aboutsummaryrefslogtreecommitdiff
path: root/src/Algebra.v
blob: 6dc188e2c9fd2a63bb6e15f18abaad2bf03bef42 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
Require Import Coq.Classes.Morphisms. Require Coq.Setoids.Setoid.
Require Import Crypto.Util.Tactics Crypto.Tactics.Nsatz.
Local Close Scope nat_scope. Local Close Scope type_scope. Local Close Scope core_scope.

Section Algebra.
  Context {T:Type} {eq:T->T->Prop}.
  Local Infix "=" := eq : type_scope. Local Notation "a <> b" := (not (a = b)) : type_scope.

  Class is_eq_dec := { eq_dec : forall x y : T, {x=y} + {x<>y} }.

  Section SingleOperation.
    Context {op:T->T->T}.

    Class is_associative := { associative : forall x y z, op x (op y z) = op (op x y) z }.

    Context {id:T}.

    Class is_left_identity := { left_identity : forall x, op id x = x }.
    Class is_right_identity := { right_identity : forall x, op x id = x }.

    Class monoid :=
      {
        monoid_is_associative : is_associative;
        monoid_is_left_identity : is_left_identity;
        monoid_is_right_identity : is_right_identity;

        monoid_op_Proper: Proper (respectful eq (respectful eq eq)) op;
        monoid_Equivalence : Equivalence eq;
        monoid_is_eq_dec : is_eq_dec
      }.
    Global Existing Instance monoid_is_associative.
    Global Existing Instance monoid_is_left_identity.
    Global Existing Instance monoid_is_right_identity.
    Global Existing Instance monoid_Equivalence.
    Global Existing Instance monoid_is_eq_dec.
    Global Existing Instance monoid_op_Proper.

    Context {inv:T->T}.
    Class is_left_inverse := { left_inverse : forall x, op (inv x) x = id }.
    Class is_right_inverse := { right_inverse : forall x, op x (inv x) = id }.

    Class group :=
      {
        group_monoid : monoid;
        group_is_left_inverse : is_left_inverse;
        group_is_right_inverse : is_right_inverse;

        group_inv_Proper: Proper (respectful eq eq) inv
      }.
    Global Existing Instance group_monoid.
    Global Existing Instance group_is_left_inverse.
    Global Existing Instance group_is_right_inverse.
    Global Existing Instance group_inv_Proper.

    Class is_commutative := { commutative : forall x y, op x y = op y x }.

    Record abelian_group :=
      {
        abelian_group_group : group;
        abelian_group_is_commutative : is_commutative
      }.
    Existing Class abelian_group.
    Global Existing Instance abelian_group_group.
    Global Existing Instance abelian_group_is_commutative.
  End SingleOperation.

  Section AddMul.
    Context {zero one:T}. Local Notation "0" := zero. Local Notation "1" := one.
    Context {opp:T->T}. Local Notation "- x" := (opp x).
    Context {add:T->T->T} {sub:T->T->T} {mul:T->T->T}.
    Local Infix "+" := add. Local Infix "-" := sub. Local Infix "*" := mul.

    Class is_left_distributive := { left_distributive : forall a b c, a * (b + c) =  a * b + a * c }.
    Class is_right_distributive := { right_distributive : forall a b c, (b + c) * a = b * a + c * a }.


    Class ring :=
      {
        ring_abelian_group_add : abelian_group (op:=add) (id:=zero) (inv:=opp);
        ring_monoid_mul : monoid (op:=mul) (id:=one);
        ring_is_left_distributive : is_left_distributive;
        ring_is_right_distributive : is_right_distributive;

        ring_sub_definition : forall x y, x - y = x + opp y;

        ring_mul_Proper : Proper (respectful eq (respectful eq eq)) mul;
        ring_sub_Proper : Proper(respectful eq (respectful eq eq)) sub
      }.
    Global Existing Instance ring_abelian_group_add.
    Global Existing Instance ring_monoid_mul.
    Global Existing Instance ring_is_left_distributive.
    Global Existing Instance ring_is_right_distributive.
    Global Existing Instance ring_mul_Proper.
    Global Existing Instance ring_sub_Proper.

    Class commutative_ring :=
      {
        commutative_ring_ring : ring;
        commutative_ring_is_commutative : is_commutative (op:=mul)
      }.
    Global Existing Instance commutative_ring_ring.
    Global Existing Instance commutative_ring_is_commutative.

