aboutsummaryrefslogtreecommitdiffhomepage
path: root/include/core/SkColorPriv.h
diff options
context:
space:
mode:
Diffstat (limited to 'include/core/SkColorPriv.h')
-rw-r--r--include/core/SkColorPriv.h1014
1 files changed, 1 insertions, 1013 deletions
diff --git a/include/core/SkColorPriv.h b/include/core/SkColorPriv.h
index 12c2277656..8ec4541754 100644
--- a/include/core/SkColorPriv.h
+++ b/include/core/SkColorPriv.h
@@ -8,171 +8,6 @@
#ifndef SkColorPriv_DEFINED
#define SkColorPriv_DEFINED
-// turn this own for extra debug checking when blending onto 565
-#ifdef SK_DEBUG
- #define CHECK_FOR_565_OVERFLOW
-#endif
-
-#include "SkColor.h"
-#include "SkMath.h"
-
-//////////////////////////////////////////////////////////////////////////////
-
-#define SkASSERT_IS_BYTE(x) SkASSERT(0 == ((x) & ~0xFF))
-
-/*
- * Skia's 32bit backend only supports 1 sizzle order at a time (compile-time).
- * This is specified by 4 defines SK_A32_SHIFT, SK_R32_SHIFT, ... for G and B.
- *
- * For easier compatibility with Skia's GPU backend, we further restrict these
- * to either (in memory-byte-order) RGBA or BGRA. Note that this "order" does
- * not directly correspond to the same shift-order, since we have to take endianess
- * into account.
- *
- * Here we enforce this constraint.
- */
-
-#ifdef SK_CPU_BENDIAN
- #define SK_RGBA_R32_SHIFT 24
- #define SK_RGBA_G32_SHIFT 16
- #define SK_RGBA_B32_SHIFT 8
- #define SK_RGBA_A32_SHIFT 0
-
- #define SK_BGRA_B32_SHIFT 24
- #define SK_BGRA_G32_SHIFT 16
- #define SK_BGRA_R32_SHIFT 8
- #define SK_BGRA_A32_SHIFT 0
-#else
- #define SK_RGBA_R32_SHIFT 0
- #define SK_RGBA_G32_SHIFT 8
- #define SK_RGBA_B32_SHIFT 16
- #define SK_RGBA_A32_SHIFT 24
-
- #define SK_BGRA_B32_SHIFT 0
- #define SK_BGRA_G32_SHIFT 8
- #define SK_BGRA_R32_SHIFT 16
- #define SK_BGRA_A32_SHIFT 24
-#endif
-
-#if defined(SK_PMCOLOR_IS_RGBA) && defined(SK_PMCOLOR_IS_BGRA)
- #error "can't define PMCOLOR to be RGBA and BGRA"
-#endif
-
-#define LOCAL_PMCOLOR_SHIFTS_EQUIVALENT_TO_RGBA \
- (SK_A32_SHIFT == SK_RGBA_A32_SHIFT && \
- SK_R32_SHIFT == SK_RGBA_R32_SHIFT && \
- SK_G32_SHIFT == SK_RGBA_G32_SHIFT && \
- SK_B32_SHIFT == SK_RGBA_B32_SHIFT)
-
-#define LOCAL_PMCOLOR_SHIFTS_EQUIVALENT_TO_BGRA \
- (SK_A32_SHIFT == SK_BGRA_A32_SHIFT && \
- SK_R32_SHIFT == SK_BGRA_R32_SHIFT && \
- SK_G32_SHIFT == SK_BGRA_G32_SHIFT && \
- SK_B32_SHIFT == SK_BGRA_B32_SHIFT)
-
-
-#define SK_A_INDEX (SK_A32_SHIFT/8)
-#define SK_R_INDEX (SK_R32_SHIFT/8)
-#define SK_G_INDEX (SK_G32_SHIFT/8)
-#define SK_B_INDEX (SK_B32_SHIFT/8)
-
-#if defined(SK_PMCOLOR_IS_RGBA) && !LOCAL_PMCOLOR_SHIFTS_EQUIVALENT_TO_RGBA
- #error "SK_PMCOLOR_IS_RGBA does not match SK_*32_SHIFT values"
-#endif
-
-#if defined(SK_PMCOLOR_IS_BGRA) && !LOCAL_PMCOLOR_SHIFTS_EQUIVALENT_TO_BGRA
- #error "SK_PMCOLOR_IS_BGRA does not match SK_*32_SHIFT values"
-#endif
-
-#if !defined(SK_PMCOLOR_IS_RGBA) && !defined(SK_PMCOLOR_IS_BGRA)
- // deduce which to define from the _SHIFT defines
-
- #if LOCAL_PMCOLOR_SHIFTS_EQUIVALENT_TO_RGBA
- #define SK_PMCOLOR_IS_RGBA
- #elif LOCAL_PMCOLOR_SHIFTS_EQUIVALENT_TO_BGRA
- #define SK_PMCOLOR_IS_BGRA
- #else
- #error "need 32bit packing to be either RGBA or BGRA"
- #endif
-#endif
-
-// hide these now that we're done
-#undef LOCAL_PMCOLOR_SHIFTS_EQUIVALENT_TO_RGBA
-#undef LOCAL_PMCOLOR_SHIFTS_EQUIVALENT_TO_BGRA
-
-//////////////////////////////////////////////////////////////////////////////
-
-// Reverse the bytes coorsponding to RED and BLUE in a packed pixels. Note the
-// pair of them are in the same 2 slots in both RGBA and BGRA, thus there is
-// no need to pass in the colortype to this function.
