Require Import Coq.Classes.Morphisms. Require Coq.Setoids.Setoid. Require Import Crypto.Util.Tactics Crypto.Tactics.Nsatz. Local Close Scope nat_scope. Local Close Scope type_scope. Local Close Scope core_scope. Section Algebra. Context {T:Type} {eq:T->T->Prop}. Local Infix "=" := eq : type_scope. Local Notation "a <> b" := (not (a = b)) : type_scope. Class is_eq_dec := { eq_dec : forall x y : T, {x=y} + {x<>y} }. Section SingleOperation. Context {op:T->T->T}. Class is_associative := { associative : forall x y z, op x (op y z) = op (op x y) z }. Context {id:T}. Class is_left_identity := { left_identity : forall x, op id x = x }. Class is_right_identity := { right_identity : forall x, op x id = x }. Class monoid := { monoid_is_associative : is_associative; monoid_is_left_identity : is_left_identity; monoid_is_right_identity : is_right_identity; monoid_op_Proper: Proper (respectful eq (respectful eq eq)) op; monoid_Equivalence : Equivalence eq; monoid_is_eq_dec : is_eq_dec }. Global Existing Instance monoid_is_associative. Global Existing Instance monoid_is_left_identity. Global Existing Instance monoid_is_right_identity. Global Existing Instance monoid_Equivalence. Global Existing Instance monoid_is_eq_dec. Global Existing Instance monoid_op_Proper. Context {inv:T->T}. Class is_left_inverse := { left_inverse : forall x, op (inv x) x = id }. Class is_right_inverse := { right_inverse : forall x, op x (inv x) = id }. Class group := { group_monoid : monoid; group_is_left_inverse : is_left_inverse; group_is_right_inverse : is_right_inverse; group_inv_Proper: Proper (respectful eq eq) inv }. Global Existing Instance group_monoid. Global Existing Instance group_is_left_inverse. Global Existing Instance group_is_right_inverse. Global Existing Instance group_inv_Proper. Class is_commutative := { commutative : forall x y, op x y = op y x }. Record abelian_group := { abelian_group_group : group; abelian_group_is_commutative : is_commutative }. Existing Class abelian_group. Global Existing Instance abelian_group_group. Global Existing Instance abelian_group_is_commutative. End SingleOperation. Section AddMul. Context {zero one:T}. Local Notation "0" := zero. Local Notation "1" := one. Context {opp:T->T}. Local Notation "- x" := (opp x). Context {add:T->T->T} {sub:T->T->T} {mul:T->T->T}. Local Infix "+" := add. Local Infix "-" := sub. Local Infix "*" := mul. Class is_left_distributive := { left_distributive : forall a b c, a * (b + c) = a * b + a * c }. Class is_right_distributive := { right_distributive : forall a b c, (b + c) * a = b * a + c * a }. Class ring := { ring_abelian_group_add : abelian_group (op:=add) (id:=zero) (inv:=opp); ring_monoid_mul : monoid (op:=mul) (id:=one); ring_is_left_distributive : is_left_distributive; ring_is_right_distributive : is_right_distributive; ring_sub_definition : forall x y, x - y = x + opp y; ring_mul_Proper : Proper (respectful eq (respectful eq eq)) mul; ring_sub_Proper : Proper(respectful eq (respectful eq eq)) sub }. Global Existing Instance ring_abelian_group_add. Global Existing Instance ring_monoid_mul. Global Existing Instance ring_is_left_distributive. Global Existing Instance ring_is_right_distributive. Global Existing Instance ring_mul_Proper. Global