    Class is_mul_nonzero_nonzero := { mul_nonzero_nonzero : forall x y, x<>0 -> y<>0 -> x*y<>0 }.

    Class is_zero_neq_one := { zero_neq_one : zero <> one }.

    Class integral_domain :=
      {
        integral_domain_commutative_ring : commutative_ring;
        integral_domain_is_mul_nonzero_nonzero : is_mul_nonzero_nonzero;
        integral_domain_is_zero_neq_one : is_zero_neq_one
      }.
    Global Existing Instance integral_domain_commutative_ring.
    Global Existing Instance integral_domain_is_mul_nonzero_nonzero.
    Global Existing Instance integral_domain_is_zero_neq_one.

    Context {inv:T->T} {div:T->T->T}.
    Class is_left_multiplicative_inverse := { left_multiplicative_inverse : forall x, x<>0 -> (inv x) * x = 1 }.

    Class field :=
      {
        field_commutative_ring : commutative_ring;
        field_is_left_multiplicative_inverse : is_left_multiplicative_inverse;
        field_domain_is_zero_neq_one : is_zero_neq_one;

        field_div_definition : forall x y , div x y = x * inv y;

        field_inv_Proper : Proper (respectful eq eq) inv;
        field_div_Proper : Proper (respectful eq (respectful eq eq)) div
      }.
    Global Existing Instance field_commutative_ring.
    Global Existing Instance field_is_left_multiplicative_inverse.
    Global Existing Instance field_domain_is_zero_neq_one.
    Global Existing Instance field_inv_Proper.
    Global Existing Instance field_div_Proper.
  End AddMul.
End Algebra.


Module Monoid.
  Section Monoid.
    Context {T eq op id} {monoid:@monoid T eq op id}.
    Local Infix "=" := eq : type_scope. Local Notation "a <> b" := (not (a = b)) : type_scope.
    Local Infix "*" := op.
    Local Infix "=" := eq : eq_scope.
    Local Open Scope eq_scope.

    Lemma cancel_right z iz (Hinv:op z iz = id) :
      forall x y, x * z = y * z <-> x = y.
    Proof.
      split; intros.
      { assert (op (op x z) iz = op (op y z) iz) as Hcut by (f_equiv; assumption).
        rewrite <-associative in Hcut.
        rewrite <-!associative, !Hinv, !right_identity in Hcut; exact Hcut. }
      { f_equiv; assumption. }
    Qed.

    Lemma cancel_left z iz (Hinv:op iz z = id) :
      forall x y, z * x = z * y <-> x = y.
    Proof.
      split; intros.
      { assert (op iz (op z x) = op iz (op z y)) as Hcut by (f_equiv; assumption).
        rewrite !associative, !Hinv, !left_identity in Hcut; exact Hcut. }
      { f_equiv; assumption. }
    Qed.

    Lemma inv_inv x ix iix : ix*x = id -> iix*ix = id -> iix = x.
    Proof.
      intros Hi Hii.
      assert (H:op iix id = op iix (op ix x)) by (rewrite Hi; reflexivity).
      rewrite associative, Hii, left_identity, right_identity in H; exact H.
    Qed.

    Lemma inv_op x y ix iy : ix*x = id -> iy*y = id -> (iy*ix)*(x*y) =id.
    Proof.
      intros Hx Hy.
      cut (iy * (ix*x) * y = id); try intro H.
      { rewrite <-!associative; rewrite <-!associative in H; exact H. }
      rewrite Hx, right_identity, Hy. reflexivity.
    Qed.

  End Monoid.
End Monoid.

Section ZeroNeqOne.
  Context {T eq zero one} `{@is_zero_neq_one T eq zero one} `{Equivalence T eq}.

  Lemma one_neq_zero : not (eq one zero).
  Proof.
    intro HH; symmetry in HH. auto using zero_neq_one.
  Qed.
End ZeroNeqOne.

Module Group.
  Section BasicProperties.
    Context {T eq op id inv} `{@group T eq op id inv}.
    Local Infix "=" := eq : type_scope. Local Notation "a <> b" := (not (a = b)) : type_scope.
    Local Infix "*" := op.
    Local Infix "=" := eq : eq_scope.
    Local Open Scope eq_scope.

