aboutsummaryrefslogtreecommitdiffhomepage
path: root/src/wildcard.cpp
blob: cb11e6a5f4d1fe84f7eb889061176a67cec2692f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
// Fish needs it's own globbing implementation to support tab-expansion of globbed parameters. Also
// provides recursive wildcards using **.
#include "config.h"  // IWYU pragma: keep

#include <assert.h>
#include <dirent.h>
#include <errno.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <unistd.h>
#include <wchar.h>
#include <memory>
#include <set>
#include <string>
#include <utility>

#include "common.h"
#include "complete.h"
#include "expand.h"
#include "fallback.h"  // IWYU pragma: keep
#include "reader.h"
#include "wildcard.h"
#include "wutil.h"  // IWYU pragma: keep

/// Description for generic executable.
#define COMPLETE_EXEC_DESC _(L"Executable")
/// Description for link to executable.
#define COMPLETE_EXEC_LINK_DESC _(L"Executable link")
/// Description for regular file.
#define COMPLETE_FILE_DESC _(L"File")
/// Description for character device.
#define COMPLETE_CHAR_DESC _(L"Character device")
/// Description for block device.
#define COMPLETE_BLOCK_DESC _(L"Block device")
/// Description for fifo buffer.
#define COMPLETE_FIFO_DESC _(L"Fifo")
/// Description for symlink.
#define COMPLETE_SYMLINK_DESC _(L"Symbolic link")
/// Description for symlink.
#define COMPLETE_DIRECTORY_SYMLINK_DESC _(L"Symbolic link to directory")
/// Description for Rotten symlink.
#define COMPLETE_ROTTEN_SYMLINK_DESC _(L"Rotten symbolic link")
/// Description for symlink loop.
#define COMPLETE_LOOP_SYMLINK_DESC _(L"Symbolic link loop")
/// Description for socket files.
#define COMPLETE_SOCKET_DESC _(L"Socket")
/// Description for directories.
#define COMPLETE_DIRECTORY_DESC _(L"Directory")

/// Finds an internal (ANY_STRING, etc.) style wildcard, or wcstring::npos.
static size_t wildcard_find(const wchar_t *wc) {
    for (size_t i = 0; wc[i] != L'\0'; i++) {
        if (wc[i] == ANY_CHAR || wc[i] == ANY_STRING || wc[i] == ANY_STRING_RECURSIVE) {
            return i;
        }
    }
    return wcstring::npos;
}

/// Implementation of wildcard_has. Needs to take the length to handle embedded nulls (issue #1631).
static bool wildcard_has_impl(const wchar_t *str, size_t len, bool internal) {
    assert(str != NULL);
    const wchar_t *end = str + len;
    if (internal) {
        for (; str < end; str++) {
            if ((*str == ANY_CHAR) || (*str == ANY_STRING) || (*str == ANY_STRING_RECURSIVE))
                return true;
        }
    } else {
        wchar_t prev = 0;
        for (; str < end; str++) {
            if (((*str == L'*') || (*str == L'?')) && (prev != L'\\')) return true;
            prev = *str;
        }
    }

    return false;
}

bool wildcard_has(const wchar_t *str, bool internal) {
    assert(str != NULL);
    return wildcard_has_impl(str, wcslen(str), internal);
}

bool wildcard_has(const wcstring &str, bool internal) {
    return wildcard_has_impl(str.data(), str.size(), internal);
}

/// Check whether the string str matches the wildcard string wc.
///
/// \param str String to be matched.
/// \param wc The wildcard.
/// \param is_first Whether files beginning with dots should not be matched against wildcards.
static enum fuzzy_match_type_t wildcard_match_internal(const wchar_t *str, const wchar_t *wc,
                                                       bool leading_dots_fail_to_match,
                                                       bool is_first) {
    if (*str == 0 && *wc == 0) {
        return fuzzy_match_exact;  // we're done
    }

    // Hackish fix for issue #270. Prevent wildcards from matching . or .., but we must still allow
    // literal matches.
    if (leading_dots_fail_to_match && is_first && contains(str, L".", L"..")) {
        // The string is '.' or '..'. Return true if the wildcard exactly matches.
        return wcscmp(str, wc) ? fuzzy_match_none : fuzzy_match_exact;
    }

    if (*wc == ANY_STRING || *wc == ANY_STRING_RECURSIVE) {
        // Ignore hidden file
        if (leading_dots_fail_to_match && is_first && *str == L'.') {
            return fuzzy_match_none;
        }

        // Common case of * at the end. In that case we can early out since we know it will match.
        if (wc[1] == L'\0') {
            return fuzzy_match_exact;
        }