-static inline uint32_t SkSwizzle_RB(uint32_t c) {
- static const uint32_t kRBMask = (0xFF << SK_R32_SHIFT) | (0xFF << SK_B32_SHIFT);
-
- unsigned c0 = (c >> SK_R32_SHIFT) & 0xFF;
- unsigned c1 = (c >> SK_B32_SHIFT) & 0xFF;
- return (c & ~kRBMask) | (c0 << SK_B32_SHIFT) | (c1 << SK_R32_SHIFT);
-}
-
-static inline uint32_t SkPackARGB_as_RGBA(U8CPU a, U8CPU r, U8CPU g, U8CPU b) {
- SkASSERT_IS_BYTE(a);
- SkASSERT_IS_BYTE(r);
- SkASSERT_IS_BYTE(g);
- SkASSERT_IS_BYTE(b);
- return (a << SK_RGBA_A32_SHIFT) | (r << SK_RGBA_R32_SHIFT) |
- (g << SK_RGBA_G32_SHIFT) | (b << SK_RGBA_B32_SHIFT);
-}
-
-static inline uint32_t SkPackARGB_as_BGRA(U8CPU a, U8CPU r, U8CPU g, U8CPU b) {
- SkASSERT_IS_BYTE(a);
- SkASSERT_IS_BYTE(r);
- SkASSERT_IS_BYTE(g);
- SkASSERT_IS_BYTE(b);
- return (a << SK_BGRA_A32_SHIFT) | (r << SK_BGRA_R32_SHIFT) |
- (g << SK_BGRA_G32_SHIFT) | (b << SK_BGRA_B32_SHIFT);
-}
-
-static inline SkPMColor SkSwizzle_RGBA_to_PMColor(uint32_t c) {
-#ifdef SK_PMCOLOR_IS_RGBA
- return c;
-#else
- return SkSwizzle_RB(c);
-#endif
-}
-
-static inline SkPMColor SkSwizzle_BGRA_to_PMColor(uint32_t c) {
-#ifdef SK_PMCOLOR_IS_BGRA
- return c;
-#else
- return SkSwizzle_RB(c);
-#endif
-}
-
-//////////////////////////////////////////////////////////////////////////////
-
-///@{
-/** See ITU-R Recommendation BT.709 at http://www.itu.int/rec/R-REC-BT.709/ .*/
-#define SK_ITU_BT709_LUM_COEFF_R (0.2126f)
-#define SK_ITU_BT709_LUM_COEFF_G (0.7152f)
-#define SK_ITU_BT709_LUM_COEFF_B (0.0722f)
-///@}
-
-///@{
-/** A float value which specifies this channel's contribution to luminance. */
-#define SK_LUM_COEFF_R SK_ITU_BT709_LUM_COEFF_R
-#define SK_LUM_COEFF_G SK_ITU_BT709_LUM_COEFF_G
-#define SK_LUM_COEFF_B SK_ITU_BT709_LUM_COEFF_B
-///@}
-
-/** Computes the luminance from the given r, g, and b in accordance with
- SK_LUM_COEFF_X. For correct results, r, g, and b should be in linear space.
-*/
-static inline U8CPU SkComputeLuminance(U8CPU r, U8CPU g, U8CPU b) {
- //The following is
- //r * SK_LUM_COEFF_R + g * SK_LUM_COEFF_G + b * SK_LUM_COEFF_B
- //with SK_LUM_COEFF_X in 1.8 fixed point (rounding adjusted to sum to 256).
- return (r * 54 + g * 183 + b * 19) >> 8;
-}
-
/** Turn 0..255 into 0..256 by adding 1 at the half-way point. Used to turn a
byte into a scale value, so that we can say scale * value >> 8 instead of
alpha * value / 255.
@@ -186,217 +21,16 @@ static inline unsigned SkAlpha255To256(U8CPU alpha) {
return alpha + 1;
}
-/**
- * Turn a 0..255 value into a 0..256 value, rounding up if the value is >= 0x80.
- * This is slightly more accurate than SkAlpha255To256.
- */
-static inline unsigned Sk255To256(U8CPU value) {
- SkASSERT(SkToU8(value) == value);
- return value + (value >> 7);
-}
-
-/** Multiplify value by 0..256, and shift the result down 8
- (i.e. return (value * alpha256) >> 8)
- */
-#define SkAlphaMul(value, alpha256) (((value) * (alpha256)) >> 8)
-
-/** Calculates 256 - (value * alpha256) / 255 in range [0,256],
- * for [0,255] value and [0,256] alpha256.
- */
-static inline U16CPU SkAlphaMulInv256(U16CPU value, U16CPU alpha256) {
- unsigned prod = 0xFFFF - value * alpha256;
- return (prod + (prod >> 8)) >> 8;
-}
-
-// The caller may want negative values, so keep all params signed (int)
-// so we don't accidentally slip into unsigned math and lose the sign
-// extension when we shift (in SkAlphaMul)
-static inline int SkAlphaBlend(int src, int dst, int scale256) {
- SkASSERT((unsigned)scale256 <= 256);
- return dst + SkAlphaMul(src - dst, scale256);
-}
-
-/**
- * Returns (src * alpha + dst * (255 - alpha)) / 255
- *
- * This is more accurate than SkAlphaBlend, but slightly slower
- */
-static inline int SkAlphaBlend255(S16CPU src, S16CPU dst, U8CPU alpha) {
- SkASSERT((int16_t)src == src);
- SkASSERT((int16_t)dst == dst);
- SkASSERT((uint8_t)alpha == alpha);
-
- int prod = (src - dst) * alpha + 128;
- prod = (prod + (prod >> 8)) >> 8;
- return dst + prod;
-}
-
-static inline U8CPU SkUnitScalarClampToByte(SkScalar x) {
- return static_cast<U8CPU>(SkScalarPin(x, 0, 1) * 255 + 0.5);
-}
-
-#define SK_R16_BITS 5
-#define SK_G16_BITS 6
-#define SK_B16_BITS 5
-
-#define SK_R16_SHIFT (SK_B16_BITS + SK_G16_BITS)
-#define SK_G16_SHIFT (SK_B16_BITS)
-#define SK_B16_SHIFT 0
-
-#define SK_R16_MASK ((1 << SK_R16_BITS) - 1)
-#define SK_G16_MASK ((1 << SK_G16_BITS) - 1)
-#define SK_B16_MASK ((1 << SK_B16_BITS) - 1)
-
-#define SkGetPackedR16(color) (((unsigned)(color) >> SK_R16_SHIFT) & SK_R16_MASK)
-#define SkGetPackedG16(color) (((unsigned)(color) >> SK_G16_SHIFT) & SK_G16_MASK)
-#define SkGetPackedB16(color) (((unsigned)(color) >> SK_B16_SHIFT) & SK_B16_MASK)
-
-#define SkR16Assert(r) SkASSERT((unsigned)(r) <= SK_R16_MASK)
-#define SkG16Assert(g) SkASSERT((unsigned)(g) <= SK_G16_MASK)
-#define SkB16Assert(b) SkASSERT((unsigned)(b) <= SK_B16_MASK)
-
-static inline uint16_t SkPackRGB16(unsigned r, unsigned g, unsigned b) {
- SkASSERT(r <= SK_R16_MASK);
- SkASSERT(g <= SK_G16_MASK);
- SkASSERT(b <= SK_B16_MASK);
-
- return SkToU16((r << SK_R16_SHIFT) | (g << SK_G16_SHIFT) | (b << SK_B16_SHIFT));
-}
-
-#define SK_R16_MASK_IN_PLACE (SK_R16_MASK << SK_R16_SHIFT)
-#define SK_G16_MASK_IN_PLACE (SK_G16_MASK << SK_G16_SHIFT)
-#define SK_B16_MASK_IN_PLACE (SK_B16_MASK << SK_B16_SHIFT)
-
-/** Expand the 16bit color into a 32bit value that can be scaled all at once
- by a value up to 32. Used in conjunction with SkCompact_rgb_16.