    Lemma cancel_left : forall z x y, z*x = z*y <-> x = y.
    Proof. eauto using Monoid.cancel_left, left_inverse. Qed.
    Lemma cancel_right : forall z x y, x*z = y*z <-> x = y.
    Proof. eauto using Monoid.cancel_right, right_inverse. Qed.
    Lemma inv_inv x : inv(inv(x)) = x.
    Proof. eauto using Monoid.inv_inv, left_inverse. Qed.
    Lemma inv_op x y : (inv y*inv x)*(x*y) =id.
    Proof. eauto using Monoid.inv_op, left_inverse. Qed.

    Lemma inv_unique x ix : ix * x = id -> ix = inv x.
    Proof.
      intro Hix.
      cut (ix*x*inv x = inv x).
      - rewrite <-associative, right_inverse, right_identity; trivial.
      - rewrite Hix, left_identity; reflexivity.
    Qed.

    Lemma inv_id : inv id = id.
    Proof. symmetry. eapply inv_unique, left_identity. Qed.

    Lemma inv_nonzero_nonzero : forall x, x <> id -> inv x <> id.
    Proof.
      intros ? Hx Ho.
      assert (Hxo: x * inv x = id) by (rewrite right_inverse; reflexivity).
      rewrite Ho, right_identity in Hxo. intuition.
   Qed.

    Section ZeroNeqOne.
      Context {one} `{is_zero_neq_one T eq id one}.
      Lemma opp_one_neq_zero : inv one <> id.
      Proof. apply inv_nonzero_nonzero, one_neq_zero. Qed.
      Lemma zero_neq_opp_one : id <> inv one.
      Proof. intro Hx. symmetry in Hx. eauto using opp_one_neq_zero. Qed.
    End ZeroNeqOne.
  End BasicProperties.

  Section Homomorphism.
    Context {G EQ OP ID INV} {groupG:@group G EQ OP ID INV}.
    Context {H eq op id inv} {groupH:@group H eq op id inv}.
    Context {phi:G->H}.
    Local Infix "=" := eq. Local Infix "=" := eq : type_scope.

    Class is_homomorphism :=
      {
        homomorphism : forall a b,  phi (OP a b) = op (phi a) (phi b);

        is_homomorphism_phi_proper : Proper (respectful EQ eq) phi
      }.
    Global Existing Instance is_homomorphism_phi_proper.
    Context `{is_homomorphism}.

    Lemma homomorphism_id : phi ID = id.
    Proof.
      assert (Hii: op (phi ID) (phi ID) = op (phi ID) id) by
        (rewrite <- homomorphism, left_identity, right_identity; reflexivity).
      rewrite cancel_left in Hii; exact Hii.
    Qed.

    Lemma homomorphism_inv : forall x, phi (INV x) = inv (phi x).
    Proof.
    Admitted.
  End Homomorphism.
End Group.

Require Coq.nsatz.Nsatz.

Ltac dropAlgebraSyntax :=
  cbv beta delta [
      Algebra_syntax.zero
        Algebra_syntax.one
        Algebra_syntax.addition
        Algebra_syntax.multiplication
        Algebra_syntax.subtraction
        Algebra_syntax.opposite
        Algebra_syntax.equality
        Algebra_syntax.bracket
        Algebra_syntax.power
        ] in *.

Ltac dropRingSyntax :=
  dropAlgebraSyntax;
  cbv beta delta [
      Ncring.zero_notation
        Ncring.one_notation
        Ncring.add_notation
        Ncring.mul_notation
        Ncring.sub_notation
        Ncring.opp_notation
        Ncring.eq_notation
    ] in *.

Module Ring.
  Section Ring.
    Context {T eq zero one opp add sub mul} `{@ring T eq zero one opp add sub mul}.
    Local Infix "=" := eq : type_scope. Local Notation "a <> b" := (not (a = b)) : type_scope.
    Local Notation "0" := zero. Local Notation "1" := one.
    Local Infix "+" := add. Local Infix "-" := sub. Local Infix "*" := mul.

    Lemma mul_0_r : forall x, 0 * x = 0.
    Proof.
      intros.
      assert (0*x = 0*x) as Hx by reflexivity.
      rewrite <-(right_identity 0), right_distributive in Hx at 1.
      assert (0*x + 0*x - 0*x = 0*x - 0*x) as Hxx by (f_equiv; exact Hx).
      rewrite !ring_sub_definition, <-associative, right_inverse, right_identity in Hxx; exact Hxx.
    Qed.