Existing Instance ring_sub_Proper. Class commutative_ring := { commutative_ring_ring : ring; commutative_ring_is_commutative : is_commutative (op:=mul) }. Global Existing Instance commutative_ring_ring. Global Existing Instance commutative_ring_is_commutative. Class is_mul_nonzero_nonzero := { mul_nonzero_nonzero : forall x y, x<>0 -> y<>0 -> x*y<>0 }. Class is_zero_neq_one := { zero_neq_one : zero <> one }. Class integral_domain := { integral_domain_commutative_ring : commutative_ring; integral_domain_is_mul_nonzero_nonzero : is_mul_nonzero_nonzero; integral_domain_is_zero_neq_one : is_zero_neq_one }. Global Existing Instance integral_domain_commutative_ring. Global Existing Instance integral_domain_is_mul_nonzero_nonzero. Global Existing Instance integral_domain_is_zero_neq_one. Context {inv:T->T} {div:T->T->T}. Class is_left_multiplicative_inverse := { left_multiplicative_inverse : forall x, x<>0 -> (inv x) * x = 1 }. Class field := { field_commutative_ring : commutative_ring; field_is_left_multiplicative_inverse : is_left_multiplicative_inverse; field_domain_is_zero_neq_one : is_zero_neq_one; field_div_definition : forall x y , div x y = x * inv y; field_inv_Proper : Proper (respectful eq eq) inv; field_div_Proper : Proper (respectful eq (respectful eq eq)) div }. Global Existing Instance field_commutative_ring. Global Existing Instance field_is_left_multiplicative_inverse. Global Existing Instance field_domain_is_zero_neq_one. Global Existing Instance field_inv_Proper. Global Existing Instance field_div_Proper. End AddMul. End Algebra. Module Monoid. Section Monoid. Context {T eq op id} {monoid:@monoid T eq op id}. Local Infix "=" := eq : type_scope. Local Notation "a <> b" := (not (a = b)) : type_scope. Local Infix "*" := op. Local Infix "=" := eq : eq_scope. Local Open Scope eq_scope. Lemma cancel_right z iz (Hinv:op z iz = id) : forall x y, x * z = y * z <-> x = y. Proof. split; intros. { assert (op (op x z) iz = op (op y z) iz) as Hcut by (f_equiv; assumption). rewrite <-associative in Hcut. rewrite <-!associative, !Hinv, !right_identity in Hcut; exact Hcut. } { f_equiv; assumption. } Qed. Lemma cancel_left z iz (Hinv:op iz z = id) : forall x y, z * x = z * y <-> x = y. Proof. split; intros. { assert (op iz (op z x) = op iz (op z y)) as Hcut by (f_equiv; assumption). rewrite !associative, !Hinv, !left_identity in Hcut; exact Hcut. } { f_equiv; assumption. } Qed. Lemma inv_inv x ix iix : ix*x = id -> iix*ix = id -> iix = x. Proof. intros Hi Hii. assert (H:op iix id = op iix (op ix x)) by (rewrite Hi; reflexivity). rewrite associative, Hii, left_identity, right_identity in H; exact H. Qed. Lemma inv_op x y ix iy : ix*x = id -> iy*y = id -> (iy*ix)*(x*y) =id. Proof. intros Hx Hy. cut (iy * (ix*x) * y = id); try intro H. { rewrite <-!associative; rewrite <-!associative in H; exact H. } rewrite Hx, right_identity, Hy. reflexivity. Qed. End Monoid. End Monoid. Section ZeroNeqOne. Context {T eq zero one} `{@is_zero_neq_one T eq zero one} `{Equivalence T eq}. Lemma one_neq_zero : not (eq one zero). Proof. intro HH; symmetry in HH. auto using zero_neq_one. Qed. End ZeroNeqOne. Module Group. Section BasicProperties. Context {T eq op id inv} `{@group T eq op id inv}. Local