        // Try all submatches.
        do {
            enum fuzzy_match_type_t subresult =
                wildcard_match_internal(str, wc + 1, leading_dots_fail_to_match, false);
            if (subresult != fuzzy_match_none) {
                return subresult;
            }
        } while (*str++ != 0);
        return fuzzy_match_none;
    } else if (*str == 0) {
        // End of string, but not end of wildcard, and the next wildcard element is not a '*', so
        // this is not a match.
        return fuzzy_match_none;
    } else if (*wc == ANY_CHAR) {
        if (is_first && *str == L'.') {
            return fuzzy_match_none;
        }

        return wildcard_match_internal(str + 1, wc + 1, leading_dots_fail_to_match, false);
    } else if (*wc == *str) {
        return wildcard_match_internal(str + 1, wc + 1, leading_dots_fail_to_match, false);
    }

    return fuzzy_match_none;
}

// This does something horrible refactored from an even more horrible function.
static wcstring resolve_description(wcstring *completion, const wchar_t *explicit_desc,
                                    wcstring (*desc_func)(const wcstring &)) {
    size_t complete_sep_loc = completion->find(PROG_COMPLETE_SEP);
    if (complete_sep_loc != wcstring::npos) {
        // This completion has an embedded description, do not use the generic description.
        const wcstring description = completion->substr(complete_sep_loc + 1);
        completion->resize(complete_sep_loc);
        return description;
    }

    const wcstring func_result = (desc_func ? desc_func(*completion) : wcstring());
    if (!func_result.empty()) {
        return func_result;
    }
    return explicit_desc ? explicit_desc : L"";
}

// A transient parameter pack needed by wildcard_complete.
struct wc_complete_pack_t {
    const wcstring &orig;                     // the original string, transient
    const wchar_t *desc;                      // literal description
    wcstring (*desc_func)(const wcstring &);  // function for generating descriptions
    expand_flags_t expand_flags;
    wc_complete_pack_t(const wcstring &str, const wchar_t *des, wcstring (*df)(const wcstring &),
                       expand_flags_t fl)
        : orig(str), desc(des), desc_func(df), expand_flags(fl) {}
};

// Weirdly specific and non-reusable helper function that makes its one call site much clearer.
static bool has_prefix_match(const std::vector<completion_t> *comps, size_t first) {
    if (comps != NULL) {
        const size_t after_count = comps->size();
        for (size_t j = first; j < after_count; j++) {
            if (comps->at(j).match.type <= fuzzy_match_prefix) {
                return true;
            }
        }
    }
    return false;
}

/// Matches the string against the wildcard, and if the wildcard is a possible completion of the
/// string, the remainder of the string is inserted into the out vector.
///
/// We ignore ANY_STRING_RECURSIVE here. The consequence is that you cannot tab complete **
/// wildcards. This is historic behavior.
static bool wildcard_complete_internal(const wchar_t *str, const wchar_t *wc,
                                       const wc_complete_pack_t &params, complete_flags_t flags,
                                       std::vector<completion_t> *out, bool is_first_call = false) {
    assert(str != NULL);
    assert(wc != NULL);

    // Maybe early out for hidden files. We require that the wildcard match these exactly (i.e. a
    // dot); ANY_STRING not allowed.
    if (is_first_call && str[0] == L'.' && wc[0] != L'.') {
        return false;
    }

    // Locate the next wildcard character position, e.g. ANY_CHAR or ANY_STRING.
    const size_t next_wc_char_pos = wildcard_find(wc);

    // Maybe we have no more wildcards at all. This includes the empty string.
    if (next_wc_char_pos == wcstring::npos) {
        string_fuzzy_match_t match = string_fuzzy_match_string(wc, str);

        // If we're allowing fuzzy match, any match is OK. Otherwise we require a prefix match.
        bool match_acceptable;
        if (params.expand_flags & EXPAND_FUZZY_MATCH) {
            match_acceptable = match.type != fuzzy_match_none;
        } else {
            match_acceptable = match_type_shares_prefix(match.type);
        }

        if (match_acceptable && out != NULL) {
            // Wildcard complete.
            bool full_replacement = match_type_requires_full_replacement(match.type) ||
                                    (flags & COMPLETE_REPLACES_TOKEN);

            // If we are not replacing the token, be careful to only store the part of the string
            // after the wildcard.
            assert(!full_replacement || wcslen(wc) <= wcslen(str));
            wcstring out_completion = full_replacement ? params.orig : str + wcslen(wc);
            wcstring out_desc = resolve_description(&out_completion, params.desc, params.desc_func);

