(*************************************************************) (* This file is distributed under the terms of the *) (* GNU Lesser General Public License Version 2.1 *) (*************************************************************) (* Benjamin.Gregoire@inria.fr Laurent.Thery@inria.fr *) (*************************************************************) (********************************************************************** Aux.v Auxillary functions & Theorems **********************************************************************) Require Export Coq.Lists.List. Require Export Coq.Arith.Arith. Require Export Coqprime.Tactic. Require Import Coq.Wellfounded.Inverse_Image. Require Import Coq.Arith.Wf_nat. (************************************** Some properties on list operators: app, map,... **************************************) Section List. Variables (A : Set) (B : Set) (C : Set). Variable f : A -> B. (************************************** An induction theorem for list based on length **************************************) Theorem list_length_ind: forall (P : list A -> Prop), (forall (l1 : list A), (forall (l2 : list A), length l2 < length l1 -> P l2) -> P l1) -> forall (l : list A), P l. intros P H l; apply well_founded_ind with ( R := fun (x y : list A) => length x < length y ); auto. apply wf_inverse_image with ( R := lt ); auto. apply lt_wf. Qed. Definition list_length_induction: forall (P : list A -> Set), (forall (l1 : list A), (forall (l2 : list A), length l2 < length l1 -> P l2) -> P l1) -> forall (l : list A), P l. intros P H l; apply well_founded_induction with ( R := fun (x y : list A) => length x < length y ); auto. apply wf_inverse_image with ( R := lt ); auto. apply lt_wf. Qed. Theorem in_ex_app: forall (a : A) (l : list A), In a l -> (exists l1 : list A , exists l2 : list A , l = l1 ++ (a :: l2) ). intros a l; elim l; clear l; simpl; auto. intros H; case H. intros a1 l H [H1|H1]; auto. exists (nil (A:=A)); exists l; simpl; auto. rewrite H1; auto. case H; auto; intros l1 [l2 Hl2]; exists (a1 :: l1); exists l2; simpl; auto. rewrite Hl2; auto. Qed. (************************************** Properties on app **************************************) Theorem length_app: forall (l1 l2 : list A), length (l1 ++ l2) = length l1 + length l2. intros l1; elim l1; simpl; auto. Qed. Theorem app_inv_head: forall (l1 l2 l3 : list A), l1 ++ l2 = l1 ++ l3 -> l2 = l3. intros l1; elim l1; simpl; auto. intros a l H l2 l3 H0; apply H; injection H0; auto. Qed. Theorem app_inv_tail: forall (l1 l2 l3 : list A), l2 ++ l1 = l3 ++ l1 -> l2 = l3. intros l1 l2; generalize l1; elim l2; clear l1 l2; simpl; auto. intros l1 l3; case l3; auto. intros b l H; absurd (length ((b :: l) ++ l1) <= length l1). simpl; rewrite length_app; auto with arith. rewrite <- H; auto with arith. intros a l H l1 l3; case l3. simpl; intros H1; absurd (length (a :: (l ++ l1)) <= length l1). simpl; rewrite length_app; auto with arith. rewrite H1; auto with arith. simpl; intros b l0 H0; injection H0. intros H1 H2; rewrite H2, (H _ _ H1); auto. Qed. Theorem app_inv_app: forall l1 l2 l3 l4 a, l1 ++ l2 = l3 ++ (a :: l4) -> (exists l5 : list A , l1 = l3 ++ (a :: l5) ) \/ (exists l5 , l2 = l5 ++ (a :: l4) ). intros l1; elim l1; simpl; auto. intros l2 l3 l4 a H; right; exists l3; auto. intros a l H l2 l3 l4 a0; case l3; simpl. intros H0; left; exists l; injection H0; intros; subst; auto. intros b l0 H0; case (H l2 l0 l4 a0); auto. injection H0; auto. intros [l5 H1]. left; exists l5; injection H0; intros; subst; auto. Qed. Theorem app_inv_app2: forall l1 l2 l3 l4 a b, l1 ++ l2 = l3 ++ (a :: (b :: l4)) -> (exists l5 : list A , l1 = l3 ++ (a :: (b :: l5)) ) \/ ((exists l5 , l2 = l5 ++ (a :: (b :: l4)) ) \/ l1 = l3 ++ (a :: nil) /\ l2 = b :: l4). intros l1; elim l1; simpl; auto. intros l2 l3 l4 a b H; right; left; exists l3; auto. intros a l H l2 l3 l4 a0 b; case l3; simpl. case l; simpl. intros H0; right; right; injection H0; split; auto. rewrite H2; auto. intros b0 l0 H0; left; exists l0; injection H0; intros; subst; auto. intros b0 l0 H0; case (H l2 l0 l4 a0 b); auto. injection H0; auto. intros [l5 HH1]; left; exists l5; injection H0; intros; subst; auto. intros [H1|[H1 H2]]; auto. right; right; split; auto; injection H0; intros; subst; auto. Qed. Theorem same_length_ex: forall (a : A) l1 l2 l3, length (l1 ++ (a :: l2)) = length l3 -> (exists l4 , exists l5 , exists b : B , length l1 = length l4 /\ (length l2 = length l5 /\ l3 = l4 ++ (b :: l5)) ). intros a l1; elim l1; simpl; auto. intros l2 l3; case l3; simpl; (try (intros; discriminate)). intros b l H; exists (nil (A:=B)); exists l; exists b; (repeat (split; auto)). intros a0 l H l2 l3; case l3; simpl; (try (intros; discriminate)). intros b l0 H0. case (H l2 l0); auto. intros l4 [l5 [b1 [HH1 [HH2 HH3]]]]. exists (b :: l4); exists l5; exists b1; (repeat (simpl; split; auto)). rewrite HH3; auto. Qed. (************************************** Properties on map **************************************) Theorem in_map_inv: forall (b : B) (l : list A), In b (map f l) -> (exists a : A , In a l /\ b = f a ). intros b l; elim l; simpl; auto. intros tmp; case tmp. intros a0 l0 H [H1|H1]; auto. exists a0; auto. case (H H1); intros a1 [H2 H3]; exists a1; auto. Qed. Theorem in_map_fst_inv: forall a (l : list (B * C)), In a (map (fst (B:=_)) l) -> (exists c , In (a, c) l ). intros a l; elim l; simpl; auto. intros H; case H. intros a0 l0 H [H0|H0]; auto. exists (snd a0); left; rewrite <- H0; case a0; simpl; auto. case H; auto; intros l1 Hl1; exists l1; auto. Qed. Theorem length_map: forall l, length (map f l) = length l. intros l; elim l; simpl; auto. Qed. Theorem map_app: forall l1 l2, map f (l1 ++ l2) = map f l1 ++ map f l2. intros l; elim l; simpl; auto. intros a l0 H l2; rewrite H; auto. Qed. Theorem map_length_decompose: forall l1 l2 l3 l4, length l1 = length l2 -> map f (app l1 l3) = app l2 l4 -> map f l1 = l2 /\ map f l3 = l4. intros l1; elim l1; simpl; auto; clear l1. intros l2; case l2; simpl; auto. intros; discriminate. intros a l1 Rec l2; case l2; simpl; clear l2; auto. intros; discriminate. intros b l2 l3 l4 H1 H2. injection H2; clear H2; intros H2 H3. case (Rec l2 l3 l4); auto. intros H4 H5; split; auto. subst; auto. Qed. (************************************** Properties of flat_map **************************************) Theorem in_flat_map: forall (l : list B) (f : B -> list C) a b, In a (f b) -> In b l -> In a (flat_map f l). intros l g; elim l; simpl; auto. intros a l0 H a0 b H0 [H1|H1]; apply in_or_app; auto. left; rewrite H1; auto. right; apply H with ( b := b ); auto. Qed. Theorem in_flat_map_ex: forall (l : list B) (f : B -> list C) a, In a (flat_map f l) -> (exists b , In b l /\ In a (f b) ). intros l g; elim l; simpl; auto. intros a H; case H. intros a l0 H a0 H0; case in_app_or with ( 1 := H0 ); simpl; auto. intros H1; exists a; auto. intros H1; case H with ( 1 := H1 ). intros b [H2 H3]; exists b; simpl; auto. Qed. (************************************** Properties of fold_left **************************************) Theorem fold_left_invol: forall (f: A -> B -> A) (P: A -> Prop) l a, P a -> (forall x y, P x -> P (f x y)) -> P (fold_left f l a). intros f1 P l; elim l; simpl; auto. Qed. Theorem fold_left_invol_in: forall (f: A -> B -> A) (P: A -> Prop) l a b, In b l -> (forall x, P (f x b)) -> (forall x y, P x -> P (f x y)) -> P (fold_left f l a). intros f1 P l; elim l; simpl; auto. intros a1 b HH; case HH. intros a1 l1 Rec a2 b [V|V] V1 V2; subst; auto. apply fold_left_invol; auto. apply Rec with (b := b); auto. Qed. End List. (************************************** Propertie of list_prod **************************************) Theorem length_list_prod: forall (A : Set) (l1 l2 : list A), length (list_prod l1 l2) = length l1 * length l2. intros A l1 l2; elim l1; simpl; auto. intros a l H; rewrite length_app; rewrite length_map; rewrite H; auto. Qed. Theorem in_list_prod_inv: forall (A B : Set) a l1 l2, In a (list_prod l1 l2) -> (exists b : A , exists c : B , a = (b, c) /\ (In b l1 /\ In c l2) ). intros A B a l1 l2; elim l1; simpl; auto; clear l1. intros H; case H. intros a1 l1 H1 H2. case in_app_or with ( 1 := H2 ); intros H3; auto. case in_map_inv with ( 1 := H3 ); intros b1 [Hb1 Hb2]; auto. exists a1; exists b1; split; auto. case H1; auto; intros b1 [c1 [Hb1 [Hb2 Hb3]]]. exists b1; exists c1; split; auto. Qed.