Infix "=" := eq : type_scope. Local Notation "a <> b" := (not (a = b)) : type_scope. Local Infix "*" := op. Local Infix "=" := eq : eq_scope. Local Open Scope eq_scope. Lemma cancel_left : forall z x y, z*x = z*y <-> x = y. Proof. eauto using Monoid.cancel_left, left_inverse. Qed. Lemma cancel_right : forall z x y, x*z = y*z <-> x = y. Proof. eauto using Monoid.cancel_right, right_inverse. Qed. Lemma inv_inv x : inv(inv(x)) = x. Proof. eauto using Monoid.inv_inv, left_inverse. Qed. Lemma inv_op x y : (inv y*inv x)*(x*y) =id. Proof. eauto using Monoid.inv_op, left_inverse. Qed. Lemma inv_unique x ix : ix * x = id -> ix = inv x. Proof. intro Hix. cut (ix*x*inv x = inv x). - rewrite <-associative, right_inverse, right_identity; trivial. - rewrite Hix, left_identity; reflexivity. Qed. Lemma inv_id : inv id = id. Proof. symmetry. eapply inv_unique, left_identity. Qed. Lemma inv_nonzero_nonzero : forall x, x <> id -> inv x <> id. Proof. intros ? Hx Ho. assert (Hxo: x * inv x = id) by (rewrite right_inverse; reflexivity). rewrite Ho, right_identity in Hxo. intuition. Qed. Section ZeroNeqOne. Context {one} `{is_zero_neq_one T eq id one}. Lemma opp_one_neq_zero : inv one <> id. Proof. apply inv_nonzero_nonzero, one_neq_zero. Qed. Lemma zero_neq_opp_one : id <> inv one. Proof. intro Hx. symmetry in Hx. eauto using opp_one_neq_zero. Qed. End ZeroNeqOne. End BasicProperties. Section Homomorphism. Context {G EQ OP ID INV} {groupG:@group G EQ OP ID INV}. Context {H eq op id inv} {groupH:@group H eq op id inv}. Context {phi:G->H}. Local Infix "=" := eq. Local Infix "=" := eq : type_scope. Class is_homomorphism := { homomorphism : forall a b, phi (OP a b) = op (phi a) (phi b); is_homomorphism_phi_proper : Proper (respectful EQ eq) phi }. Global Existing Instance is_homomorphism_phi_proper. Context `{is_homomorphism}. Lemma homomorphism_id : phi ID = id. Proof. assert (Hii: op (phi ID) (phi ID) = op (phi ID) id) by (rewrite <- homomorphism, left_identity, right_identity; reflexivity). rewrite cancel_left in Hii; exact Hii. Qed. Lemma homomorphism_inv : forall x, phi (INV x) = inv (phi x). Proof. Admitted. End Homomorphism. End Group. Require Coq.nsatz.Nsatz. Ltac dropAlgebraSyntax := cbv beta delta [ Algebra_syntax.zero Algebra_syntax.one Algebra_syntax.addition Algebra_syntax.multiplication Algebra_syntax.subtraction Algebra_syntax.opposite Algebra_syntax.equality Algebra_syntax.bracket Algebra_syntax.power ] in *. Ltac dropRingSyntax := dropAlgebraSyntax; cbv beta delta [ Ncring.zero_notation Ncring.one_notation Ncring.add_notation Ncring.mul_notation Ncring.sub_notation Ncring.opp_notation Ncring.eq_notation ] in *. Module Ring. Section Ring. Context {T eq zero one opp add sub mul} `{@ring T eq zero one opp add sub mul}. Local Infix "=" := eq : type_scope. Local Notation "a <> b" := (not (a = b)) : type_scope. Local Notation "0" := zero. Local Notation "1" := one. Local Infix "+" := add. Local Infix "-" := sub. Local Infix "*" := mul. Lemma mul_0_r : forall x, 0 * x = 0. Proof. intros. assert (0*x = 0*x) as Hx by reflexivity. rewrite <-(right_identity 0), right_distributive in Hx at 1. assert (0*x + 0*x - 0*x = 0*x - 0*x) as Hxx by (f_equiv; exact Hx). rewrite !ring_sub_definition, <-associative, right_inverse, right_identity in Hxx; exact Hxx. Qed. Lemma mul_0_l : forall x, x * 0 = 0. Proof. intros. assert (x*0 = x*0) as Hx by reflexivity. rewrite <-(left_identity 0), left_distributive in Hx at 1. assert (opp (x*0) + (x*0 + x*0) = opp (x*0) + x*0) as Hxx by (f_equiv; exact Hx). rewrite associative, left_inverse, left_identity in Hxx; exact Hxx. Qed. Lemma sub_0_l x : 0 - x = opp x. Proof. rewrite ring_sub_definition. rewrite left_identity. reflexivity. Qed. Lemma mul_opp_r x y : x * opp y = opp (x * y). Proof. assert (Ho:x*(opp y) + x*y = 0) by (rewrite <-left_distributive, left_inverse, mul_0_l; reflexivity). rewrite <-(left_identity (opp (x*y))), <-Ho; clear Ho. rewrite <-!associative, right_inverse, right_identity; reflexivity. Qed. Lemma mul_opp_l x y : opp x * y = opp (x * y). Proof. assert (Ho:opp x*y + x*y = 0) by (rewrite <-right_distributive, left_inverse, mul_0_r; reflexivity). rewrite <-(left_identity (opp (x*y))), <-Ho; clear Ho. rewrite <-!associative, right_inverse, right_identity; reflexivity. Qed. Definition opp_nonzero_nonzero : forall x, x <> 0 -> opp x <> 0 := Group.inv_nonzero_nonzero. Global Instance is_left_distributive_sub : is_left_distributive (eq:=eq)(add:=sub)(mul:=mul). Proof. split; intros. rewrite !ring_sub_definition, left_distributive. eapply Group.cancel_left, mul_opp_r. Qed. Global Instance is_right_distributive_sub : is_right_distributive (eq:=eq)(add:=sub)(mul:=mul). Proof. split; intros. rewrite !ring_sub_definition, right_distributive. eapply Group.cancel_left, mul_opp_l. Qed. Global Instance Ncring_Ring_ops : @Ncring.Ring_ops T zero one add mul sub opp eq. Global Instance Ncring_Ring : @Ncring.Ring T zero one add mul sub opp eq Ncring_Ring_ops. Proof. split; dropRingSyntax; eauto using left_identity, right_identity, commutative, associative, right_inverse, left_distributive, right_distributive, ring_sub_definition with core typeclass_instances. - (* TODO: why does [eauto using @left_identity with typeclass_instances] not work? *) eapply @left_identity; eauto with typeclass_instances. - eapply @right_identity; eauto with typeclass_instances. - eapply associative. - intros; eapply right_distributive. - intros; eapply left_distributive. Qed. End Ring. Section Homomorphism. Context {R EQ ZERO ONE OPP ADD SUB MUL} `{@ring R EQ ZERO ONE OPP ADD SUB MUL}. Context {S eq zero one opp add sub mul} `{@ring S eq zero one opp add sub mul}. Context {phi:R->S}. Local Infix "=" := eq. Local Infix "=" := eq : type_scope. Class is_homomorphism := { homomorphism_is_homomorphism : Group.is_homomorphism (phi:=phi) (OP:=ADD) (op:=add) (EQ:=EQ) (eq:=eq); homomorphism_mul : forall x y, phi (MUL x y) = mul (phi x) (phi y); homomorphism_one : phi ONE = one }. Global Existing Instance homomorphism_is_homomorphism. Context `{is_homomorphism}. Lemma homomorphism_add : forall x y, phi (ADD x y) = add (phi x) (phi y). Proof. apply Group.homomorphism. Qed. Definition homomorphism_opp : forall x, phi (OPP x) = opp (phi x) := (Group.homomorphism_inv (INV:=OPP) (inv:=opp)). Lemma homomorphism_sub : forall x y, phi (SUB x y) = sub (phi x) (phi y). Proof. intros. rewrite !ring_sub_definition, Group.homomorphism, homomorphism_opp. reflexivity. Qed. End