            // Note: out_completion may be empty if the completion really is empty, e.g.
            // tab-completing 'foo' when a file 'foo' exists.
            complete_flags_t local_flags = flags | (full_replacement ? COMPLETE_REPLACES_TOKEN : 0);
            append_completion(out, out_completion, out_desc, local_flags, match);
        }
        return match_acceptable;
    } else if (next_wc_char_pos > 0) {
        // Here we have a non-wildcard prefix. Note that we don't do fuzzy matching for stuff before
        // a wildcard, so just do case comparison and then recurse.
        if (wcsncmp(str, wc, next_wc_char_pos) == 0) {
            // Normal match.
            return wildcard_complete_internal(str + next_wc_char_pos, wc + next_wc_char_pos, params,
                                              flags, out);
        }
        if (wcsncasecmp(str, wc, next_wc_char_pos) == 0) {
            // Case insensitive match.
            return wildcard_complete_internal(str + next_wc_char_pos, wc + next_wc_char_pos, params,
                                              flags | COMPLETE_REPLACES_TOKEN, out);
        }
        return false;  // no match
    }

    // Our first character is a wildcard.
    assert(next_wc_char_pos == 0);
    switch (wc[0]) {
        case ANY_CHAR: {
            if (str[0] == L'\0') {
                return false;
            }
            return wildcard_complete_internal(str + 1, wc + 1, params, flags, out);
        }
        case ANY_STRING: {
            // Hackish. If this is the last character of the wildcard, then just complete with
            // the empty string. This fixes cases like "f*<tab>" -> "f*o".
            if (wc[1] == L'\0') {
                return wildcard_complete_internal(L"", L"", params, flags, out);
            }

            // Try all submatches. Issue #929: if the recursive call gives us a prefix match,
            // just stop. This is sloppy - what we really want to do is say, once we've seen a
            // match of a particular type, ignore all matches of that type further down the
            // string, such that the wildcard produces the "minimal match.".
            bool has_match = false;
            for (size_t i = 0; str[i] != L'\0'; i++) {
                const size_t before_count = out ? out->size() : 0;
                if (wildcard_complete_internal(str + i, wc + 1, params, flags, out)) {
                    // We found a match.
                    has_match = true;

                    // If out is NULL, we don't care about the actual matches. If out is not
                    // NULL but we have a prefix match, stop there.
                    if (out == NULL || has_prefix_match(out, before_count)) {
                        break;
                    }
                }
            }
            return has_match;
        }
        case ANY_STRING_RECURSIVE: {
            // We don't even try with this one.
            return false;
        }
        default: { assert(0 && "Unreachable code reached"); }
    }

    assert(0 && "Unreachable code reached");
}

bool wildcard_complete(const wcstring &str, const wchar_t *wc, const wchar_t *desc,
                       wcstring (*desc_func)(const wcstring &), std::vector<completion_t> *out,
                       expand_flags_t expand_flags, complete_flags_t flags) {
    // Note out may be NULL.
    assert(wc != NULL);
    wc_complete_pack_t params(str, desc, desc_func, expand_flags);
    return wildcard_complete_internal(str.c_str(), wc, params, flags, out, true /* first call */);
}

bool wildcard_match(const wcstring &str, const wcstring &wc, bool leading_dots_fail_to_match) {
    enum fuzzy_match_type_t match = wildcard_match_internal(
        str.c_str(), wc.c_str(), leading_dots_fail_to_match, true /* first */);
    return match != fuzzy_match_none;
}

/// Obtain a description string for the file specified by the filename.
///
/// The returned value is a string constant and should not be free'd.
///
/// \param filename The file for which to find a description string
/// \param lstat_res The result of calling lstat on the file
/// \param lbuf The struct buf output of calling lstat on the file
/// \param stat_res The result of calling stat on the file
/// \param buf The struct buf output of calling stat on the file
/// \param err The errno value after a failed stat call on the file.
static wcstring file_get_desc(const wcstring &filename, int lstat_res, const struct stat &lbuf,
                              int stat_res, const struct stat &buf, int err) {
    if (!lstat_res) {
        if (S_ISLNK(lbuf.st_mode)) {
            if (!stat_res) {
                if (S_ISDIR(buf.st_mode)) {
                    return COMPLETE_DIRECTORY_SYMLINK_DESC;
                }
                if (buf.st_mode & (S_IXUSR | S_IXGRP | S_IXOTH)) {
                    if (waccess(filename, X_OK) == 0) {
                        // Weird group permissions and other such issues make it non-trivial to
                        // find out if we can actually execute a file using the result from
                        // stat. It is much safer to use the access function, since it tells us
                        // exactly what we want to know.
                        return COMPLETE_EXEC_LINK_DESC;
                    }
                }