    Lemma mul_0_l : forall x, x * 0 = 0.
    Proof.
      intros.
      assert (x*0 = x*0) as Hx by reflexivity.
      rewrite <-(left_identity 0), left_distributive in Hx at 1.
      assert (opp (x*0) + (x*0 + x*0)  = opp (x*0) + x*0) as Hxx by (f_equiv; exact Hx).
      rewrite associative, left_inverse, left_identity in Hxx; exact Hxx.
    Qed.

    Lemma sub_0_l x : 0 - x = opp x.
    Proof. rewrite ring_sub_definition. rewrite left_identity. reflexivity. Qed.

    Lemma mul_opp_r x y : x * opp y = opp (x * y).
    Proof.
      assert (Ho:x*(opp y) + x*y = 0)
        by (rewrite <-left_distributive, left_inverse, mul_0_l; reflexivity).
      rewrite <-(left_identity (opp (x*y))), <-Ho; clear Ho.
      rewrite <-!associative, right_inverse, right_identity; reflexivity.
    Qed.

    Lemma mul_opp_l x y : opp x * y = opp (x * y).
    Proof.
      assert (Ho:opp x*y + x*y = 0)
        by (rewrite <-right_distributive, left_inverse, mul_0_r; reflexivity).
      rewrite <-(left_identity (opp (x*y))), <-Ho; clear Ho.
      rewrite <-!associative, right_inverse, right_identity; reflexivity.
    Qed.

    Definition opp_nonzero_nonzero : forall x, x <> 0 -> opp x <> 0 := Group.inv_nonzero_nonzero.

    Global Instance is_left_distributive_sub : is_left_distributive (eq:=eq)(add:=sub)(mul:=mul).
    Proof.
      split; intros. rewrite !ring_sub_definition, left_distributive.
      eapply Group.cancel_left, mul_opp_r.
    Qed.

    Global Instance is_right_distributive_sub : is_right_distributive (eq:=eq)(add:=sub)(mul:=mul).
    Proof.
      split; intros. rewrite !ring_sub_definition, right_distributive.
      eapply Group.cancel_left, mul_opp_l.
    Qed.

    Global Instance Ncring_Ring_ops : @Ncring.Ring_ops T zero one add mul sub opp eq.
    Global Instance Ncring_Ring : @Ncring.Ring T zero one add mul sub opp eq Ncring_Ring_ops.
    Proof.
      split; dropRingSyntax; eauto using left_identity, right_identity, commutative, associative, right_inverse, left_distributive, right_distributive, ring_sub_definition with core typeclass_instances.
      - (* TODO: why does [eauto using @left_identity with typeclass_instances] not work? *)
        eapply @left_identity; eauto with typeclass_instances.
      - eapply @right_identity; eauto with typeclass_instances.
      - eapply associative.
      - intros; eapply right_distributive.
      - intros; eapply left_distributive.
    Qed.
  End Ring.

  Section Homomorphism.
    Context {R EQ ZERO ONE OPP ADD SUB MUL} `{@ring R EQ ZERO ONE OPP ADD SUB MUL}.
    Context {S eq zero one opp add sub mul} `{@ring S eq zero one opp add sub mul}.
    Context {phi:R->S}.
    Local Infix "=" := eq. Local Infix "=" := eq : type_scope.

    Class is_homomorphism :=
      {
        homomorphism_is_homomorphism : Group.is_homomorphism (phi:=phi) (OP:=ADD) (op:=add) (EQ:=EQ) (eq:=eq);
        homomorphism_mul : forall x y, phi (MUL x y) = mul (phi x) (phi y);
        homomorphism_one : phi ONE = one
      }.
    Global Existing Instance homomorphism_is_homomorphism.

    Context `{is_homomorphism}.

    Lemma homomorphism_add : forall x y,  phi (ADD x y) = add (phi x) (phi y).
    Proof. apply Group.homomorphism. Qed.

    Definition homomorphism_opp : forall x,  phi (OPP x) = opp (phi x) :=
      (Group.homomorphism_inv (INV:=OPP) (inv:=opp)).

    Lemma homomorphism_sub : forall x y, phi (SUB x y) = sub (phi x) (phi y).
    Proof.
      intros.
      rewrite !ring_sub_definition, Group.homomorphism, homomorphism_opp. reflexivity.
    Qed.