Homomorphism. Section TacticSupportCommutative. Context {T eq zero one opp add sub mul} `{@commutative_ring T eq zero one opp add sub mul}. Global Instance Cring_Cring_commutative_ring : @Cring.Cring T zero one add mul sub opp eq Ring.Ncring_Ring_ops Ring.Ncring_Ring. Proof. unfold Cring.Cring; intros; dropRingSyntax. eapply commutative. Qed. Lemma ring_theory_for_stdlib_tactic : Ring_theory.ring_theory zero one add mul sub opp eq. Proof. constructor; intros. (* TODO(automation): make [auto] do this? *) - apply left_identity. - apply commutative. - apply associative. - apply left_identity. - apply commutative. - apply associative. - apply right_distributive. - apply ring_sub_definition. - apply right_inverse. Qed. End TacticSupportCommutative. End Ring. Module IntegralDomain. Section IntegralDomain. Context {T eq zero one opp add sub mul} `{@integral_domain T eq zero one opp add sub mul}. Lemma mul_nonzero_nonzero_cases (x y : T) : eq (mul x y) zero -> eq x zero \/ eq y zero. Proof. pose proof mul_nonzero_nonzero x y. destruct (eq_dec x zero); destruct (eq_dec y zero); intuition. Qed. Global Instance Integral_domain : @Integral_domain.Integral_domain T zero one add mul sub opp eq Ring.Ncring_Ring_ops Ring.Ncring_Ring Ring.Cring_Cring_commutative_ring. Proof. split; dropRingSyntax. - auto using mul_nonzero_nonzero_cases. - intro bad; symmetry in bad; auto using zero_neq_one. Qed. End IntegralDomain. End IntegralDomain. Module Field. Section Field. Context {T eq zero one opp add mul sub inv div} `{@field T eq zero one opp add sub mul inv div}. Local Infix "=" := eq : type_scope. Local Notation "a <> b" := (not (a = b)) : type_scope. Local Notation "0" := zero. Local Notation "1" := one. Local Infix "+" := add. Local Infix "*" := mul. Global Instance is_mul_nonzero_nonzero : @is_mul_nonzero_nonzero T eq 0 mul. Proof. constructor. intros x y Hx Hy Hxy. assert (0 = (inv y * (inv x * x)) * y) as H00. (rewrite <-!associative, Hxy, !Ring.mul_0_l; reflexivity). rewrite left_multiplicative_inverse in H00 by assumption. rewrite right_identity in H00. rewrite left_multiplicative_inverse in H00 by assumption. auto using zero_neq_one. Qed. Global Instance integral_domain : @integral_domain T eq zero one opp add sub mul. Proof. split; auto using field_commutative_ring, field_domain_is_zero_neq_one, is_mul_nonzero_nonzero. Qed. Require Coq.setoid_ring.Field_theory. Lemma field_theory_for_stdlib_tactic : Field_theory.field_theory 0 1 add mul sub opp div inv eq. Proof. constructor. { apply Ring.ring_theory_for_stdlib_tactic. } { intro H01. symmetry in H01. auto using zero_neq_one. } { apply field_div_definition. } { apply left_multiplicative_inverse. } Qed. End Field. Section Homomorphism. Context {F EQ ZERO ONE OPP ADD MUL SUB INV DIV} `{@field F EQ ZERO ONE OPP ADD SUB MUL INV DIV}. Context {K eq zero one opp add mul sub inv div} `{@field K eq zero one opp add sub mul inv div}. Context {phi:F->K}. Local Infix "=" := eq. Local Infix "=" := eq : type_scope. Context `{@Ring.is_homomorphism F EQ ONE ADD MUL K eq one add mul phi}. Lemma homomorphism_multiplicative_inverse : forall x, phi (INV x) = inv (phi x). Admitted. Lemma homomorphism_div : forall x y, phi (DIV x y) = div (phi x) (phi