                return COMPLETE_SYMLINK_DESC;
            }

            switch (err) {
                case ENOENT: {
                    return COMPLETE_ROTTEN_SYMLINK_DESC;
                }
                case ELOOP: {
                    return COMPLETE_LOOP_SYMLINK_DESC;
                }
                default: {
                    // On unknown errors we do nothing. The file will be given the default 'File'
                    // description or one based on the suffix.
                }
            }
        } else if (S_ISCHR(buf.st_mode)) {
            return COMPLETE_CHAR_DESC;
        } else if (S_ISBLK(buf.st_mode)) {
            return COMPLETE_BLOCK_DESC;
        } else if (S_ISFIFO(buf.st_mode)) {
            return COMPLETE_FIFO_DESC;
        } else if (S_ISSOCK(buf.st_mode)) {
            return COMPLETE_SOCKET_DESC;
        } else if (S_ISDIR(buf.st_mode)) {
            return COMPLETE_DIRECTORY_DESC;
        } else {
            if (buf.st_mode & (S_IXUSR | S_IXGRP | S_IXGRP)) {
                if (waccess(filename, X_OK) == 0) {
                    // Weird group permissions and other such issues make it non-trivial to find out
                    // if we can actually execute a file using the result from stat. It is much
                    // safer to use the access function, since it tells us exactly what we want to
                    // know.
                    return COMPLETE_EXEC_DESC;
                }
            }
        }
    }

    return COMPLETE_FILE_DESC;
}

/// Test if the given file is an executable (if EXECUTABLES_ONLY) or directory (if
/// DIRECTORIES_ONLY). If it matches, call wildcard_complete() with some description that we make
/// up. Note that the filename came from a readdir() call, so we know it exists.
static bool wildcard_test_flags_then_complete(const wcstring &filepath, const wcstring &filename,
                                              const wchar_t *wc, expand_flags_t expand_flags,
                                              std::vector<completion_t> *out) {
    // Check if it will match before stat().
    if (!wildcard_complete(filename, wc, NULL, NULL, NULL, expand_flags, 0)) {
        return false;
    }

    struct stat lstat_buf = {}, stat_buf = {};
    int stat_res = -1;
    int stat_errno = 0;
    int lstat_res = lwstat(filepath, &lstat_buf);
    if (lstat_res < 0) {
        // lstat failed.
    } else {
        if (S_ISLNK(lstat_buf.st_mode)) {
            stat_res = wstat(filepath, &stat_buf);

            if (stat_res < 0) {
                // In order to differentiate between e.g. rotten symlinks and symlink loops, we also
                // need to know the error status of wstat.
                stat_errno = errno;
            }
        } else {
            stat_buf = lstat_buf;
            stat_res = lstat_res;
        }
    }

    const long long file_size = stat_res == 0 ? stat_buf.st_size : 0;
    const bool is_directory = stat_res == 0 && S_ISDIR(stat_buf.st_mode);
    const bool is_executable = stat_res == 0 && S_ISREG(stat_buf.st_mode);

    if (expand_flags & DIRECTORIES_ONLY) {
        if (!is_directory) {
            return false;
        }
    }
    if (expand_flags & EXECUTABLES_ONLY) {
        if (!is_executable || waccess(filepath, X_OK) != 0) {
            return false;
        }
    }

    // Compute the description.
    wcstring desc;
    if (!(expand_flags & EXPAND_NO_DESCRIPTIONS)) {
        desc = file_get_desc(filepath, lstat_res, lstat_buf, stat_res, stat_buf, stat_errno);

        if (file_size >= 0) {
            if (!desc.empty()) desc.append(L", ");
            desc.append(format_size(file_size));
        }
    }

    // Append a / if this is a directory. Note this requirement may be the only reason we have to
    // call stat() in some cases.
    if (is_directory) {
        return wildcard_complete(filename + L'/', wc, desc.c_str(), NULL, out, expand_flags,
                                 COMPLETE_NO_SPACE);
    }
    return wildcard_complete(filename, wc, desc.c_str(), NULL, out, expand_flags, 0);
}

class wildcard_expander_t {
    // Prefix, i.e. effective working directory.
    const wcstring prefix;
    // The original base we are expanding.
    const wcstring original_base;
    // Original wildcard we are expanding.
    const wchar_t *const original_wildcard;
    // The set of items we have resolved, used to efficiently avoid duplication.
    std::set<wcstring> completion_set;
    // The set of file IDs we have visited, used to avoid symlink loops.
    std::set<file_id_t> visited_files;
    // Flags controlling expansion.
    const expand_flags_t flags;
    // Resolved items get inserted into here. This is transient of course.
    std::vector<completion_t> *resolved_completions;
    // Whether we have been interrupted.
    bool did_interrupt;
    // Whether we have successfully added any completions.
    bool did_add;

    /// We are a trailing slash - expand at the end.
    void expand_trailing_slash(const wcstring &base_dir);

