aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorGravatar Jason Gross <jgross@mit.edu>2018-12-20 18:50:55 -0500
committerGravatar Andres Erbsen <andreser@mit.edu>2019-01-05 03:40:45 -0500
commita1f2b8bb005c580d75574dd8e5b057cf12f9bcc7 (patch)
tree8cd5ddd19de561a05fe283321fc2010b3663443f
parent1f8b428d03c7d448680245f5752004a32ce77c20 (diff)
new pipeline: refactor glue, split into more files
WIP WIP WIP WIP WIP WIP WIP WIP WIP WIP WIP WIP WIP WIP WIP WIP WIP WIP WIP WIP WIP WIP WIP WIP WIP WIP WIP WIP WIP WIP WIP WIP WIP WIP WIP WIP WIP WIP WIP WIP Try to remove assumption that s = weight n After | File Name | Before || Change | % Change -------------------------------------------------------------------------------------------------------------------- 14m03.04s | Total | 20m54.46s || -6m51.41s | -32.79% -------------------------------------------------------------------------------------------------------------------- 0m01.18s | Experiments/NewPipeline/SlowPrimeSynthesisExamples.vo | 6m18.83s || -6m17.64s | -99.68% N/A | Experiments/NewPipeline/Toplevel1.vo | 4m36.32s || -4m36.31s | -100.00% 4m17.06s | Experiments/NewPipeline/PushButtonSynthesis.vo | N/A || +4m17.06s | ∞ 1m28.64s | Experiments/NewPipeline/Toplevel2.vo | 1m38.21s || -0m09.57s | -9.74% 3m10.57s | p384_32.c | 3m18.05s || -0m07.48s | -3.77% 0m06.36s | Experiments/NewPipeline/BoundsPipeline.vo | N/A || +0m06.36s | ∞ 0m06.16s | Experiments/NewPipeline/COperationSpecifications.vo | N/A || +0m06.16s | ∞ 0m05.66s | p384_64.c | 0m10.80s || -0m05.14s | -47.59% 0m38.24s | p521_32.c | 0m41.31s || -0m03.07s | -7.43% 0m31.64s | p521_64.c | 0m33.94s || -0m02.29s | -6.77% 0m45.06s | Experiments/NewPipeline/ExtractionHaskell/word_by_word_montgomery | 0m43.83s || +0m01.23s | +2.80% 0m30.57s | Experiments/NewPipeline/ExtractionHaskell/unsaturated_solinas | 0m29.56s || +0m01.01s | +3.41% 0m13.52s | secp256k1_32.c | 0m14.60s || -0m01.08s | -7.39% 0m01.00s | p256_64.c | 0m02.03s || -0m01.02s | -50.73% 0m24.19s | Experiments/NewPipeline/ExtractionHaskell/saturated_solinas | 0m23.62s || +0m00.57s | +2.41% 0m16.66s | Experiments/NewPipeline/ExtractionOCaml/word_by_word_montgomery | 0m16.40s || +0m00.26s | +1.58% 0m13.34s | p256_32.c | 0m14.00s || -0m00.66s | -4.71% 0m10.40s | Experiments/NewPipeline/ExtractionOCaml/unsaturated_solinas | 0m10.08s || +0m00.32s | +3.17% 0m10.11s | Experiments/NewPipeline/ExtractionOCaml/word_by_word_montgomery.ml | 0m09.81s || +0m00.29s | +3.05% 0m07.84s | Experiments/NewPipeline/ExtractionOCaml/saturated_solinas | 0m07.66s || +0m00.17s | +2.34% 0m07.09s | Experiments/NewPipeline/ExtractionOCaml/unsaturated_solinas.ml | 0m06.62s || +0m00.46s | +7.09% 0m06.89s | Experiments/NewPipeline/ExtractionHaskell/word_by_word_montgomery.hs | 0m06.42s || +0m00.46s | +7.32% 0m06.26s | p224_32.c | 0m06.54s || -0m00.28s | -4.28% 0m05.24s | Experiments/NewPipeline/ExtractionOCaml/saturated_solinas.ml | 0m04.99s || +0m00.25s | +5.01% 0m04.96s | Experiments/NewPipeline/ExtractionHaskell/unsaturated_solinas.hs | 0m04.94s || +0m00.01s | +0.40% 0m04.19s | Experiments/NewPipeline/ExtractionHaskell/saturated_solinas.hs | 0m04.10s || +0m00.09s | +2.19% 0m02.13s | curve25519_32.c | 0m02.30s || -0m00.16s | -7.39% 0m01.46s | curve25519_64.c | 0m01.65s || -0m00.18s | -11.51% 0m01.44s | Experiments/NewPipeline/CLI.vo | 0m01.37s || +0m00.06s | +5.10% 0m01.31s | Experiments/NewPipeline/StandaloneOCamlMain.vo | 0m01.30s || +0m00.01s | +0.76% 0m01.26s | Experiments/NewPipeline/StandaloneHaskellMain.vo | 0m01.25s || +0m00.01s | +0.80% 0m01.15s | secp256k1_64.c | 0m01.91s || -0m00.76s | -39.79% 0m01.03s | p224_64.c | 0m02.02s || -0m00.99s | -49.00% 0m00.44s | Experiments/NewPipeline/PushButtonSynthesis/ReificationCache.vo | N/A || +0m00.44s | ∞