y). Proof. intros. rewrite !field_div_definition. rewrite Ring.homomorphism_mul, homomorphism_multiplicative_inverse. reflexivity. Qed. End Homomorphism. End Field. (*** Tactics for manipulating field equations *) Require Import Coq.setoid_ring.Field_tac. Ltac guess_field := match goal with | |- ?eq _ _ => constr:(_:field (eq:=eq)) | |- not (?eq _ _) => constr:(_:field (eq:=eq)) | [H: ?eq _ _ |- _ ] => constr:(_:field (eq:=eq)) | [H: not (?eq _ _) |- _] => constr:(_:field (eq:=eq)) end. Ltac common_denominator := let fld := guess_field in lazymatch type of fld with field (div:=?div) => lazymatch goal with | |- appcontext[div] => field_simplify_eq | |- _ => idtac end end. Ltac common_denominator_in H := let fld := guess_field in lazymatch type of fld with field (div:=?div) => lazymatch type of H with | appcontext[div] => field_simplify_eq in H | _ => idtac end end. Ltac common_denominator_all := common_denominator; repeat match goal with [H: _ |- _ _ _ ] => progress common_denominator_in H end. Inductive field_simplify_done {T} : T -> Type := Field_simplify_done : forall H, field_simplify_done H. Ltac field_simplify_eq_hyps := repeat match goal with [ H: _ |- _ ] => match goal with | [ Ha : field_simplify_done H |- _ ] => fail | _ => idtac end; field_simplify_eq in H; unique pose proof (Field_simplify_done H) end; repeat match goal with [ H: field_simplify_done _ |- _] => clear H end. Ltac field_simplify_eq_all := field_simplify_eq_hyps; try field_simplify_eq. (*** Polynomial equations over fields *) Ltac neq01 := try solve [apply zero_neq_one |apply Group.zero_neq_opp_one |apply one_neq_zero |apply Group.opp_one_neq_zero]. Ltac field_algebra := intros; common_denominator_all; try (nsatz; dropRingSyntax); repeat (apply conj); try solve [neq01 |trivial |apply Ring.opp_nonzero_nonzero;trivial]. Section Example. Context {F zero one opp add sub mul inv div} `{F_field:field F eq zero one opp add sub mul inv div}. Local Infix "+" := add. Local Infix "*" := mul. Local Infix "-" := sub. Local Infix "/" := div. Local Notation "0" := zero. Local Notation "1" := one. Add Field _ExampleField : (Field.field_theory_for_stdlib_tactic (T:=F)). Example _example_nsatz x y : 1+1 <> 0 -> x + y = 0 -> x - y = 0 -> x = 0. Proof. field_algebra. Qed. Example _example_field_nsatz x y z : y <> 0 -> x/y = z -> z*y + y = x + y. Proof. intros; subst; field_algebra. Qed. Example _example_nonzero_nsatz_contradict x y : x * y = 1 -> not (x = 0). Proof. intros. intro. nsatz_contradict. Qed. End Example. Section Z. Require Import ZArith. Global Instance ring_Z : @ring Z Logic.eq 0%Z 1%Z Z.opp Z.add Z.sub Z.mul. Proof. repeat split; auto using Z.eq_dec with zarith typeclass_instances. Qed. Global Instance commutative_ring_Z : @commutative_ring Z Logic.eq 0%Z 1%Z Z.opp Z.add Z.sub Z.mul. Proof. eauto using @commutative_ring, @is_commutative, ring_Z with zarith. Qed. Global Instance integral_domain_Z : @integral_domain Z Logic.eq 0%Z 1%Z Z.opp Z.add Z.sub Z.mul. Proof. split. { apply commutative_ring_Z. } { constructor. intros. apply Z.neq_mul_0; auto. } { constructor. discriminate. } Qed. Example _example_nonzero_nsatz_contradict_Z x y : Z.mul x y = (Zpos xH) -> not (x = Z0). Proof. intros. intro. nsatz_contradict. Qed. End Z.