-*/
-static inline uint32_t SkExpand_rgb_16(U16CPU c) {
- SkASSERT(c == (uint16_t)c);
-
- return ((c & SK_G16_MASK_IN_PLACE) << 16) | (c & ~SK_G16_MASK_IN_PLACE);
-}
-
-/** Compress an expanded value (from SkExpand_rgb_16) back down to a 16bit
- color value. The computation yields only 16bits of valid data, but we claim
- to return 32bits, so that the compiler won't generate extra instructions to
- "clean" the top 16bits. However, the top 16 can contain garbage, so it is
- up to the caller to safely ignore them.
-*/
-static inline U16CPU SkCompact_rgb_16(uint32_t c) {
- return ((c >> 16) & SK_G16_MASK_IN_PLACE) | (c & ~SK_G16_MASK_IN_PLACE);
-}
-
-/** Scale the 16bit color value by the 0..256 scale parameter.
- The computation yields only 16bits of valid data, but we claim
- to return 32bits, so that the compiler won't generate extra instructions to
- "clean" the top 16bits.
-*/
-static inline U16CPU SkAlphaMulRGB16(U16CPU c, unsigned scale) {
- return SkCompact_rgb_16(SkExpand_rgb_16(c) * (scale >> 3) >> 5);
-}
-
-// this helper explicitly returns a clean 16bit value (but slower)
-#define SkAlphaMulRGB16_ToU16(c, s) (uint16_t)SkAlphaMulRGB16(c, s)
-
-/** Blend pre-expanded RGB32 with 16bit color value by the 0..32 scale parameter.
- The computation yields only 16bits of valid data, but we claim to return
- 32bits, so that the compiler won't generate extra instructions to "clean"
- the top 16bits.
-*/
-static inline U16CPU SkBlend32_RGB16(uint32_t src_expand, uint16_t dst, unsigned scale) {
- uint32_t dst_expand = SkExpand_rgb_16(dst) * scale;
- return SkCompact_rgb_16((src_expand + dst_expand) >> 5);
-}
-
-/** Blend src and dst 16bit colors by the 0..256 scale parameter.
- The computation yields only 16bits of valid data, but we claim
- to return 32bits, so that the compiler won't generate extra instructions to
- "clean" the top 16bits.
-*/
-static inline U16CPU SkBlendRGB16(U16CPU src, U16CPU dst, int srcScale) {
- SkASSERT((unsigned)srcScale <= 256);
-
- srcScale >>= 3;
-
- uint32_t src32 = SkExpand_rgb_16(src);
- uint32_t dst32 = SkExpand_rgb_16(dst);
- return SkCompact_rgb_16(dst32 + ((src32 - dst32) * srcScale >> 5));
-}
-
-static inline void SkBlendRGB16(const uint16_t src[], uint16_t dst[],
- int srcScale, int count) {
- SkASSERT(count > 0);
- SkASSERT((unsigned)srcScale <= 256);
-
- srcScale >>= 3;
-
- do {
- uint32_t src32 = SkExpand_rgb_16(*src++);
- uint32_t dst32 = SkExpand_rgb_16(*dst);
- *dst++ = static_cast<uint16_t>(
- SkCompact_rgb_16(dst32 + ((src32 - dst32) * srcScale >> 5)));
- } while (--count > 0);
-}
-
-#ifdef SK_DEBUG
- static inline U16CPU SkRGB16Add(U16CPU a, U16CPU b) {
- SkASSERT(SkGetPackedR16(a) + SkGetPackedR16(b) <= SK_R16_MASK);
- SkASSERT(SkGetPackedG16(a) + SkGetPackedG16(b) <= SK_G16_MASK);
- SkASSERT(SkGetPackedB16(a) + SkGetPackedB16(b) <= SK_B16_MASK);
-
- return a + b;
- }
-#else
- #define SkRGB16Add(a, b) ((a) + (b))
-#endif
-
-///////////////////////////////////////////////////////////////////////////////
-
#define SK_A32_BITS 8
-#define SK_R32_BITS 8
-#define SK_G32_BITS 8
-#define SK_B32_BITS 8
#define SK_A32_MASK ((1 << SK_A32_BITS) - 1)
-#define SK_R32_MASK ((1 << SK_R32_BITS) - 1)
-#define SK_G32_MASK ((1 << SK_G32_BITS) - 1)
-#define SK_B32_MASK ((1 << SK_B32_BITS) - 1)
-#define SkGetPackedA32(packed) ((uint32_t)((packed) << (24 - SK_A32_SHIFT)) >> 24)
+#define SkGetPackedA32(packed) ((uint32_t)((packed) << (24 - SK_A32_SHIFT)) >> 24)
#define SkGetPackedR32(packed) ((uint32_t)((packed) << (24 - SK_R32_SHIFT)) >> 24)
#define SkGetPackedG32(packed) ((uint32_t)((packed) << (24 - SK_G32_SHIFT)) >> 24)
#define SkGetPackedB32(packed) ((uint32_t)((packed) << (24 - SK_B32_SHIFT)) >> 24)
#define SkA32Assert(a) SkASSERT((unsigned)(a) <= SK_A32_MASK)
-#define SkR32Assert(r) SkASSERT((unsigned)(r) <= SK_R32_MASK)
-#define SkG32Assert(g) SkASSERT((unsigned)(g) <= SK_G32_MASK)
-#define SkB32Assert(b) SkASSERT((unsigned)(b) <= SK_B32_MASK)
-
-#ifdef SK_DEBUG
- #define SkPMColorAssert(color_value) \
- do { \
- SkPMColor pm_color_value = (color_value); \
- uint32_t alpha_color_value = SkGetPackedA32(pm_color_value); \
- SkA32Assert(alpha_color_value); \
- SkASSERT(SkGetPackedR32(pm_color_value) <= alpha_color_value); \
- SkASSERT(SkGetPackedG32(pm_color_value) <= alpha_color_value); \
- SkASSERT(SkGetPackedB32(pm_color_value) <= alpha_color_value); \
- } while (false)
-#else
- #define SkPMColorAssert(c)
-#endif
-
-static inline bool SkPMColorValid(SkPMColor c) {
- auto a = SkGetPackedA32(c);
- bool valid = a <= SK_A32_MASK
- && SkGetPackedR32(c) <= a
- && SkGetPackedG32(c) <= a
- && SkGetPackedB32(c) <= a;
- if (valid) {
- SkPMColorAssert(c); // Make sure we're consistent when it counts.