-rw-r--r--_CoqProject5
-rw-r--r--src/Experiments/NewPipeline/BoundsPipeline.v648
-rw-r--r--src/Experiments/NewPipeline/CLI.v3
-rw-r--r--src/Experiments/NewPipeline/COperationSpecifications.v606
-rw-r--r--src/Experiments/NewPipeline/PushButtonSynthesis.v3170
-rw-r--r--src/Experiments/NewPipeline/PushButtonSynthesis/ReificationCache.v61
-rw-r--r--src/Experiments/NewPipeline/README.md15
-rw-r--r--src/Experiments/NewPipeline/SlowPrimeSynthesisExamples.v5
-rw-r--r--src/Experiments/NewPipeline/Toplevel1.v4200
-rw-r--r--src/Experiments/NewPipeline/Toplevel2.v156
10 files changed, 4661 insertions, 4208 deletions
diff --git a/_CoqProject b/_CoqProject
index ce927e75e..77482ceb2 100644
--- a/_CoqProject
+++ b/_CoqProject
@@ -251,7 +251,9 @@ src/Experiments/NewPipeline/AbstractInterpretationProofs.v
src/Experiments/NewPipeline/AbstractInterpretationWf.v
src/Experiments/NewPipeline/AbstractInterpretationZRangeProofs.v
src/Experiments/NewPipeline/Arithmetic.v
+src/Experiments/NewPipeline/BoundsPipeline.v
src/Experiments/NewPipeline/CLI.v
+src/Experiments/NewPipeline/COperationSpecifications.v
src/Experiments/NewPipeline/CStringification.v
src/Experiments/NewPipeline/CompilersTestCases.v
src/Experiments/NewPipeline/GENERATEDIdentifiersWithoutTypes.v
@@ -261,6 +263,7 @@ src/Experiments/NewPipeline/LanguageInversion.v
src/Experiments/NewPipeline/LanguageWf.v
src/Experiments/NewPipeline/MiscCompilerPasses.v
src/Experiments/NewPipeline/MiscCompilerPassesProofs.v
+src/Experiments/NewPipeline/PushButtonSynthesis.v
src/Experiments/NewPipeline/Rewriter.v
src/Experiments/NewPipeline/RewriterInterpProofs1.v
src/Experiments/NewPipeline/RewriterProofs.v
@@ -271,7 +274,6 @@ src/Experiments/NewPipeline/RewriterWf2.v
src/Experiments/NewPipeline/SlowPrimeSynthesisExamples.v
src/Experiments/NewPipeline/StandaloneHaskellMain.v
src/Experiments/NewPipeline/StandaloneOCamlMain.v
-src/Experiments/NewPipeline/Toplevel1.v
src/Experiments/NewPipeline/Toplevel2.v
src/Experiments/NewPipeline/UnderLets.v
src/Experiments/NewPipeline/UnderLetsProofs.v
@@ -281,6 +283,7 @@ src/Experiments/NewPipeline/ExtractionHaskell/word_by_word_montgomery.v
src/Experiments/NewPipeline/ExtractionOCaml/saturated_solinas.v
src/Experiments/NewPipeline/ExtractionOCaml/unsaturated_solinas.v
src/Experiments/NewPipeline/ExtractionOCaml/word_by_word_montgomery.v
+src/Experiments/NewPipeline/PushButtonSynthesis/ReificationCache.v
src/LegacyArithmetic/ArchitectureToZLike.v
src/LegacyArithmetic/ArchitectureToZLikeProofs.v
src/LegacyArithmetic/BarretReduction.v
diff --git a/src/Experiments/NewPipeline/BoundsPipeline.v b/src/Experiments/NewPipeline/BoundsPipeline.v
new file mode 100644
index 000000000..7c6fb6b00
--- /dev/null
+++ b/src/Experiments/NewPipeline/BoundsPipeline.v
@@ -0,0 +1,648 @@
+(** * BoundsPipeline *)
+(** This file assembles the various compiler stages together into a
+ composed pipeline. It is the final interface for the compiler,
+ right before integration with Arithmetic. *)
+Require Import Coq.ZArith.ZArith.