    /// Given a directory base_dir, which is opened as base_dir_fp, expand an intermediate segment
    /// of the wildcard. Treat ANY_STRING_RECURSIVE as ANY_STRING. wc_segment is the wildcard
    /// segment for this directory wc_remainder is the wildcard for subdirectories
    void expand_intermediate_segment(const wcstring &base_dir, DIR *base_dir_fp,
                                     const wcstring &wc_segment, const wchar_t *wc_remainder);

    /// Given a directory base_dir, which is opened as base_dir_fp, expand an intermediate literal
    /// segment. Use a fuzzy matching algorithm.
    void expand_literal_intermediate_segment_with_fuzz(const wcstring &base_dir, DIR *base_dir_fp,
                                                       const wcstring &wc_segment,
                                                       const wchar_t *wc_remainder);

    /// Given a directory base_dir, which is opened as base_dir_fp, expand the last segment of the
    /// wildcard. Treat ANY_STRING_RECURSIVE as ANY_STRING. wc is the wildcard segment to use for
    /// matching wc_remainder is the wildcard for subdirectories.
    void expand_last_segment(const wcstring &base_dir, DIR *base_dir_fp, const wcstring &wc);

    /// Indicate whether we should cancel wildcard expansion. This latches 'interrupt'.
    bool interrupted() {
        if (!did_interrupt) {
            did_interrupt =
                (is_main_thread() ? reader_interrupted() : reader_thread_job_is_stale());
        }
        return did_interrupt;
    }

    void add_expansion_result(const wcstring &result) {
        // This function is only for the non-completions case.
        assert(!(this->flags & EXPAND_FOR_COMPLETIONS));
        if (this->completion_set.insert(result).second) {
            append_completion(this->resolved_completions, result);
            this->did_add = true;
        }
    }

    // Given a start point as an absolute path, for any directory that has exactly one non-hidden
    // entity in it which is itself a directory, return that. The result is a relative path. For
    // example, if start_point is '/usr' we may return 'local/bin/'.
    //
    // The result does not have a leading slash, but does have a trailing slash if non-empty.
    wcstring descend_unique_hierarchy(const wcstring &start_point) {
        assert(!start_point.empty() && start_point.at(0) == L'/');

        wcstring unique_hierarchy;
        wcstring abs_unique_hierarchy = start_point;

        bool stop_descent = false;
        DIR *dir;
        while (!stop_descent && (dir = wopendir(abs_unique_hierarchy))) {
            // We keep track of the single unique_entry entry. If we get more than one, it's not
            // unique and we stop the descent.
            wcstring unique_entry;

            bool child_is_dir;
            wcstring child_entry;
            while (wreaddir_resolving(dir, abs_unique_hierarchy, child_entry, &child_is_dir)) {
                if (child_entry.empty() || child_entry.at(0) == L'.') {
                    continue;  // either hidden, or . and .. entries -- skip them
                } else if (child_is_dir && unique_entry.empty()) {
                    unique_entry = child_entry;  // first candidate
                } else {
                    // We either have two or more candidates, or the child is not a directory. We're
                    // done.
                    stop_descent = true;
                    break;
                }
            }

            // We stop if we got two or more entries; also stop if we got zero.
            if (unique_entry.empty()) {
                stop_descent = true;
            }

            if (!stop_descent) {
                // We have an entry in the unique hierarchy!
                append_path_component(unique_hierarchy, unique_entry);
                unique_hierarchy.push_back(L'/');

                append_path_component(abs_unique_hierarchy, unique_entry);
                abs_unique_hierarchy.push_back(L'/');
            }
            closedir(dir);
        }
        return unique_hierarchy;
    }

    void try_add_completion_result(const wcstring &filepath, const wcstring &filename,
                                   const wcstring &wildcard) {
        // This function is only for the completions case.
        assert(this->flags & EXPAND_FOR_COMPLETIONS);

        wcstring abs_path = this->prefix;
        append_path_component(abs_path, filepath);

        size_t before = this->resolved_completions->size();
        if (wildcard_test_flags_then_complete(abs_path, filename, wildcard.c_str(), this->flags,
                                              this->resolved_completions)) {
            // Hack. We added this completion result based on the last component of the wildcard.
            // Prepend all prior components of the wildcard to each completion that replaces its
            // token.
            size_t wc_len = wildcard.size();
            size_t orig_wc_len = wcslen(this->original_wildcard);
            assert(wc_len <= orig_wc_len);
            const wcstring wc_base(this->original_wildcard, orig_wc_len - wc_len);

            size_t after = this->resolved_completions->size();
            for (size_t i = before; i < after; i++) {
                completion_t &c = this->resolved_completions->at(i);
                c.prepend_token_prefix(wc_base);
                c.prepend_token_prefix(this->original_base);
            }