- }
- return valid;
-}
/**
* Pack the components into a SkPMColor, checking (in the debug version) that
@@ -412,132 +46,6 @@ static inline SkPMColor SkPackARGB32(U8CPU a, U8CPU r, U8CPU g, U8CPU b) {
(g << SK_G32_SHIFT) | (b << SK_B32_SHIFT);
}
-static inline uint32_t SkPackPMColor_as_RGBA(SkPMColor c) {
- return SkPackARGB_as_RGBA(SkGetPackedA32(c), SkGetPackedR32(c),
- SkGetPackedG32(c), SkGetPackedB32(c));
-}
-
-static inline uint32_t SkPackPMColor_as_BGRA(SkPMColor c) {
- return SkPackARGB_as_BGRA(SkGetPackedA32(c), SkGetPackedR32(c),
- SkGetPackedG32(c), SkGetPackedB32(c));
-}
-
-/**
- * Abstract 4-byte interpolation, implemented on top of SkPMColor
- * utility functions. Third parameter controls blending of the first two:
- * (src, dst, 0) returns dst
- * (src, dst, 0xFF) returns src
- * srcWeight is [0..256], unlike SkFourByteInterp which takes [0..255]
- */
-static inline SkPMColor SkFourByteInterp256(SkPMColor src, SkPMColor dst,
- unsigned scale) {
- unsigned a = SkAlphaBlend(SkGetPackedA32(src), SkGetPackedA32(dst), scale);
- unsigned r = SkAlphaBlend(SkGetPackedR32(src), SkGetPackedR32(dst), scale);
- unsigned g = SkAlphaBlend(SkGetPackedG32(src), SkGetPackedG32(dst), scale);
- unsigned b = SkAlphaBlend(SkGetPackedB32(src), SkGetPackedB32(dst), scale);
-
- return SkPackARGB32(a, r, g, b);
-}
-
-/**
- * Abstract 4-byte interpolation, implemented on top of SkPMColor
- * utility functions. Third parameter controls blending of the first two:
- * (src, dst, 0) returns dst
- * (src, dst, 0xFF) returns src
- */
-static inline SkPMColor SkFourByteInterp(SkPMColor src, SkPMColor dst,
- U8CPU srcWeight) {
- unsigned scale = SkAlpha255To256(srcWeight);
- return SkFourByteInterp256(src, dst, scale);
-}
-
-/**
- * 0xAARRGGBB -> 0x00AA00GG, 0x00RR00BB
- */
-static inline void SkSplay(uint32_t color, uint32_t* ag, uint32_t* rb) {
- const uint32_t mask = 0x00FF00FF;
- *ag = (color >> 8) & mask;
- *rb = color & mask;
-}
-
-/**
- * 0xAARRGGBB -> 0x00AA00GG00RR00BB
- * (note, ARGB -> AGRB)
- */
-static inline uint64_t SkSplay(uint32_t color) {
- const uint32_t mask = 0x00FF00FF;
- uint64_t agrb = (color >> 8) & mask; // 0x0000000000AA00GG
- agrb <<= 32; // 0x00AA00GG00000000
- agrb |= color & mask; // 0x00AA00GG00RR00BB
- return agrb;
-}
-
-/**
- * 0xAAxxGGxx, 0xRRxxBBxx-> 0xAARRGGBB
- */
-static inline uint32_t SkUnsplay(uint32_t ag, uint32_t rb) {
- const uint32_t mask = 0xFF00FF00;
- return (ag & mask) | ((rb & mask) >> 8);
-}
-
-/**
- * 0xAAxxGGxxRRxxBBxx -> 0xAARRGGBB
- * (note, AGRB -> ARGB)
- */
-static inline uint32_t SkUnsplay(uint64_t agrb) {
- const uint32_t mask = 0xFF00FF00;
- return SkPMColor(
- ((agrb & mask) >> 8) | // 0x00RR00BB
- ((agrb >> 32) & mask)); // 0xAARRGGBB
-}
-
-static inline SkPMColor SkFastFourByteInterp256_32(SkPMColor src, SkPMColor dst, unsigned scale) {
- SkASSERT(scale <= 256);
-
- // Two 8-bit blends per two 32-bit registers, with space to make sure the math doesn't collide.
- uint32_t src_ag, src_rb, dst_ag, dst_rb;
- SkSplay(src, &src_ag, &src_rb);
- SkSplay(dst, &dst_ag, &dst_rb);
-
- const uint32_t ret_ag = src_ag * scale + (256 - scale) * dst_ag;
- const uint32_t ret_rb = src_rb * scale + (256 - scale) * dst_rb;
-
- return SkUnsplay(ret_ag, ret_rb);
-}
-
-static inline SkPMColor SkFastFourByteInterp256_64(SkPMColor src, SkPMColor dst, unsigned scale) {
- SkASSERT(scale <= 256);
- // Four 8-bit blends in one 64-bit register, with space to make sure the math doesn't collide.
- return SkUnsplay(SkSplay(src) * scale + (256-scale) * SkSplay(dst));
-}
-
-// TODO(mtklein): Replace slow versions with fast versions, using scale + (scale>>7) everywhere.
-
-/**
- * Same as SkFourByteInterp256, but faster.
- */
-static inline SkPMColor SkFastFourByteInterp256(SkPMColor src, SkPMColor dst, unsigned scale) {
- // On a 64-bit machine, _64 is about 10% faster than _32, but ~40% slower on a 32-bit machine.
- if (sizeof(void*) == 4) {
- return SkFastFourByteInterp256_32(src, dst, scale);
- } else {
- return SkFastFourByteInterp256_64(src, dst, scale);
- }
-}
-
-/**
- * Nearly the same as SkFourByteInterp, but faster and a touch more accurate, due to better
- * srcWeight scaling to [0, 256].
- */
-static inline SkPMColor SkFastFourByteInterp(SkPMColor src,
- SkPMColor dst,
- U8CPU srcWeight) {
- SkASSERT(srcWeight <= 255);
- // scale = srcWeight + (srcWeight >> 7) is more accurate than
- // scale = srcWeight + 1, but 7% slower
- return SkFastFourByteInterp256(src, dst, srcWeight + (srcWeight >> 7));
-}
-
/**
* Same as SkPackARGB32, but this version guarantees to not check that the
* values are premultiplied in the debug version.