  End Homomorphism.

  Section TacticSupportCommutative.
    Context {T eq zero one opp add sub mul} `{@commutative_ring T eq zero one opp add sub mul}.

    Global Instance Cring_Cring_commutative_ring :
      @Cring.Cring T zero one add mul sub opp eq Ring.Ncring_Ring_ops Ring.Ncring_Ring.
    Proof. unfold Cring.Cring; intros; dropRingSyntax. eapply commutative. Qed.

   Lemma ring_theory_for_stdlib_tactic : Ring_theory.ring_theory zero one add mul sub opp eq.
   Proof.
     constructor; intros. (* TODO(automation): make [auto] do this? *)
     - apply left_identity.
     - apply commutative.
     - apply associative.
     - apply left_identity.
     - apply commutative.
     - apply associative.
     - apply right_distributive.
     - apply ring_sub_definition.
     - apply right_inverse.
   Qed.
  End TacticSupportCommutative.
End Ring.

Module IntegralDomain.
  Section IntegralDomain.
    Context {T eq zero one opp add sub mul} `{@integral_domain T eq zero one opp add sub mul}.

    Lemma mul_nonzero_nonzero_cases (x y : T)
      : eq (mul x  y) zero -> eq x zero \/ eq y zero.
    Proof.
      pose proof mul_nonzero_nonzero x y.
      destruct (eq_dec x zero); destruct (eq_dec y zero); intuition.
    Qed.

    Global Instance Integral_domain :
      @Integral_domain.Integral_domain T zero one add mul sub opp eq Ring.Ncring_Ring_ops
                                       Ring.Ncring_Ring Ring.Cring_Cring_commutative_ring.
    Proof.
      split; dropRingSyntax.
      - auto using mul_nonzero_nonzero_cases.
      - intro bad; symmetry in bad; auto using zero_neq_one.
    Qed.
  End IntegralDomain.
End IntegralDomain.

Module Field.
  Section Field.
    Context {T eq zero one opp add mul sub inv div} `{@field T eq zero one opp add sub mul inv div}.
    Local Infix "=" := eq : type_scope. Local Notation "a <> b" := (not (a = b)) : type_scope.
    Local Notation "0" := zero. Local Notation "1" := one.
    Local Infix "+" := add. Local Infix "*" := mul.

    Global Instance is_mul_nonzero_nonzero : @is_mul_nonzero_nonzero T eq 0 mul.
    Proof.
      constructor. intros x y Hx Hy Hxy.
      assert (0 = (inv y * (inv x * x)) * y) as H00. (rewrite <-!associative, Hxy, !Ring.mul_0_l; reflexivity).
      rewrite left_multiplicative_inverse in H00 by assumption.
      rewrite right_identity in H00.
      rewrite left_multiplicative_inverse in H00 by assumption.
      auto using zero_neq_one.
    Qed.

    Global Instance integral_domain : @integral_domain T eq zero one opp add sub mul.
    Proof.
      split; auto using field_commutative_ring, field_domain_is_zero_neq_one, is_mul_nonzero_nonzero.
    Qed.

    Require Coq.setoid_ring.Field_theory.
    Lemma field_theory_for_stdlib_tactic : Field_theory.field_theory 0 1 add mul sub opp div inv eq.
    Proof.
      constructor.
      { apply Ring.ring_theory_for_stdlib_tactic. }
      { intro H01. symmetry in H01. auto using zero_neq_one. }
      { apply field_div_definition. }
      { apply left_multiplicative_inverse. }
    Qed.

  End Field.

  Section Homomorphism.
    Context {F EQ ZERO ONE OPP ADD MUL SUB INV DIV} `{@field F EQ ZERO ONE OPP ADD SUB MUL INV DIV}.
    Context {K eq zero one opp add mul sub inv div} `{@field K eq zero one opp add sub mul inv div}.
    Context {phi:F->K}.
    Local Infix "=" := eq. Local Infix "=" := eq : type_scope.
    Context `{@Ring.is_homomorphism F EQ ONE ADD MUL K eq one add mul phi}.

    Lemma homomorphism_multiplicative_inverse : forall x, phi (INV x) = inv (phi x). Admitted.

    Lemma homomorphism_div : forall x y, phi (DIV x y) = div (phi x) (phi y).
    Proof.
      intros. rewrite !field_div_definition.
      rewrite Ring.homomorphism_mul, homomorphism_multiplicative_inverse. reflexivity.
    Qed.
  End Homomorphism.
End Field.