+Require Import Coq.QArith.QArith_base.
+Require Import Coq.Lists.List.
+Require Import Coq.Strings.String.
+Require Import Crypto.Util.ZUtil.Log2.
+Require Import Crypto.Util.ZUtil.Tactics.LtbToLt.
+Require Import Crypto.Util.ErrorT.
+Require Import Crypto.Util.LetIn.
+Require Import Crypto.Util.Option.
+Require Import Crypto.Util.Strings.Show.
+Require Import Crypto.Util.ZRange.
+Require Import Crypto.Util.ZRange.Show.
+Require Import Crypto.Util.Tactics.BreakMatch.
+Require Import Crypto.Util.Tactics.DestructHead.
+Require Import Crypto.Util.Tactics.HasBody.
+Require Import Crypto.Util.Tactics.Head.
+Require Import Crypto.Util.Tactics.SpecializeBy.
+Require Import Crypto.Util.Tactics.SplitInContext.
+Require Crypto.Experiments.NewPipeline.Language.
+Require Crypto.Experiments.NewPipeline.UnderLets.
+Require Crypto.Experiments.NewPipeline.AbstractInterpretation.
+Require Crypto.Experiments.NewPipeline.Rewriter.
+Require Crypto.Experiments.NewPipeline.MiscCompilerPasses.
+Require Crypto.Experiments.NewPipeline.CStringification.
+Require Crypto.Experiments.NewPipeline.LanguageWf.
+Require Crypto.Experiments.NewPipeline.UnderLetsProofs.
+Require Crypto.Experiments.NewPipeline.MiscCompilerPassesProofs.
+Require Crypto.Experiments.NewPipeline.RewriterProofs.
+Require Crypto.Experiments.NewPipeline.AbstractInterpretationWf.
+Require Crypto.Experiments.NewPipeline.AbstractInterpretationProofs.
+Require Import Crypto.Util.Notations.
+Import ListNotations. Local Open Scope Z_scope.
+
+Import
+ Crypto.Experiments.NewPipeline.LanguageWf
+ Crypto.Experiments.NewPipeline.UnderLetsProofs
+ Crypto.Experiments.NewPipeline.MiscCompilerPassesProofs
+ Crypto.Experiments.NewPipeline.RewriterProofs
+ Crypto.Experiments.NewPipeline.AbstractInterpretationWf
+ Crypto.Experiments.NewPipeline.AbstractInterpretationProofs
+ Crypto.Experiments.NewPipeline.Language
+ Crypto.Experiments.NewPipeline.UnderLets
+ Crypto.Experiments.NewPipeline.AbstractInterpretation
+ Crypto.Experiments.NewPipeline.Rewriter
+ Crypto.Experiments.NewPipeline.MiscCompilerPasses
+ Crypto.Experiments.NewPipeline.CStringification.
+
+Import
+ LanguageWf.Compilers
+ UnderLetsProofs.Compilers
+ MiscCompilerPassesProofs.Compilers
+ RewriterProofs.Compilers
+ AbstractInterpretationWf.Compilers
+ AbstractInterpretationProofs.Compilers
+ Language.Compilers
+ UnderLets.Compilers
+ AbstractInterpretation.Compilers
+ Rewriter.Compilers
+ MiscCompilerPasses.Compilers
+ CStringification.Compilers.
+
+Import Compilers.defaults.
+
+Definition round_up_bitwidth_gen (possible_values : list Z) (bitwidth : Z) : option Z
+ := List.fold_right
+ (fun allowed cur
+ => if bitwidth <=? allowed
+ then Some allowed
+ else cur)
+ None
+ possible_values.
+
+Lemma round_up_bitwidth_gen_le possible_values bitwidth v
+ : round_up_bitwidth_gen possible_values bitwidth = Some v
+ -> bitwidth <= v.
+Proof.
+ cbv [round_up_bitwidth_gen].
+ induction possible_values as [|x xs IHxs]; cbn; intros; inversion_option.
+ break_innermost_match_hyps; Z.ltb_to_lt; inversion_option; subst; trivial.
+ specialize_by_assumption; omega.
