & 1); - - unsigned scale = SkAlpha15To16(15 - sa); - unsigned dr = SkAlphaMul4(SkGetPackedR16(d), scale); - unsigned dg = SkAlphaMul4(SkGetPackedG16(d), scale); - unsigned db = SkAlphaMul4(SkGetPackedB16(d), scale); - -#if 0 - if (sg + dg > 63) { - SkDebugf("---- SkSrcOver4444To16 src=%x dst=%x scale=%d, sg=%d dg=%d\n", s, d, scale, sg, dg); - } -#endif - return SkPackRGB16(sr + dr, sg + dg, sb + db); -} - -static inline uint16_t SkBlend4444To16(SkPMColor16 src, uint16_t dst, int scale16) { - SkASSERT((unsigned)scale16 <= 16); - - return SkSrcOver4444To16(SkAlphaMulQ4(src, scale16), dst); -} - -static inline SkPMColor SkPixel4444ToPixel32(U16CPU c) { - uint32_t d = (SkGetPackedA4444(c) << SK_A32_SHIFT) | - (SkGetPackedR4444(c) << SK_R32_SHIFT) | - (SkGetPackedG4444(c) << SK_G32_SHIFT) | - (SkGetPackedB4444(c) << SK_B32_SHIFT); - return d | (d << 4); -} - -static inline SkPMColor16 SkPixel32ToPixel4444(SkPMColor c) { - return (((c >> (SK_A32_SHIFT + 4)) & 0xF) << SK_A4444_SHIFT) | - (((c >> (SK_R32_SHIFT + 4)) & 0xF) << SK_R4444_SHIFT) | - (((c >> (SK_G32_SHIFT + 4)) & 0xF) << SK_G4444_SHIFT) | - (((c >> (SK_B32_SHIFT + 4)) & 0xF) << SK_B4444_SHIFT); -} - -// cheap 2x2 dither -static inline SkPMColor16 SkDitherARGB32To4444(U8CPU a, U8CPU r, - U8CPU g, U8CPU b) { - // to ensure that we stay a legal premultiplied color, we take the max() - // of the truncated and dithered alpha values. If we didn't, cases like - // SkDitherARGB32To4444(0x31, 0x2E, ...) would generate SkPackARGB4444(2, 3, ...) - // which is not legal premultiplied, since a < color - unsigned dithered_a = ((a << 1) - ((a >> 4 << 4) | (a >> 4))) >> 4; - a = SkMax32(a >> 4, dithered_a); - // these we just dither in place - r = ((r << 1) - ((r >> 4 << 4) | (r >> 4))) >> 4; - g = ((g << 1) - ((g >> 4 << 4) | (g >> 4))) >> 4; - b = ((b << 1) - ((b >> 4 << 4) | (b >> 4))) >> 4; - - return SkPackARGB4444(a, r, g, b); -} - -static inline SkPMColor16 SkDitherPixel32To4444(SkPMColor c) { - return SkDitherARGB32To4444(SkGetPackedA32(c), SkGetPackedR32(c), - SkGetPackedG32(c), SkGetPackedB32(c)); -} - -/* Assumes 16bit is in standard RGBA order. - Transforms a normal ARGB_8888 into the same byte order as - expanded ARGB_4444, but keeps each component 8bits -*/ -static inline uint32_t SkExpand_8888(SkPMColor c) { - return (((c >> SK_R32_SHIFT) & 0xFF) << 24) | - (((c >> SK_G32_SHIFT) & 0xFF) << 8) | - (((c >> SK_B32_SHIFT) & 0xFF) << 16) | - (((c >> SK_A32_SHIFT) & 0xFF) << 0); -} - -/* Undo the operation of SkExpand_8888, turning the argument back into - a SkPMColor. -*/ -static inline SkPMColor SkCompact_8888(uint32_t c) { - return (((c >> 24) & 0xFF) << SK_R32_SHIFT) | - (((c >> 8) & 0xFF) << SK_G32_SHIFT) | - (((c >> 16) & 0xFF) << SK_B32_SHIFT) | - (((c >> 0) & 0xFF) << SK_A32_SHIFT); -} - -/* Like SkExpand_8888, this transforms a pmcolor into the expanded 4444 format, - but this routine just keeps the high 4bits of each component in the low - 4bits of the result (just like a newly expanded PMColor16). -*/ -static inline uint32_t SkExpand32_4444(SkPMColor c) { - return (((c >> (SK_R32_SHIFT + 4)) & 0xF) << 24) | - (((c >> (SK_G32_SHIFT + 4)) & 0xF) << 8) | - (((c >> (SK_B32_SHIFT + 4)) & 0xF) << 16) | - (((c >> (SK_A32_SHIFT + 4)) & 0xF) << 0); -} - -// takes two values and alternamtes them as part of a memset16 -// used for cheap 2x2 dithering when the colors are opaque -void sk_dither_memset16(uint16_t dst[], uint16_t value, uint16_t other, int n); - -/////////////////////////////////////////////////////////////////////////////// - -static inline int SkUpscale31To32(int value) { - SkASSERT((unsigned)value <= 31); - return value + (value >> 4); -} - -static inline int SkBlend32(int src, int dst, int scale) { - SkASSERT((unsigned)src <= 0xFF); - SkASSERT((unsigned)dst <= 0xFF); - SkASSERT((unsigned)scale <= 32); - return dst + ((src - dst) * scale >> 5); -} - -static inline SkPMColor SkBlendLCD16(int srcA, int srcR, int srcG, int srcB, - SkPMColor dst, uint16_t mask) { - if (mask == 0) { - return dst; - } - - /* We want all of these in 5bits, hence the shifts in case one of them - * (green) is 6bits. - */ - int maskR = SkGetPackedR16(mask) >> (SK_R16_BITS - 5); - int maskG = SkGetPackedG16(mask) >> (SK_G16_BITS - 5); - int maskB = SkGetPackedB16(mask) >> (SK_B16_BITS - 5); - - // Now upscale them to 0..32, so we can use blend32 - maskR = SkUpscale31To32(maskR); - maskG = SkUpscale31To32(maskG); - maskB = SkUpscale31To32(maskB); - - // srcA has been upscaled to 256 before passed into this function - maskR = maskR * srcA >> 8; - maskG = maskG * srcA >> 8; - maskB = maskB * srcA >> 8; - - int dstR = SkGetPackedR32(dst); - int dstG = SkGetPackedG32(dst); - int dstB = SkGetPackedB32(dst); - - // LCD blitting is only supported if the dst is known/required - // to be opaque - return SkPackARGB32(0xFF, - SkBlend32(srcR, dstR, maskR), - SkBlend32(srcG, dstG, maskG), - SkBlend32(srcB, dstB, maskB)); -} - -static inline SkPMColor SkBlendLCD16Opaque(int srcR, int srcG, int srcB, - SkPMColor dst, uint16_t mask, - SkPMColor opaqueDst) { - if (mask == 0) { - return dst; - } - - if (0xFFFF == mask) { - return opaqueDst; - } - - /* We want all of these in 5bits, hence the shifts in case one of them - * (green) is 6bits. - */ - int maskR = SkGetPackedR16(mask) >> (SK_R16_BITS - 5); - int maskG = SkGetPackedG16(mask) >> (SK_G16_BITS - 5); - int maskB = SkGetPackedB16(mask) >> (SK_B16_BITS - 5); - - // Now upscale them to 0..32, so we can use blend32 - maskR = SkUpscale31To32(maskR); - maskG = SkUpscale31To32(maskG); - maskB = SkUpscale31To32(maskB); - - int dstR = SkGetPackedR32(dst); - int dstG = SkGetPackedG32(dst); - int dstB = SkGetPackedB32(dst); - - // LCD blitting is only supported if the dst is known/required - // to be opaque - return SkPackARGB32(0xFF, - SkBlend32(srcR, dstR, maskR), - SkBlend32(srcG, dstG, maskG), - SkBlend32(srcB, dstB, maskB)); -} - -static inline void SkBlitLCD16Row(SkPMColor dst[], const uint16_t mask[], - SkColor src, int width, SkPMColor) { - int srcA = SkColorGetA(src); - int srcR = SkColorGetR(src); - int srcG = SkColorGetG(src); - int srcB = SkColorGetB(src); - - srcA = SkAlpha255To256(srcA); - - for (int i = 0; i < width; i++) { - dst[i] = SkBlendLCD16(srcA, srcR, srcG, srcB, dst[i], mask[i]); - } -} - -static inline void SkBlitLCD16OpaqueRow(SkPMColor dst[], const uint16_t mask[], - SkColor src, int width, - SkPMColor opaqueDst) { - int srcR = SkColorGetR(src); - int srcG = SkColorGetG(src); - int srcB = SkColorGetB(src); - - for (int i = 0; i < width; i++) { - dst[i] = SkBlendLCD16Opaque(srcR, srcG, srcB, dst[i], mask[i], - opaqueDst); - } -} - #endif |