@@ -547,21 +55,6 @@ static inline SkPMColor SkPackARGB32NoCheck(U8CPU a, U8CPU r, U8CPU g, U8CPU b)
(g << SK_G32_SHIFT) | (b << SK_B32_SHIFT);
}
-static inline
-SkPMColor SkPremultiplyARGBInline(U8CPU a, U8CPU r, U8CPU g, U8CPU b) {
- SkA32Assert(a);
- SkR32Assert(r);
- SkG32Assert(g);
- SkB32Assert(b);
-
- if (a != 255) {
- r = SkMulDiv255Round(r, a);
- g = SkMulDiv255Round(g, a);
- b = SkMulDiv255Round(b, a);
- }
- return SkPackARGB32(a, r, g, b);
-}
-
// When Android is compiled optimizing for size, SkAlphaMulQ doesn't get
// inlined; forcing inlining significantly improves performance.
static SK_ALWAYS_INLINE uint32_t SkAlphaMulQ(uint32_t c, unsigned scale) {
@@ -576,509 +69,4 @@ static inline SkPMColor SkPMSrcOver(SkPMColor src, SkPMColor dst) {
return src + SkAlphaMulQ(dst, SkAlpha255To256(255 - SkGetPackedA32(src)));
}
-/**
- * Interpolates between colors src and dst using [0,256] scale.
- */
-static inline SkPMColor SkPMLerp(SkPMColor src, SkPMColor dst, unsigned scale) {
- return SkFastFourByteInterp256(src, dst, scale);
-}
-
-static inline SkPMColor SkBlendARGB32(SkPMColor src, SkPMColor dst, U8CPU aa) {
- SkASSERT((unsigned)aa <= 255);
-
- unsigned src_scale = SkAlpha255To256(aa);
- unsigned dst_scale = SkAlphaMulInv256(SkGetPackedA32(src), src_scale);
-
- const uint32_t mask = 0xFF00FF;
-
- uint32_t src_rb = (src & mask) * src_scale;
- uint32_t src_ag = ((src >> 8) & mask) * src_scale;
-
- uint32_t dst_rb = (dst & mask) * dst_scale;
- uint32_t dst_ag = ((dst >> 8) & mask) * dst_scale;
-
- return (((src_rb + dst_rb) >> 8) & mask) | ((src_ag + dst_ag) & ~mask);
-}
-
-////////////////////////////////////////////////////////////////////////////////////////////
-// Convert a 32bit pixel to a 16bit pixel (no dither)
-
-#define SkR32ToR16_MACRO(r) ((unsigned)(r) >> (SK_R32_BITS - SK_R16_BITS))
-#define SkG32ToG16_MACRO(g) ((unsigned)(g) >> (SK_G32_BITS - SK_G16_BITS))
-#define SkB32ToB16_MACRO(b) ((unsigned)(b) >> (SK_B32_BITS - SK_B16_BITS))
-
-#ifdef SK_DEBUG
- static inline unsigned SkR32ToR16(unsigned r) {
- SkR32Assert(r);
- return SkR32ToR16_MACRO(r);
- }
- static inline unsigned SkG32ToG16(unsigned g) {
- SkG32Assert(g);
- return SkG32ToG16_MACRO(g);
- }
- static inline unsigned SkB32ToB16(unsigned b) {
- SkB32Assert(b);
- return SkB32ToB16_MACRO(b);
- }
-#else
- #define SkR32ToR16(r) SkR32ToR16_MACRO(r)
- #define SkG32ToG16(g) SkG32ToG16_MACRO(g)
- #define SkB32ToB16(b) SkB32ToB16_MACRO(b)
-#endif
-
-#define SkPacked32ToR16(c) (((unsigned)(c) >> (SK_R32_SHIFT + SK_R32_BITS - SK_R16_BITS)) & SK_R16_MASK)
-#define SkPacked32ToG16(c) (((unsigned)(c) >> (SK_G32_SHIFT + SK_G32_BITS - SK_G16_BITS)) & SK_G16_MASK)
-#define SkPacked32ToB16(c) (((unsigned)(c) >> (SK_B32_SHIFT + SK_B32_BITS - SK_B16_BITS)) & SK_B16_MASK)
-
-static inline U16CPU SkPixel32ToPixel16(SkPMColor c) {
- unsigned r = ((c >> (SK_R32_SHIFT + (8 - SK_R16_BITS))) & SK_R16_MASK) << SK_R16_SHIFT;
- unsigned g = ((c >> (SK_G32_SHIFT + (8 - SK_G16_BITS))) & SK_G16_MASK) << SK_G16_SHIFT;
- unsigned b = ((c >> (SK_B32_SHIFT + (8 - SK_B16_BITS))) & SK_B16_MASK) << SK_B16_SHIFT;
- return r | g | b;
-}
-
-static inline U16CPU SkPack888ToRGB16(U8CPU r, U8CPU g, U8CPU b) {
- return (SkR32ToR16(r) << SK_R16_SHIFT) |
- (SkG32ToG16(g) << SK_G16_SHIFT) |
- (SkB32ToB16(b) << SK_B16_SHIFT);
-}
-
-#define SkPixel32ToPixel16_ToU16(src) SkToU16(SkPixel32ToPixel16(src))
-
-/////////////////////////////////////////////////////////////////////////////////////////
-// Fast dither from 32->16
-
-#define SkShouldDitherXY(x, y) (((x) ^ (y)) & 1)
-
-static inline uint16_t SkDitherPack888ToRGB16(U8CPU r, U8CPU g, U8CPU b) {
- r = ((r << 1) - ((r >> (8 - SK_R16_BITS) << (8 - SK_R16_BITS)) | (r >> SK_R16_BITS))) >> (8 - SK_R16_BITS);
- g = ((g << 1) - ((g >> (8 - SK_G16_BITS) << (8 - SK_G16_BITS)) | (g >> SK_G16_BITS))) >> (8 - SK_G16_BITS);
- b = ((b << 1) - ((b >> (8 - SK_B16_BITS) << (8 - SK_B16_BITS)) | (b >> SK_B16_BITS))) >> (8 - SK_B16_BITS);
-
- return SkPackRGB16(r, g, b);
-}
-
-static inline uint16_t SkDitherPixel32ToPixel16(SkPMColor c) {
- return SkDitherPack888ToRGB16(SkGetPackedR32(c), SkGetPackedG32(c), SkGetPackedB32(c));
-}
-
-/* Return c in expanded_rgb_16 format, but also scaled up by 32 (5 bits)
- It is now suitable for combining with a scaled expanded_rgb_16 color
- as in SkSrcOver32To16().