+Qed.
+
+Definition relax_zrange_gen (possible_values : list Z) : zrange -> option zrange
+ := (fun '(r[ l ~> u ])
+ => if (0 <=? l)%Z
+ then option_map (fun u => r[0~>2^u-1])
+ (round_up_bitwidth_gen possible_values (Z.log2_up (u+1)))
+ else None)%zrange.
+
+Lemma relax_zrange_gen_good
+ (possible_values : list Z)
+ : forall r r' z : zrange,
+ (z <=? r)%zrange = true -> relax_zrange_gen possible_values r = Some r' -> (z <=? r')%zrange = true.
+Proof.
+ cbv [is_tighter_than_bool relax_zrange_gen]; intros *.
+ pose proof (Z.log2_up_nonneg (upper r + 1)).
+ rewrite !Bool.andb_true_iff; destruct_head' zrange; cbn [ZRange.lower ZRange.upper] in *.
+ cbv [List.fold_right option_map].
+ break_innermost_match; intros; destruct_head'_and;
+ try match goal with
+ | [ H : _ |- _ ] => apply round_up_bitwidth_gen_le in H
+ end;
+ inversion_option; inversion_zrange;
+ subst;
+ repeat apply conj;
+ Z.ltb_to_lt; try omega;
+ try (rewrite <- Z.log2_up_le_pow2_full in *; omega).
+Qed.
+
+Module Pipeline.
+ Import GeneralizeVar.
+ Inductive ErrorMessage :=
+ | Computed_bounds_are_not_tight_enough
+ {t} (computed_bounds expected_bounds : ZRange.type.base.option.interp (type.final_codomain t))
+ (syntax_tree : Expr t) (arg_bounds : type.for_each_lhs_of_arrow ZRange.type.option.interp t)
+ | No_modular_inverse (descr : string) (v : Z) (m : Z)
+ | Value_not_leZ (descr : string) (lhs rhs : Z)
+ | Value_not_leQ (descr : string) (lhs rhs : Q)
+ | Value_not_ltZ (descr : string) (lhs rhs : Z)
+ | Value_not_lt_listZ (descr : string) (lhs rhs : list Z)
+ | Value_not_le_listZ (descr : string) (lhs rhs : list Z)
+ | Values_not_provably_distinctZ (descr : string) (lhs rhs : Z)
+ | Values_not_provably_equalZ (descr : string) (lhs rhs : Z)
+ | Values_not_provably_equal_listZ (descr : string) (lhs rhs : list Z)
+ | Unsupported_casts_in_input {t} (e : @Compilers.defaults.Expr t) (ls : list { t : _ & ident t })
+ | Stringification_failed {t} (e : @Compilers.defaults.Expr t) (err : string)
+ | Invalid_argument (msg : string).
+
+ Notation ErrorT := (ErrorT ErrorMessage).
+
+ Section show.
+ Local Open Scope string_scope.
+ Fixpoint find_too_loose_base_bounds {t}
+ : ZRange.type.base.option.interp t -> ZRange.type.base.option.interp t-> bool * list (nat * nat) * list (zrange * zrange)
+ := match t return ZRange.type.base.option.interp t -> ZRange.type.option.interp t-> bool * list (nat * nat) * list (zrange * zrange) with
+ | base.type.unit
+ => fun 'tt 'tt => (false, nil, nil)
+ | base.type.nat
+ | base.type.bool
+ => fun _ _ => (false, nil, nil)
+ | base.type.Z
+ => fun a b
+ => match a, b with
+ | None, None => (false, nil, nil)
+ | Some _, None => (false, nil, nil)
+ | None, Some _ => (true, nil, nil)
+ | Some a, Some b
+ => if is_tighter_than_bool a b
+ then (false, nil, nil)
+ else (false, nil, ((a, b)::nil))
+ end
+ | base.type.prod A B
+ => fun '(ra, rb) '(ra', rb')
+ => let '(b1, lens1, ls1) := @find_too_loose_base_bounds A ra ra' in
+ let '(b2, lens2, ls2) := @find_too_loose_base_bounds B rb rb' in
+ (orb b1 b2, lens1 ++ lens2, ls1 ++ ls2)%list
+ | base.type.list A
+ => fun ls1 ls2
+ => match ls1, ls2 with
+ | None, None
+ | Some _, None
+ => (false, nil, nil)
+ | None, Some _
+ => (true, nil, nil)
+ | Some ls1, Some ls2
+ => List.fold_right
+ (fun '(b, len, err) '(bs, lens, errs)
+ => (orb b bs, len ++ lens, err ++ errs)%list)
+ (false,
+ (if (List.length ls1 =? List.length ls2)%nat
+ then nil
+ else ((List.length ls1, List.length ls2)::nil)),
+ nil)
+ (List.map
+ (fun '(a, b) => @find_too_loose_base_bounds A a b)
+ (List.combine ls1 ls2))
+ end
+ end.