            // Hack. Implement EXPAND_SPECIAL_FOR_CD by descending the deepest unique hierarchy we
            // can, and then appending any components to each new result.
            if (flags & EXPAND_SPECIAL_FOR_CD) {
                wcstring unique_hierarchy = this->descend_unique_hierarchy(abs_path);
                if (!unique_hierarchy.empty()) {
                    for (size_t i = before; i < after; i++) {
                        completion_t &c = this->resolved_completions->at(i);
                        c.completion.append(unique_hierarchy);
                    }
                }
            }

            this->did_add = true;
        }
    }

    // Helper to resolve using our prefix.
    DIR *open_dir(const wcstring &base_dir) const {
        wcstring path = this->prefix;
        append_path_component(path, base_dir);
        return wopendir(path);
    }

   public:
    wildcard_expander_t(const wcstring &pref, const wcstring &orig_base, const wchar_t *orig_wc,
                        expand_flags_t f, std::vector<completion_t> *r)
        : prefix(pref),
          original_base(orig_base),
          original_wildcard(orig_wc),
          flags(f),
          resolved_completions(r),
          did_interrupt(false),
          did_add(false) {
        assert(resolved_completions != NULL);

        // Insert initial completions into our set to avoid duplicates.
        for (std::vector<completion_t>::const_iterator iter = resolved_completions->begin();
             iter != resolved_completions->end(); ++iter) {
            this->completion_set.insert(iter->completion);
        }
    }

    // Do wildcard expansion. This is recursive.
    void expand(const wcstring &base_dir, const wchar_t *wc);

    int status_code() const {
        if (this->did_interrupt) {
            return -1;
        }
        return this->did_add ? 1 : 0;
    }
};

void wildcard_expander_t::expand_trailing_slash(const wcstring &base_dir) {
    if (interrupted()) {
        return;
    }

    if (!(flags & EXPAND_FOR_COMPLETIONS)) {
        // Trailing slash and not accepting incomplete, e.g. `echo /tmp/`. Insert this file if it
        // exists.
        if (waccess(base_dir, F_OK) == 0) {
            this->add_expansion_result(base_dir);
        }
    } else {
        // Trailing slashes and accepting incomplete, e.g. `echo /tmp/<tab>`. Everything is added.
        DIR *dir = open_dir(base_dir);
        if (dir) {
            wcstring next;
            while (wreaddir(dir, next) && !interrupted()) {
                if (!next.empty() && next.at(0) != L'.') {
                    this->try_add_completion_result(base_dir + next, next, L"");
                }
            }
            closedir(dir);
        }
    }
}

void wildcard_expander_t::expand_intermediate_segment(const wcstring &base_dir, DIR *base_dir_fp,
                                                      const wcstring &wc_segment,
                                                      const wchar_t *wc_remainder) {
    wcstring name_str;
    while (!interrupted() && wreaddir_for_dirs(base_dir_fp, &name_str)) {
        // Note that it's critical we ignore leading dots here, else we may descend into . and ..
        if (!wildcard_match(name_str, wc_segment, true)) {
            // Doesn't match the wildcard for this segment, skip it.
            continue;
        }

        wcstring full_path = base_dir + name_str;
        struct stat buf;
        if (0 != wstat(full_path, &buf) || !S_ISDIR(buf.st_mode)) {
            // We either can't stat it, or we did but it's not a directory.
            continue;
        }

        const file_id_t file_id = file_id_t::file_id_from_stat(&buf);
        if (!this->visited_files.insert(file_id).second) {
            // Symlink loop! This directory was already visited, so skip it.
            continue;
        }

        // We made it through. Perform normal wildcard expansion on this new directory, starting at
        // our tail_wc, which includes the ANY_STRING_RECURSIVE guy.
        full_path.push_back(L'/');
        this->expand(full_path, wc_remainder);

        // Now remove the visited file. This is for #2414: only directories "beneath" us should be
        // considered visited.
        this->visited_files.erase(file_id);
    }
}

void wildcard_expander_t::expand_literal_intermediate_segment_with_fuzz(
    const wcstring &base_dir, DIR *base_dir_fp, const wcstring &wc_segment,
    const wchar_t *wc_remainder) {
    // This only works with tab completions. Ordinary wildcard expansion should never go fuzzy.
    wcstring name_str;
    while (!interrupted() && wreaddir_for_dirs(base_dir_fp, &name_str)) {
        // Don't bother with . and ..
        if (contains(name_str, L".", L"..")) {
            continue;
        }