- We must do this 565 high-bit replication, in order for the subsequent add
- to saturate properly (and not overflow). If we take the 8 bits as is, it is
- possible to overflow.
-*/
-static inline uint32_t SkPMColorToExpanded16x5(SkPMColor c) {
- unsigned sr = SkPacked32ToR16(c);
- unsigned sg = SkPacked32ToG16(c);
- unsigned sb = SkPacked32ToB16(c);
-
- sr = (sr << 5) | sr;
- sg = (sg << 5) | (sg >> 1);
- sb = (sb << 5) | sb;
- return (sr << 11) | (sg << 21) | (sb << 0);
-}
-
-/* SrcOver the 32bit src color with the 16bit dst, returning a 16bit value
- (with dirt in the high 16bits, so caller beware).
-*/
-static inline U16CPU SkSrcOver32To16(SkPMColor src, uint16_t dst) {
- unsigned sr = SkGetPackedR32(src);
- unsigned sg = SkGetPackedG32(src);
- unsigned sb = SkGetPackedB32(src);
-
- unsigned dr = SkGetPackedR16(dst);
- unsigned dg = SkGetPackedG16(dst);
- unsigned db = SkGetPackedB16(dst);
-
- unsigned isa = 255 - SkGetPackedA32(src);
-
- dr = (sr + SkMul16ShiftRound(dr, isa, SK_R16_BITS)) >> (8 - SK_R16_BITS);
- dg = (sg + SkMul16ShiftRound(dg, isa, SK_G16_BITS)) >> (8 - SK_G16_BITS);
- db = (sb + SkMul16ShiftRound(db, isa, SK_B16_BITS)) >> (8 - SK_B16_BITS);
-
- return SkPackRGB16(dr, dg, db);
-}
-
-////////////////////////////////////////////////////////////////////////////////////////////
-// Convert a 16bit pixel to a 32bit pixel
-
-static inline unsigned SkR16ToR32(unsigned r) {
- return (r << (8 - SK_R16_BITS)) | (r >> (2 * SK_R16_BITS - 8));
-}
-
-static inline unsigned SkG16ToG32(unsigned g) {
- return (g << (8 - SK_G16_BITS)) | (g >> (2 * SK_G16_BITS - 8));
-}
-
-static inline unsigned SkB16ToB32(unsigned b) {
- return (b << (8 - SK_B16_BITS)) | (b >> (2 * SK_B16_BITS - 8));
-}
-
-#define SkPacked16ToR32(c) SkR16ToR32(SkGetPackedR16(c))
-#define SkPacked16ToG32(c) SkG16ToG32(SkGetPackedG16(c))
-#define SkPacked16ToB32(c) SkB16ToB32(SkGetPackedB16(c))
-
-static inline SkPMColor SkPixel16ToPixel32(U16CPU src) {
- SkASSERT(src == SkToU16(src));
-
- unsigned r = SkPacked16ToR32(src);
- unsigned g = SkPacked16ToG32(src);
- unsigned b = SkPacked16ToB32(src);
-
- SkASSERT((r >> (8 - SK_R16_BITS)) == SkGetPackedR16(src));
- SkASSERT((g >> (8 - SK_G16_BITS)) == SkGetPackedG16(src));
- SkASSERT((b >> (8 - SK_B16_BITS)) == SkGetPackedB16(src));
-
- return SkPackARGB32(0xFF, r, g, b);
-}
-
-// similar to SkPixel16ToPixel32, but returns SkColor instead of SkPMColor
-static inline SkColor SkPixel16ToColor(U16CPU src) {
- SkASSERT(src == SkToU16(src));
-
- unsigned r = SkPacked16ToR32(src);
- unsigned g = SkPacked16ToG32(src);
- unsigned b = SkPacked16ToB32(src);
-
- SkASSERT((r >> (8 - SK_R16_BITS)) == SkGetPackedR16(src));
- SkASSERT((g >> (8 - SK_G16_BITS)) == SkGetPackedG16(src));
- SkASSERT((b >> (8 - SK_B16_BITS)) == SkGetPackedB16(src));
-
- return SkColorSetRGB(r, g, b);
-}
-
-///////////////////////////////////////////////////////////////////////////////
-
-typedef uint16_t SkPMColor16;
-
-// Put in OpenGL order (r g b a)
-#define SK_A4444_SHIFT 0
-#define SK_R4444_SHIFT 12
-#define SK_G4444_SHIFT 8
-#define SK_B4444_SHIFT 4
-
-#define SkA32To4444(a) ((unsigned)(a) >> 4)
-#define SkR32To4444(r) ((unsigned)(r) >> 4)
-#define SkG32To4444(g) ((unsigned)(g) >> 4)
-#define SkB32To4444(b) ((unsigned)(b) >> 4)
-
-static inline U8CPU SkReplicateNibble(unsigned nib) {
- SkASSERT(nib <= 0xF);
- return (nib << 4) | nib;
-}
-
-#define SkA4444ToA32(a) SkReplicateNibble(a)
-#define SkR4444ToR32(r) SkReplicateNibble(r)
-#define SkG4444ToG32(g) SkReplicateNibble(g)
-#define SkB4444ToB32(b) SkReplicateNibble(b)
-
-#define SkGetPackedA4444(c) (((unsigned)(c) >> SK_A4444_SHIFT) & 0xF)
-#define SkGetPackedR4444(c) (((unsigned)(c) >> SK_R4444_SHIFT) & 0xF)
-#define SkGetPackedG4444(c) (((unsigned)(c) >> SK_G4444_SHIFT) & 0xF)
-#define SkGetPackedB4444(c) (((unsigned)(c) >> SK_B4444_SHIFT) & 0xF)
-
-#define SkPacked4444ToA32(c) SkReplicateNibble(SkGetPackedA4444(c))
-#define SkPacked4444ToR32(c) SkReplicateNibble(SkGetPackedR4444(c))
-#define SkPacked4444ToG32(c) SkReplicateNibble(SkGetPackedG4444(c))
-#define SkPacked4444ToB32(c) SkReplicateNibble(SkGetPackedB4444(c))
-
-#ifdef SK_DEBUG
-static inline void SkPMColor16Assert(U16CPU c) {
- unsigned a = SkGetPackedA4444(c);
- unsigned r = SkGetPackedR4444(c);
- unsigned g = SkGetPackedG4444(c);
- unsigned b = SkGetPackedB4444(c);
-
- SkASSERT(a <= 0xF);
- SkASSERT(r <= a);
- SkASSERT(g <= a);
- SkASSERT(b <= a);
-}
-#else