+
+ Definition find_too_loose_bounds {t}
+ : ZRange.type.option.interp t -> ZRange.type.option.interp t-> bool * list (nat * nat) * list (zrange * zrange)
+ := match t with
+ | type.arrow s d => fun _ _ => (false, nil, nil)
+ | type.base t => @find_too_loose_base_bounds t
+ end.
+ Definition explain_too_loose_bounds {t} (b1 b2 : ZRange.type.option.interp t)
+ : string
+ := let '(none_some, lens, bs) := find_too_loose_bounds b1 b2 in
+ String.concat
+ String.NewLine
+ ((if none_some then "Found None where Some was expected"::nil else nil)
+ ++ (List.map
+ (A:=nat*nat)
+ (fun '(l1, l2) => "Found a list of length " ++ show false l1 ++ " where a list of length " ++ show false l2 ++ " was expected.")
+ lens)
+ ++ (List.map
+ (A:=zrange*zrange)
+ (fun '(b1, b2) => "The bounds " ++ show false b1 ++ " are looser than the expected bounds " ++ show false b2)
+ bs)).
+
+ Global Instance show_lines_ErrorMessage : ShowLines ErrorMessage
+ := fun parens e
+ => maybe_wrap_parens_lines
+ parens
+ match e with
+ | Computed_bounds_are_not_tight_enough t computed_bounds expected_bounds syntax_tree arg_bounds
+ => ((["Computed bounds " ++ show true computed_bounds ++ " are not tight enough (expected bounds not looser than " ++ show true expected_bounds ++ ")."]%string)
+ ++ [explain_too_loose_bounds (t:=type.base _) computed_bounds expected_bounds]
+ ++ match ToString.C.ToFunctionLines
+ false (* do extra bounds check *) false (* static *) "" "f" nil syntax_tree None arg_bounds ZRange.type.base.option.None with
+ | inl (E_lines, types_used)
+ => ["When doing bounds analysis on the syntax tree:"]
+ ++ E_lines ++ [""]
+ ++ ["with input bounds " ++ show true arg_bounds ++ "." ++ String.NewLine]%string
+ | inr errs
+ => (["(Unprintible syntax tree used in bounds analysis)" ++ String.NewLine]%string)
+ ++ ["Stringification failed on the syntax tree:"] ++ show_lines false syntax_tree ++ [errs]
+ end)%list
+ | No_modular_inverse descr v m
+ => ["Could not compute a modular inverse (" ++ descr ++ ") for " ++ show false v ++ " mod " ++ show false m]
+ | Value_not_leZ descr lhs rhs
+ => ["Value not ≤ (" ++ descr ++ ") : expected " ++ show false lhs ++ " ≤ " ++ show false rhs]
+ | Value_not_leQ descr lhs rhs
+ => ["Value not ≤ (" ++ descr ++ ") : expected " ++ show false lhs ++ " ≤ " ++ show false rhs]
+ | Value_not_ltZ descr lhs rhs
+ => ["Value not < (" ++ descr ++ ") : expected " ++ show false lhs ++ " < " ++ show false rhs]
+ | Value_not_lt_listZ descr lhs rhs
+ => ["Value not < (" ++ descr ++ ") : expected " ++ show false lhs ++ " < " ++ show false rhs]
+ | Value_not_le_listZ descr lhs rhs
+ => ["Value not ≤ (" ++ descr ++ ") : expected " ++ show false lhs ++ " ≤ " ++ show false rhs]
+ | Values_not_provably_distinctZ descr lhs rhs
+ => ["Values not provably distinct (" ++ descr ++ ") : expected " ++ show true lhs ++ " ≠ " ++ show true rhs]
+ | Values_not_provably_equalZ descr lhs rhs
+ | Values_not_provably_equal_listZ descr lhs rhs
+ => ["Values not provably equal (" ++ descr ++ ") : expected " ++ show true lhs ++ " = " ++ show true rhs]
+ | Unsupported_casts_in_input t e ls
+ => ["Unsupported casts in input syntax tree:"]
+ ++ show_lines false e
+ ++ ["Unsupported casts: " ++ @show_list _ (fun p v => show p (projT2 v)) false ls]
+ | Stringification_failed t e err => ["Stringification failed on the syntax tree:"] ++ show_lines false e ++ [err]
+ | Invalid_argument msg
+ => ["Invalid argument:" ++ msg]%string
+ end.
