aboutsummaryrefslogtreecommitdiff
path: root/coqprime-8.4/Coqprime/ListAux.v
blob: 4ed15468540326a3601dc1061d8d7387ea356243 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271

(*************************************************************)
(*      This file is distributed under the terms of the      *)
(*      GNU Lesser General Public License Version 2.1        *)
(*************************************************************)
(*    Benjamin.Gregoire@inria.fr Laurent.Thery@inria.fr      *)
(*************************************************************)

(**********************************************************************
     Aux.v                                                                                           
                                                                                                          
     Auxillary functions & Theorems                                              
  **********************************************************************)
Require Export Coq.Lists.List.
Require Export Coq.Arith.Arith.
Require Export Coqprime.Tactic.
Require Import Coq.Wellfounded.Inverse_Image.
Require Import Coq.Arith.Wf_nat.

(************************************** 
   Some properties on list operators: app, map,...
**************************************)
 
Section List.
Variables (A : Set) (B : Set) (C : Set).
Variable f : A ->  B.

(************************************** 
  An induction theorem for list based on length 
**************************************)
 
Theorem list_length_ind:
 forall (P : list A ->  Prop),
 (forall (l1 : list A),
  (forall (l2 : list A), length l2 < length l1 ->  P l2) ->  P l1) ->
 forall (l : list A),  P l.
intros P H l;
 apply well_founded_ind with ( R := fun (x y : list A) => length x < length y );
 auto.
apply wf_inverse_image with ( R := lt ); auto.
apply lt_wf.
Qed.
 
Definition list_length_induction:
 forall (P : list A ->  Set),
 (forall (l1 : list A),
  (forall (l2 : list A), length l2 < length l1 ->  P l2) ->  P l1) ->
 forall (l : list A),  P l.
intros P H l;
 apply well_founded_induction
      with ( R := fun (x y : list A) => length x < length y ); auto.
apply wf_inverse_image with ( R := lt ); auto.
apply lt_wf.
Qed.
 
Theorem in_ex_app:
 forall (a : A) (l : list A),
 In a l ->  (exists l1 : list A , exists l2 : list A , l = l1 ++ (a :: l2)  ).
intros a l; elim l; clear l; simpl; auto.
intros H; case H.
intros a1 l H [H1|H1]; auto.
exists (nil (A:=A)); exists l; simpl; auto.
rewrite H1; auto.
case H; auto; intros l1 [l2 Hl2]; exists (a1 :: l1); exists l2; simpl; auto.
rewrite Hl2; auto.
Qed.

(**************************************
 Properties on app 
**************************************)
 
Theorem length_app:
 forall (l1 l2 : list A),  length (l1 ++ l2) = length l1 + length l2.
intros l1; elim l1; simpl; auto.
Qed.
 
Theorem app_inv_head:
 forall (l1 l2 l3 : list A), l1 ++ l2 = l1 ++ l3 ->  l2 = l3.
intros l1; elim l1; simpl; auto.
intros a l H l2 l3 H0; apply H; injection H0; auto.
Qed.
 
Theorem app_inv_tail:
 forall (l1 l2 l3 : list A), l2 ++ l1 = l3 ++ l1 ->  l2 = l3.
intros l1 l2; generalize l1; elim l2; clear l1 l2; simpl; auto.
intros l1 l3; case l3; auto.
intros b l H; absurd (length ((b :: l) ++ l1) <= length l1).
simpl; rewrite length_app; auto with arith.
rewrite <- H; auto with arith.
intros a l H l1 l3; case l3.
simpl; intros H1; absurd (length (a :: (l ++ l1)) <= length l1).
simpl; rewrite length_app; auto with arith.
rewrite H1; auto with arith.
simpl; intros b l0 H0; injection H0.
intros H1 H2; rewrite H2, (H _ _ H1); auto.
Qed.
 
Theorem app_inv_app:
 forall l1 l2 l3 l4 a,
 l1 ++ l2 = l3 ++ (a :: l4) ->
  (exists l5 : list A , l1 = l3 ++ (a :: l5) ) \/
  (exists l5 , l2 = l5 ++ (a :: l4) ).
intros l1; elim l1; simpl; auto.
intros l2 l3 l4 a H; right; exists l3; auto.
intros a l H l2 l3 l4 a0; case l3; simpl.
intros H0; left; exists l; injection H0; intros; subst; auto.
intros b l0 H0; case (H l2 l0 l4 a0); auto.
injection H0; auto.
intros [l5 H1].
left; exists l5; injection H0; intros; subst; auto.
Qed.
 
Theorem app_inv_app2:
 forall l1 l2 l3 l4 a b,
 l1 ++ l2 = l3 ++ (a :: (b :: l4)) ->
  (exists l5 : list A , l1 = l3 ++ (a :: (b :: l5)) ) \/
  ((exists l5 , l2 = l5 ++ (a :: (b :: l4)) ) \/
   l1 = l3 ++ (a :: nil) /\ l2 = b :: l4).
intros l1; elim l1; simpl; auto.
intros l2 l3 l4 a b H; right; left; exists l3; auto.
intros a l H l2 l3 l4 a0 b; case l3; simpl.
case l; simpl.
intros H0; right; right; injection H0; split; auto.
rewrite H2; auto.
intros b0 l0 H0; left; exists l0; injection H0; intros; subst; auto.
intros b0 l0 H0; case (H l2 l0 l4 a0 b); auto.
injection H0; auto.
intros [l5 HH1]; left; exists l5; injection H0; intros; subst; auto.
intros [H1|[H1 H2]]; auto.
right; right; split; auto; injection H0; intros; subst; auto.
Qed.
 