-#define SkPMColor16Assert(c)
-#endif
-
-static inline unsigned SkAlpha15To16(unsigned a) {
- SkASSERT(a <= 0xF);
- return a + (a >> 3);
-}
-
-#ifdef SK_DEBUG
- static inline int SkAlphaMul4(int value, int scale) {
- SkASSERT((unsigned)scale <= 0x10);
- return value * scale >> 4;
- }
-#else
- #define SkAlphaMul4(value, scale) ((value) * (scale) >> 4)
-#endif
-
-static inline unsigned SkR4444ToR565(unsigned r) {
- SkASSERT(r <= 0xF);
- return (r << (SK_R16_BITS - 4)) | (r >> (8 - SK_R16_BITS));
-}
-
-static inline unsigned SkG4444ToG565(unsigned g) {
- SkASSERT(g <= 0xF);
- return (g << (SK_G16_BITS - 4)) | (g >> (8 - SK_G16_BITS));
-}
-
-static inline unsigned SkB4444ToB565(unsigned b) {
- SkASSERT(b <= 0xF);
- return (b << (SK_B16_BITS - 4)) | (b >> (8 - SK_B16_BITS));
-}
-
-static inline SkPMColor16 SkPackARGB4444(unsigned a, unsigned r,
- unsigned g, unsigned b) {
- SkASSERT(a <= 0xF);
- SkASSERT(r <= a);
- SkASSERT(g <= a);
- SkASSERT(b <= a);
-
- return (SkPMColor16)((a << SK_A4444_SHIFT) | (r << SK_R4444_SHIFT) |
- (g << SK_G4444_SHIFT) | (b << SK_B4444_SHIFT));
-}
-
-static inline SkPMColor16 SkAlphaMulQ4(SkPMColor16 c, int scale) {
- SkASSERT(scale <= 16);
-
- const unsigned mask = 0xF0F; //gMask_0F0F;
-
-#if 0
- unsigned rb = ((c & mask) * scale) >> 4;
- unsigned ag = ((c >> 4) & mask) * scale;
- return (rb & mask) | (ag & ~mask);
-#else
- unsigned expanded_c = (c & mask) | ((c & (mask << 4)) << 12);
- unsigned scaled_c = (expanded_c * scale) >> 4;
- return (scaled_c & mask) | ((scaled_c >> 12) & (mask << 4));
-#endif
-}
-
-/** Expand the SkPMColor16 color into a 32bit value that can be scaled all at
- once by a value up to 16.
-*/
-static inline uint32_t SkExpand_4444(U16CPU c) {
- SkASSERT(c == (uint16_t)c);
-
- const unsigned mask = 0xF0F; //gMask_0F0F;
- return (c & mask) | ((c & ~mask) << 12);
-}
-
-static inline uint16_t SkSrcOver4444To16(SkPMColor16 s, uint16_t d) {
- unsigned sa = SkGetPackedA4444(s);
- unsigned sr = SkR4444ToR565(SkGetPackedR4444(s));
- unsigned sg = SkG4444ToG565(SkGetPackedG4444(s));
- unsigned sb = SkB4444ToB565(SkGetPackedB4444(s));
-
- // To avoid overflow, we have to clear the low bit of the synthetic sg
- // if the src alpha is <= 7.
- // to see why, try blending 0x4444 on top of 565-white and watch green
- // overflow (sum == 64)
- sg &= ~(~(sa >> 3) & 1);
-
- unsigned scale = SkAlpha15To16(15 - sa);
- unsigned dr = SkAlphaMul4(SkGetPackedR16(d), scale);
- unsigned dg = SkAlphaMul4(SkGetPackedG16(d), scale);
- unsigned db = SkAlphaMul4(SkGetPackedB16(d), scale);
-
-#if 0
- if (sg + dg > 63) {
- SkDebugf("---- SkSrcOver4444To16 src=%x dst=%x scale=%d, sg=%d dg=%d\n", s, d, scale, sg, dg);
- }
-#endif
- return SkPackRGB16(sr + dr, sg + dg, sb + db);
-}
-
-static inline uint16_t SkBlend4444To16(SkPMColor16 src, uint16_t dst, int scale16) {
- SkASSERT((unsigned)scale16 <= 16);
-
- return SkSrcOver4444To16(SkAlphaMulQ4(src, scale16), dst);
-}
-
-static inline SkPMColor SkPixel4444ToPixel32(U16CPU c) {
- uint32_t d = (SkGetPackedA4444(c) << SK_A32_SHIFT) |
- (SkGetPackedR4444(c) << SK_R32_SHIFT) |
- (SkGetPackedG4444(c) << SK_G32_SHIFT) |
- (SkGetPackedB4444(c) << SK_B32_SHIFT);
- return d | (d << 4);
-}
-
-static inline SkPMColor16 SkPixel32ToPixel4444(SkPMColor c) {
- return (((c >> (SK_A32_SHIFT + 4)) & 0xF) << SK_A4444_SHIFT) |
- (((c >> (SK_R32_SHIFT + 4)) & 0xF) << SK_R4444_SHIFT) |
- (((c >> (SK_G32_SHIFT + 4)) & 0xF) << SK_G4444_SHIFT) |
- (((c >> (SK_B32_SHIFT + 4)) & 0xF) << SK_B4444_SHIFT);
-}
-
-// cheap 2x2 dither
-static inline SkPMColor16 SkDitherARGB32To4444(U8CPU a, U8CPU r,
- U8CPU g, U8CPU b) {
- // to ensure that we stay a legal premultiplied color, we take the max()
- // of the truncated and dithered alpha values. If we didn't, cases like
- // SkDitherARGB32To4444(0x31, 0x2E, ...) would generate SkPackARGB4444(2, 3, ...)
- // which is not legal premultiplied, since a < color
- unsigned dithered_a = ((a << 1) - ((a >> 4 << 4) | (a >> 4))) >> 4;
- a = SkMax32(a >> 4, dithered_a);
- // these we just dither in place
- r = ((r << 1) - ((r >> 4 << 4) | (r >> 4))) >> 4;
- g = ((g << 1) - ((g >> 4 << 4) | (g >> 4))) >> 4;
- b = ((b << 1) - ((b >> 4 << 4) | (b >> 4))) >> 4;
-
- return SkPackARGB4444(a, r, g, b);
-}
-
-static inline SkPMColor16 SkDitherPixel32To4444(SkPMColor c) {
- return SkDitherARGB32To4444(SkGetPackedA32(c), SkGetPackedR32(c),
- SkGetPackedG32(c), SkGetPackedB32(c));
-}
-
-/* Assumes 16bit is in standard RGBA order.