+ Local Instance show_ErrorMessage : Show ErrorMessage
+ := fun parens err => String.concat String.NewLine (show_lines parens err).
+ End show.
+
+ Definition invert_result {T} (v : ErrorT T)
+ := match v return match v with Success _ => T | _ => ErrorMessage end with
+ | Success v => v
+ | Error msg => msg
+ end.
+
+ Record to_fancy_args := { invert_low : Z (*log2wordmax*) -> Z -> option Z ; invert_high : Z (*log2wordmax*) -> Z -> option Z ; value_range : zrange ; flag_range : zrange }.
+
+ Definition RewriteAndEliminateDeadAndInline {t}
+ (DoRewrite : Expr t -> Expr t)
+ (with_dead_code_elimination : bool)
+ (with_subst01 : bool)
+ (E : Expr t)
+ : Expr t
+ := let E := DoRewrite E in
+ (* Note that DCE evaluates the expr with two different [var]
+ arguments, and so results in a pipeline that is 2x slower
+ unless we pass through a uniformly concrete [var] type
+ first *)
+ dlet_nd e := ToFlat E in
+ let E := FromFlat e in
+ let E := if with_subst01 then Subst01.Subst01 E
+ else if with_dead_code_elimination then DeadCodeElimination.EliminateDead E
+ else E in
+ let E := UnderLets.LetBindReturn E in
+ let E := DoRewrite E in (* after inlining, see if any new rewrite redexes are available *)
+ dlet_nd e := ToFlat E in
+ let E := FromFlat e in
+ let E := if with_dead_code_elimination then DeadCodeElimination.EliminateDead E else E in
+ E.
+
+ Definition BoundsPipeline
+ (with_dead_code_elimination : bool := true)
+ (with_subst01 : bool)
+ (translate_to_fancy : option to_fancy_args)
+ (possible_values : list Z)
+ (relax_zrange := relax_zrange_gen possible_values)
+ {t}
+ (E : Expr t)
+ arg_bounds
+ out_bounds
+ : ErrorT (Expr t)
+ := (*let E := expr.Uncurry E in*)
+ let E := PartialEvaluateWithListInfoFromBounds E arg_bounds in
+ let E := PartialEvaluate E in
+ let E := RewriteAndEliminateDeadAndInline (RewriteRules.RewriteArith 0) with_dead_code_elimination with_subst01 E in
+ let E := RewriteRules.RewriteArith (2^8) E in (* reassociate small consts *)
+ let E := match translate_to_fancy with
+ | Some {| invert_low := invert_low ; invert_high := invert_high |} => RewriteRules.RewriteToFancy invert_low invert_high E
+ | None => E
+ end in
+ dlet_nd e := ToFlat E in
+ let E := FromFlat e in
+ let E' := CheckedPartialEvaluateWithBounds relax_zrange E arg_bounds out_bounds in
+ match E' with
+ | inl E
+ => let E := RewriteAndEliminateDeadAndInline RewriteRules.RewriteArithWithCasts with_dead_code_elimination with_subst01 E in
+ let E := match translate_to_fancy with
+ | Some {| invert_low := invert_low ; invert_high := invert_high ; value_range := value_range ; flag_range := flag_range |}
+ => RewriteRules.RewriteToFancyWithCasts invert_low invert_high value_range flag_range E
+ | None => E
+ end in
+ Success E
+ | inr (inl (b, E))
+ => Error (Computed_bounds_are_not_tight_enough b out_bounds E arg_bounds)
+ | inr (inr unsupported_casts)
+ => Error (Unsupported_casts_in_input E unsupported_casts)
+ end.
+
+ Definition BoundsPipelineToStrings
+ (static : bool)
+ (type_prefix : string)
+ (name : string)
+ (comment : list string)
+ (with_dead_code_elimination : bool := true)
+ (with_subst01 : bool)
+ (translate_to_fancy : option to_fancy_args)
+ (possible_values : list Z)
+ {t}
+ (E : Expr t)
+ arg_bounds
+ out_bounds
+ : ErrorT (list string * ToString.C.ident_infos)
+ := let E := BoundsPipeline
+ (*with_dead_code_elimination*)
+ with_subst01
+ translate_to_fancy
+ possible_values
+ E arg_bounds out_bounds in
+ match E with
+ | Success E' => let E := ToString.C.ToFunctionLines
+ true static type_prefix name comment E' None arg_bounds out_bounds in
+ match E with
+ | inl E => Success E
+ | inr err => Error (Stringification_failed E' err)
+ end
+ | Error err => Error err
+ end.