        // Skip cases that don't match or match exactly. The match-exactly case was handled directly
        // in expand().
        const string_fuzzy_match_t match = string_fuzzy_match_string(wc_segment, name_str);
        if (match.type == fuzzy_match_none || match.type == fuzzy_match_exact) {
            continue;
        }

        wcstring new_full_path = base_dir + name_str;
        new_full_path.push_back(L'/');
        struct stat buf;
        if (0 != wstat(new_full_path, &buf) || !S_ISDIR(buf.st_mode)) {
            /* We either can't stat it, or we did but it's not a directory */
            continue;
        }

        // Ok, this directory matches. Recurse to it. Then perform serious surgery on each result!
        // Each result was computed with a prefix of original_wildcard. We need to replace our
        // segment of that with our name_str. We also have to mark the completion as replacing and
        // fuzzy.
        const size_t before = this->resolved_completions->size();

        this->expand(new_full_path, wc_remainder);
        const size_t after = this->resolved_completions->size();

        assert(before <= after);
        for (size_t i = before; i < after; i++) {
            completion_t *c = &this->resolved_completions->at(i);
            // Mark the completion as replacing.
            if (!(c->flags & COMPLETE_REPLACES_TOKEN)) {
                c->flags |= COMPLETE_REPLACES_TOKEN;
                c->prepend_token_prefix(this->original_wildcard);
                c->prepend_token_prefix(this->original_base);
            }
            // Ok, it's now replacing and is prefixed with the segment base, plus our original
            // wildcard. Replace our segment with name_str. Our segment starts at the length of the
            // original wildcard, minus what we have left to process, minus the length of our
            // segment. This logic is way too picky. Need to clean this up. One possibility is to
            // send the "resolved wildcard" along with the actual wildcard.
            const size_t original_wildcard_len = wcslen(this->original_wildcard);
            const size_t wc_remainder_len = wcslen(wc_remainder);
            const size_t segment_len = wc_segment.length();
            assert(c->completion.length() >= original_wildcard_len);
            const size_t segment_start = original_wildcard_len + this->original_base.size() -
                                         wc_remainder_len - wc_segment.length() -
                                         1;  // -1 for the slash after our segment
            assert(segment_start < original_wildcard_len);
            assert(c->completion.substr(segment_start, segment_len) == wc_segment);
            c->completion.replace(segment_start, segment_len, name_str);

            // And every match must be made at least as fuzzy as ours.
            if (match.compare(c->match) > 0) {
                // Our match is fuzzier.
                c->match = match;
            }
        }
    }
}

void wildcard_expander_t::expand_last_segment(const wcstring &base_dir, DIR *base_dir_fp,
                                              const wcstring &wc) {
    wcstring name_str;
    while (wreaddir(base_dir_fp, name_str)) {
        if (flags & EXPAND_FOR_COMPLETIONS) {
            this->try_add_completion_result(base_dir + name_str, name_str, wc);
        } else {
            // Normal wildcard expansion, not for completions.
            if (wildcard_match(name_str, wc, true /* skip files with leading dots */)) {
                this->add_expansion_result(base_dir + name_str);
            }
        }
    }
}

/// The real implementation of wildcard expansion is in this function. Other functions are just
/// wrappers around this one.
///
/// This function traverses the relevant directory tree looking for matches, and recurses when
/// needed to handle wildcrards spanning multiple components and recursive wildcards.
///
/// Because this function calls itself recursively with substrings, it's important that the
/// parameters be raw pointers instead of wcstring, which would be too expensive to construct for
/// all substrings.
///
/// Args:
/// base_dir: the "working directory" against which the wildcard is to be resolved
/// wc: the wildcard string itself, e.g. foo*bar/baz (where * is acutally ANY_CHAR)
void wildcard_expander_t::expand(const wcstring &base_dir, const wchar_t *wc) {
    assert(wc != NULL);

    if (interrupted()) {
        return;
    }

    // Get the current segment and compute interesting properties about it.
    const size_t wc_len = wcslen(wc);
    const wchar_t *const next_slash = wcschr(wc, L'/');
    const bool is_last_segment = (next_slash == NULL);
    const size_t wc_segment_len = next_slash ? next_slash - wc : wc_len;
    const wcstring wc_segment = wcstring(wc, wc_segment_len);
    const bool segment_has_wildcards =
        wildcard_has(wc_segment, true /* internal, i.e. look for ANY_CHAR instead of ? */);

    if (wc_segment.empty()) {
        // Handle empty segment.
        assert(!segment_has_wildcards);
        if (is_last_segment) {
            this->expand_trailing_slash(base_dir);
        } else {
            // Multiple adjacent slashes in the wildcard. Just skip them.
            this->expand(base_dir, next_slash + 1);
        }
    } else if (!segment_has_wildcards && !is_last_segment) {
        // Literal intermediate match. Note that we may not be able to actually read the directory
        // (issue #2099).
        assert(next_slash != NULL);
        const wchar_t *wc_remainder = next_slash;
        while (*wc_remainder == L'/') {
            wc_remainder++;
        }