- Transforms a normal ARGB_8888 into the same byte order as
- expanded ARGB_4444, but keeps each component 8bits
-*/
-static inline uint32_t SkExpand_8888(SkPMColor c) {
- return (((c >> SK_R32_SHIFT) & 0xFF) << 24) |
- (((c >> SK_G32_SHIFT) & 0xFF) << 8) |
- (((c >> SK_B32_SHIFT) & 0xFF) << 16) |
- (((c >> SK_A32_SHIFT) & 0xFF) << 0);
-}
-
-/* Undo the operation of SkExpand_8888, turning the argument back into
- a SkPMColor.
-*/
-static inline SkPMColor SkCompact_8888(uint32_t c) {
- return (((c >> 24) & 0xFF) << SK_R32_SHIFT) |
- (((c >> 8) & 0xFF) << SK_G32_SHIFT) |
- (((c >> 16) & 0xFF) << SK_B32_SHIFT) |
- (((c >> 0) & 0xFF) << SK_A32_SHIFT);
-}
-
-/* Like SkExpand_8888, this transforms a pmcolor into the expanded 4444 format,
- but this routine just keeps the high 4bits of each component in the low
- 4bits of the result (just like a newly expanded PMColor16).
-*/
-static inline uint32_t SkExpand32_4444(SkPMColor c) {
- return (((c >> (SK_R32_SHIFT + 4)) & 0xF) << 24) |
- (((c >> (SK_G32_SHIFT + 4)) & 0xF) << 8) |
- (((c >> (SK_B32_SHIFT + 4)) & 0xF) << 16) |
- (((c >> (SK_A32_SHIFT + 4)) & 0xF) << 0);
-}
-
-// takes two values and alternamtes them as part of a memset16
-// used for cheap 2x2 dithering when the colors are opaque
-void sk_dither_memset16(uint16_t dst[], uint16_t value, uint16_t other, int n);
-
-///////////////////////////////////////////////////////////////////////////////
-
-static inline int SkUpscale31To32(int value) {
- SkASSERT((unsigned)value <= 31);
- return value + (value >> 4);
-}
-
-static inline int SkBlend32(int src, int dst, int scale) {
- SkASSERT((unsigned)src <= 0xFF);
- SkASSERT((unsigned)dst <= 0xFF);
- SkASSERT((unsigned)scale <= 32);
- return dst + ((src - dst) * scale >> 5);
-}
-
-static inline SkPMColor SkBlendLCD16(int srcA, int srcR, int srcG, int srcB,
- SkPMColor dst, uint16_t mask) {
- if (mask == 0) {
- return dst;
- }
-
- /* We want all of these in 5bits, hence the shifts in case one of them
- * (green) is 6bits.
- */
- int maskR = SkGetPackedR16(mask) >> (SK_R16_BITS - 5);
- int maskG = SkGetPackedG16(mask) >> (SK_G16_BITS - 5);
- int maskB = SkGetPackedB16(mask) >> (SK_B16_BITS - 5);
-
- // Now upscale them to 0..32, so we can use blend32
- maskR = SkUpscale31To32(maskR);
- maskG = SkUpscale31To32(maskG);
- maskB = SkUpscale31To32(maskB);
-
- // srcA has been upscaled to 256 before passed into this function
- maskR = maskR * srcA >> 8;
- maskG = maskG * srcA >> 8;
- maskB = maskB * srcA >> 8;
-
- int dstR = SkGetPackedR32(dst);
- int dstG = SkGetPackedG32(dst);
- int dstB = SkGetPackedB32(dst);
-
- // LCD blitting is only supported if the dst is known/required
- // to be opaque
- return SkPackARGB32(0xFF,
- SkBlend32(srcR, dstR, maskR),
- SkBlend32(srcG, dstG, maskG),
- SkBlend32(srcB, dstB, maskB));
-}
-
-static inline SkPMColor SkBlendLCD16Opaque(int srcR, int srcG, int srcB,
- SkPMColor dst, uint16_t mask,
- SkPMColor opaqueDst) {
- if (mask == 0) {
- return dst;
- }
-
- if (0xFFFF == mask) {
- return opaqueDst;
- }
-
- /* We want all of these in 5bits, hence the shifts in case one of them
- * (green) is 6bits.
- */
- int maskR = SkGetPackedR16(mask) >> (SK_R16_BITS - 5);
- int maskG = SkGetPackedG16(mask) >> (SK_G16_BITS - 5);
- int maskB = SkGetPackedB16(mask) >> (SK_B16_BITS - 5);
-
- // Now upscale them to 0..32, so we can use blend32
- maskR = SkUpscale31To32(maskR);
- maskG = SkUpscale31To32(maskG);
- maskB = SkUpscale31To32(maskB);
-
- int dstR = SkGetPackedR32(dst);
- int dstG = SkGetPackedG32(dst);
- int dstB = SkGetPackedB32(dst);
-
- // LCD blitting is only supported if the dst is known/required
- // to be opaque
- return SkPackARGB32(0xFF,
- SkBlend32(srcR, dstR, maskR),
- SkBlend32(srcG, dstG, maskG),
- SkBlend32(srcB, dstB, maskB));
-}
-
-static inline void SkBlitLCD16Row(SkPMColor dst[], const uint16_t mask[],
- SkColor src, int width, SkPMColor) {
- int srcA = SkColorGetA(src);
- int srcR = SkColorGetR(src);
- int srcG = SkColorGetG(src);
- int srcB = SkColorGetB(src);
-
- srcA = SkAlpha255To256(srcA);
-
- for (int i = 0; i < width; i++) {
- dst[i] = SkBlendLCD16(srcA, srcR, srcG, srcB, dst[i], mask[i]);
- }
-}
-
-static inline void SkBlitLCD16OpaqueRow(SkPMColor dst[], const uint16_t mask[],
- SkColor src, int width,
- SkPMColor opaqueDst) {
- int srcR = SkColorGetR(src);
- int srcG = SkColorGetG(src);
- int srcB = SkColorGetB(src);
-
- for (int i = 0; i < width; i++) {
- dst[i] = SkBlendLCD16Opaque(srcR, srcG, srcB, dst[i], mask[i],
- opaqueDst);
- }
-}
-
#endif