+
+ Definition BoundsPipelineToString
+ (static : bool)
+ (type_prefix : string)
+ (name : string)
+ (comment : list string)
+ (with_dead_code_elimination : bool := true)
+ (with_subst01 : bool)
+ (translate_to_fancy : option to_fancy_args)
+ relax_zrange
+ {t}
+ (E : Expr t)
+ arg_bounds
+ out_bounds
+ : ErrorT (string * ToString.C.ident_infos)
+ := let E := BoundsPipelineToStrings
+ static type_prefix name comment
+ (*with_dead_code_elimination*)
+ with_subst01
+ translate_to_fancy
+ relax_zrange
+ E arg_bounds out_bounds in
+ match E with
+ | Success (E, types_used) => Success (ToString.C.LinesToString E, types_used)
+ | Error err => Error err
+ end.
+
+ Local Notation arg_bounds_of_pipeline result
+ := ((fun a b c d e arg_bounds out_bounds result' (H : @Pipeline.BoundsPipeline a b c d e arg_bounds out_bounds = result') => arg_bounds) _ _ _ _ _ _ _ result eq_refl)
+ (only parsing).
+ Local Notation out_bounds_of_pipeline result
+ := ((fun a b c d e arg_bounds out_bounds result' (H : @Pipeline.BoundsPipeline a b c d e arg_bounds out_bounds = result') => out_bounds) _ _ _ _ _ _ _ result eq_refl)
+ (only parsing).
+
+ Notation FromPipelineToString prefix name result
+ := (((prefix ++ name)%string,
+ match result with
+ | Success E'
+ => let E := ToString.C.ToFunctionLines
+ true true (* static *) prefix (prefix ++ name)%string [] E' None
+ (arg_bounds_of_pipeline result)
+ (out_bounds_of_pipeline result) in
+ match E with
+ | inl E => Success E
+ | inr err => Error (Pipeline.Stringification_failed E' err)
+ end
+ | Error err => Error err
+ end)).
+
+
+ Local Ltac wf_interp_t :=
+ repeat first [ progress destruct_head'_and
+ | progress autorewrite with interp
+ | solve [ auto with interp wf ]
+ | solve [ typeclasses eauto ]
+ | break_innermost_match_step
+ | solve [ auto 100 with wf ]
+ | progress intros ].
+
+ Class bounds_goodT {t} bounds
+ := bounds_good :
+ Proper (type.and_for_each_lhs_of_arrow (t:=t) (@partial.abstract_domain_R base.type ZRange.type.base.option.interp (fun _ => eq)))
+ bounds.
+
+ Class type_goodT (t : type.type base.type)
+ := type_good : type.andb_each_lhs_of_arrow type.is_base t = true.
+
+ Hint Extern 1 (type_goodT _) => vm_compute; reflexivity : typeclass_instances.
+
+ Lemma Wf_RewriteAndEliminateDeadAndInline {t} DoRewrite with_dead_code_elimination with_subst01
+ (Wf_DoRewrite : forall E, Wf E -> Wf (DoRewrite E))
+ E
+ (Hwf : Wf E)
+ : Wf (@RewriteAndEliminateDeadAndInline t DoRewrite with_dead_code_elimination with_subst01 E).
+ Proof. cbv [RewriteAndEliminateDeadAndInline Let_In]; wf_interp_t. Qed.
+
+ Global Hint Resolve @Wf_RewriteAndEliminateDeadAndInline : wf.
+
+ Lemma Interp_RewriteAndEliminateDeadAndInline {cast_outside_of_range} {t} DoRewrite with_dead_code_elimination with_subst01
+ (Interp_DoRewrite : forall E, Wf E -> expr.Interp (@ident.gen_interp cast_outside_of_range) (DoRewrite E) == expr.Interp (@ident.gen_interp cast_outside_of_range) E)
+ (Wf_DoRewrite : forall E, Wf E -> Wf (DoRewrite E))
+ E
+ (Hwf : Wf E)
+ : expr.Interp (@ident.gen_interp cast_outside_of_range) (@RewriteAndEliminateDeadAndInline t DoRewrite with_dead_code_elimination with_subst01 E)
+ == expr.Interp (@ident.gen_interp cast_outside_of_range) E.
+ Proof.