        // This just trumps everything.
        size_t before = this->resolved_completions->size();
        this->expand(base_dir + wc_segment + L'/', wc_remainder);

        // Maybe try a fuzzy match (#94) if nothing was found with the literal match. Respect
        // EXPAND_NO_DIRECTORY_ABBREVIATIONS (issue #2413).
        bool allow_fuzzy = (this->flags & (EXPAND_FUZZY_MATCH | EXPAND_NO_FUZZY_DIRECTORIES)) ==
                           EXPAND_FUZZY_MATCH;
        if (allow_fuzzy && this->resolved_completions->size() == before) {
            assert(this->flags & EXPAND_FOR_COMPLETIONS);
            DIR *base_dir_fd = open_dir(base_dir);
            if (base_dir_fd != NULL) {
                this->expand_literal_intermediate_segment_with_fuzz(base_dir, base_dir_fd,
                                                                    wc_segment, wc_remainder);
                closedir(base_dir_fd);
            }
        }
    } else {
        assert(!wc_segment.empty() && (segment_has_wildcards || is_last_segment));
        DIR *dir = open_dir(base_dir);
        if (dir) {
            if (is_last_segment) {
                // Last wildcard segment, nonempty wildcard.
                this->expand_last_segment(base_dir, dir, wc_segment);
            } else {
                // Not the last segment, nonempty wildcard.
                assert(next_slash != NULL);
                const wchar_t *wc_remainder = next_slash;
                while (*wc_remainder == L'/') {
                    wc_remainder++;
                }
                this->expand_intermediate_segment(base_dir, dir, wc_segment, wc_remainder);
            }

            // Recursive wildcards require special handling.
            size_t asr_idx = wc_segment.find(ANY_STRING_RECURSIVE);
            if (asr_idx != wcstring::npos) {
                // Construct a "head + any" wildcard for matching stuff in this directory, and an
                // "any + tail" wildcard for matching stuff in subdirectories. Note that the
                // ANY_STRING_RECURSIVE character is present in both the head and the tail.
                const wcstring head_any(wc_segment, 0, asr_idx + 1);
                const wchar_t *any_tail = wc + asr_idx;
                assert(head_any.at(head_any.size() - 1) == ANY_STRING_RECURSIVE);
                assert(any_tail[0] == ANY_STRING_RECURSIVE);

                rewinddir(dir);
                this->expand_intermediate_segment(base_dir, dir, head_any, any_tail);
            }
            closedir(dir);
        }
    }
}

int wildcard_expand_string(const wcstring &wc, const wcstring &working_directory,
                           expand_flags_t flags, std::vector<completion_t> *output) {
    assert(output != NULL);
    // Fuzzy matching only if we're doing completions.
    assert((flags & (EXPAND_FUZZY_MATCH | EXPAND_FOR_COMPLETIONS)) != EXPAND_FUZZY_MATCH);

    // EXPAND_SPECIAL_FOR_CD requires DIRECTORIES_ONLY and EXPAND_FOR_COMPLETIONS and
    // EXPAND_NO_DESCRIPTIONS.
    assert(!(flags & EXPAND_SPECIAL_FOR_CD) ||
           ((flags & DIRECTORIES_ONLY) && (flags & EXPAND_FOR_COMPLETIONS) &&
            (flags & EXPAND_NO_DESCRIPTIONS)));

    // Hackish fix for issue #1631. We are about to call c_str(), which will produce a string
    // truncated at any embedded nulls. We could fix this by passing around the size, etc. However
    // embedded nulls are never allowed in a filename, so we just check for them and return 0 (no
    // matches) if there is an embedded null.
    if (wc.find(L'\0') != wcstring::npos) {
        return 0;
    }

    // Compute the prefix and base dir. The prefix is what we prepend for filesystem operations
    // (i.e. the working directory), the base_dir is the part of the wildcard consumed thus far,
    // which we also have to append. The difference is that the base_dir is returned as part of the
    // expansion, and the prefix is not.
    //
    // Check for a leading slash. If we find one, we have an absolute path: the prefix is empty, the
    // base dir is /, and the wildcard is the remainder. If we don't find one, the prefix is the
    // working directory, there's base dir is empty.
    wcstring prefix, base_dir, effective_wc;
    if (string_prefixes_string(L"/", wc)) {
        prefix = L"";
        base_dir = L"/";
        effective_wc = wc.substr(1);
    } else {
        prefix = working_directory;
        base_dir = L"";
        effective_wc = wc;
    }

    wildcard_expander_t expander(prefix, base_dir, effective_wc.c_str(), flags, output);
    expander.expand(base_dir, wc.c_str());
    return expander.status_code();
}