(*** Tactics for manipulating field equations *)
Require Import Coq.setoid_ring.Field_tac.

Ltac guess_field :=
  match goal with
  | |- ?eq _ _ =>  constr:(_:field (eq:=eq))
  | |- not (?eq _ _) =>  constr:(_:field (eq:=eq))
  | [H: ?eq _ _ |- _ ] =>  constr:(_:field (eq:=eq))
  | [H: not (?eq _ _) |- _] =>  constr:(_:field (eq:=eq))
  end.

Ltac common_denominator :=
  let fld := guess_field in
  lazymatch type of fld with
    field (div:=?div) =>
    lazymatch goal with
    | |- appcontext[div] => field_simplify_eq
    | |- _ => idtac
    end
  end.

Ltac common_denominator_in H :=
  let fld := guess_field in
  lazymatch type of fld with
    field (div:=?div) =>
    lazymatch type of H with
    | appcontext[div] => field_simplify_eq in H
    | _ => idtac
    end
  end.

Ltac common_denominator_all :=
  common_denominator;
  repeat match goal with [H: _ |- _ _ _ ] => progress common_denominator_in H end.

Inductive field_simplify_done {T} : T -> Type :=
  Field_simplify_done : forall H, field_simplify_done H.

Ltac field_simplify_eq_hyps :=
  repeat match goal with
           [ H: _ |- _ ] =>
           match goal with
           | [ Ha : field_simplify_done H |- _ ] => fail
           | _ => idtac
           end;
           field_simplify_eq in H;
           unique pose proof (Field_simplify_done H)
         end;
  repeat match goal with [ H: field_simplify_done _ |- _] => clear H end.

Ltac field_simplify_eq_all := field_simplify_eq_hyps; try field_simplify_eq.


(*** Polynomial equations over fields *)

Ltac neq01 :=
  try solve
      [apply zero_neq_one
      |apply Group.zero_neq_opp_one
      |apply one_neq_zero
      |apply Group.opp_one_neq_zero].

Ltac field_algebra :=
  intros;
  common_denominator_all;
  try (nsatz; dropRingSyntax);
  repeat (apply conj);
  try solve
      [neq01
      |trivial
      |apply Ring.opp_nonzero_nonzero;trivial].

Section Example.
  Context {F zero one opp add sub mul inv div} `{F_field:field F eq zero one opp add sub mul inv div}.
  Local Infix "+" := add. Local Infix "*" := mul. Local Infix "-" := sub. Local Infix "/" := div.
  Local Notation "0" := zero. Local Notation "1" := one.

  Add Field _ExampleField : (Field.field_theory_for_stdlib_tactic (T:=F)).

  Example _example_nsatz x y : 1+1 <> 0 -> x + y = 0 -> x - y = 0 -> x = 0.
  Proof. field_algebra. Qed.

  Example _example_field_nsatz x y z : y <> 0 -> x/y = z -> z*y + y = x + y.
  Proof. intros; subst; field_algebra. Qed.

  Example _example_nonzero_nsatz_contradict x y : x * y = 1 -> not (x = 0).
  Proof. intros. intro. nsatz_contradict. Qed.
End Example.

Section Z.
  Require Import ZArith.
  Global Instance ring_Z : @ring Z Logic.eq 0%Z 1%Z Z.opp Z.add Z.sub Z.mul.
  Proof. repeat split; auto using Z.eq_dec with zarith typeclass_instances. Qed.

  Global Instance commutative_ring_Z : @commutative_ring Z Logic.eq 0%Z 1%Z Z.opp Z.add Z.sub Z.mul.
  Proof. eauto using @commutative_ring, @is_commutative, ring_Z with zarith. Qed.

  Global Instance integral_domain_Z : @integral_domain Z Logic.eq 0%Z 1%Z Z.opp Z.add Z.sub Z.mul.
  Proof.
    split.
    { apply commutative_ring_Z. }
    { constructor. intros. apply Z.neq_mul_0; auto. }
    { constructor. discriminate. }
  Qed.

  Example _example_nonzero_nsatz_contradict_Z x y : Z.mul x y = (Zpos xH) -> not (x = Z0).
  Proof. intros. intro. nsatz_contradict. Qed.
End Z.