Theorem same_length_ex:
 forall (a : A) l1 l2 l3,
 length (l1 ++ (a :: l2)) = length l3 ->
  (exists l4 ,
   exists l5 ,
   exists b : B ,
   length l1 = length l4 /\ (length l2 = length l5 /\ l3 = l4 ++ (b :: l5))   ).
intros a l1; elim l1; simpl; auto.
intros l2 l3; case l3; simpl; (try (intros; discriminate)).
intros b l H; exists (nil (A:=B)); exists l; exists b; (repeat (split; auto)).
intros a0 l H l2 l3; case l3; simpl; (try (intros; discriminate)).
intros b l0 H0.
case (H l2 l0); auto.
intros l4 [l5 [b1 [HH1 [HH2 HH3]]]].
exists (b :: l4); exists l5; exists b1; (repeat (simpl; split; auto)).
rewrite HH3; auto.
Qed.

(************************************** 
  Properties on map 
**************************************)
 
Theorem in_map_inv:
 forall (b : B) (l : list A),
 In b (map f l) ->  (exists a : A , In a l /\ b = f a ).
intros b l; elim l; simpl; auto.
intros tmp; case tmp.
intros a0 l0 H [H1|H1]; auto.
exists a0; auto.
case (H H1); intros a1 [H2 H3]; exists a1; auto.
Qed.
 
Theorem in_map_fst_inv:
 forall a (l : list (B * C)),
 In a (map (fst (B:=_)) l) ->  (exists c , In (a, c) l ).
intros a l; elim l; simpl; auto.
intros H; case H.
intros a0 l0 H [H0|H0]; auto.
exists (snd a0); left; rewrite <- H0; case a0; simpl; auto.
case H; auto; intros l1 Hl1; exists l1; auto.
Qed.
 
Theorem length_map: forall l,  length (map f l) = length l.
intros l; elim l; simpl; auto.
Qed.
 
Theorem map_app: forall l1 l2,  map f (l1 ++ l2) = map f l1 ++ map f l2.
intros l; elim l; simpl; auto.
intros a l0 H l2; rewrite H; auto.
Qed.
 
Theorem map_length_decompose:
 forall l1 l2 l3 l4,
 length l1 = length l2 ->
 map f (app l1 l3) = app l2 l4 ->  map f l1 = l2 /\ map f l3 = l4.
intros l1; elim l1; simpl; auto; clear l1.
intros l2; case l2; simpl; auto.
intros; discriminate.
intros a l1 Rec l2; case l2; simpl; clear l2; auto.
intros; discriminate.
intros b l2 l3 l4 H1 H2.
injection H2; clear H2; intros H2 H3.
case (Rec l2 l3 l4); auto.
intros H4 H5; split; auto.
subst; auto.
Qed.

(************************************** 
  Properties of flat_map 
**************************************)
 
Theorem in_flat_map:
 forall (l : list B) (f : B ->  list C) a b,
 In a (f b) -> In b l ->  In a (flat_map f l).
intros l g; elim l; simpl; auto.
intros a l0 H a0 b H0 [H1|H1]; apply in_or_app; auto.
left; rewrite H1; auto.
right; apply H with ( b := b ); auto.
Qed.
 
Theorem in_flat_map_ex:
 forall (l : list B) (f : B ->  list C) a,
 In a (flat_map f l) ->  (exists b , In b l /\ In a (f b) ).
intros l g; elim l; simpl; auto.
intros a H; case H.
intros a l0 H a0 H0; case in_app_or with ( 1 := H0 ); simpl; auto.
intros H1; exists a; auto.
intros H1; case H with ( 1 := H1 ).
intros b [H2 H3]; exists b; simpl; auto.
Qed.

(************************************** 
  Properties of fold_left 
**************************************)

Theorem fold_left_invol: 
  forall (f: A -> B -> A) (P: A -> Prop) l a,
  P a ->  (forall x y, P x -> P (f x y)) -> P (fold_left f l a).
intros f1 P l; elim l; simpl; auto.
Qed. 

Theorem fold_left_invol_in: 
  forall (f: A -> B -> A) (P: A -> Prop) l a b,
  In b l -> (forall x, P (f x b)) -> (forall x y, P x -> P (f x y)) ->
  P (fold_left f l a).
intros f1 P l; elim l; simpl; auto.
intros a1 b HH; case HH.
intros a1 l1 Rec a2 b [V|V] V1 V2; subst; auto.
apply fold_left_invol; auto.
apply Rec with (b := b); auto.
Qed.

End List.


(************************************** 
  Propertie of list_prod
**************************************)
 
Theorem length_list_prod:
 forall (A : Set) (l1 l2 : list A),
  length (list_prod l1 l2) = length l1 * length l2.
intros A l1 l2; elim l1; simpl; auto.
intros a l H; rewrite length_app; rewrite length_map; rewrite H; auto.
Qed.
 
Theorem in_list_prod_inv:
 forall (A B : Set) a l1 l2,
 In a (list_prod l1 l2) ->
  (exists b : A , exists c : B , a = (b, c) /\ (In b l1 /\ In c l2)  ).
intros A B a l1 l2; elim l1; simpl; auto; clear l1.
intros H; case H.
intros a1 l1 H1 H2.
case in_app_or with ( 1 := H2 ); intros H3; auto.
case in_map_inv with ( 1 := H3 ); intros b1 [Hb1 Hb2]; auto.
exists a1; exists b1; split; auto.
case H1; auto; intros b1 [c1 [Hb1 [Hb2 Hb3]]].
exists b1; exists c1; split; auto.
Qed.