+ cbv [RewriteAndEliminateDeadAndInline Let_In];
+ repeat (wf_interp_t || rewrite !Interp_DoRewrite).
+ Qed.
+
+ Hint Rewrite @Interp_RewriteAndEliminateDeadAndInline : interp.
+
+ Local Opaque RewriteAndEliminateDeadAndInline.
+ Lemma BoundsPipeline_correct
+ (with_dead_code_elimination : bool := true)
+ (with_subst01 : bool)
+ (translate_to_fancy : option to_fancy_args)
+ (possible_values : list Z)
+ {t}
+ (e : Expr t)
+ arg_bounds
+ out_bounds
+ {type_good : type_goodT t}
+ rv
+ (Hrv : BoundsPipeline (*with_dead_code_elimination*) with_subst01 translate_to_fancy possible_values e arg_bounds out_bounds = Success rv)
+ (Hwf : Wf e)
+ (Hfancy : match translate_to_fancy with
+ | Some {| invert_low := il ; invert_high := ih |}
+ => (forall s v v' : Z, il s v = Some v' -> v = Z.land v' (2^(s/2)-1))
+ /\ (forall s v v' : Z, ih s v = Some v' -> v = Z.shiftr v' (s/2))
+ | None => True
+ end)
+ : (forall arg1 arg2
+ (Harg12 : type.and_for_each_lhs_of_arrow (@type.eqv) arg1 arg2)
+ (Harg1 : type.andb_bool_for_each_lhs_of_arrow (@ZRange.type.option.is_bounded_by) arg_bounds arg1 = true),
+ ZRange.type.base.option.is_bounded_by out_bounds (type.app_curried (Interp rv) arg1) = true
+ /\ forall cast_outside_of_range, type.app_curried (expr.Interp (@ident.gen_interp cast_outside_of_range) rv) arg1
+ = type.app_curried (Interp e) arg2)
+ /\ Wf rv.
+ Proof.
+ assert (Hbounds_Proper : bounds_goodT arg_bounds) by (apply type.and_eqv_for_each_lhs_of_arrow_not_higher_order, type_good).
+ cbv [BoundsPipeline Let_In bounds_goodT] in *;
+ repeat match goal with
+ | [ H : match ?x with _ => _ end = Success _ |- _ ]
+ => destruct x eqn:?; cbv beta iota in H; [ | break_innermost_match_hyps; congruence ];
+ let H' := fresh in
+ inversion H as [H']; clear H; rename H' into H
+ end.
+ { intros;
+ match goal with
+ | [ H : _ = _ |- _ ]
+ => let H' := fresh in
+ pose proof H as H';
+ eapply CheckedPartialEvaluateWithBounds_Correct in H';
+ [ destruct H' as [H01 Hwf'] | .. ]
+ end;
+ [
+ | lazymatch goal with
+ | [ |- Wf _ ] => idtac
+ | _ => eassumption || reflexivity || apply relax_zrange_gen_good
+ end.. ].
+ { subst; split; [ | solve [ wf_interp_t ] ].
+ split_and; simpl in *.
+ split; [ solve [ wf_interp_t; eauto with nocore ] | ].
+ intros; break_innermost_match; autorewrite with interp; try solve [ wf_interp_t ]; [ | ].
+ all: match goal with H : context[type.app_curried _ _ = _] |- _ => erewrite H; clear H end; eauto.
+ all: transitivity (type.app_curried (Interp (PartialEvaluateWithListInfoFromBounds e arg_bounds)) arg1);
+ [ | apply Interp_PartialEvaluateWithListInfoFromBounds; auto ].
+ all: apply type.app_curried_Proper; [ | symmetry; eassumption ].
+ all: clear dependent arg1; clear dependent arg2; clear dependent out_bounds.
+ all: wf_interp_t. }
+ { wf_interp_t. } }
+ Qed.
+ Local Transparent RewriteAndEliminateDeadAndInline.
+
+ Definition BoundsPipeline_correct_transT
+ {t}
+ arg_bounds
+ out_bounds
+ (InterpE : type.interp base.interp t)
+ (rv : Expr t)
+ := (forall arg1 arg2
+ (Harg12 : type.and_for_each_lhs_of_arrow (@type.eqv) arg1 arg2)
+ (Harg1 : type.andb_bool_for_each_lhs_of_arrow (@ZRange.type.option.is_bounded_by) arg_bounds arg1 = true),
+ ZRange.type.base.option.is_bounded_by out_bounds (type.app_curried (Interp rv) arg1) = true
+ /\ forall cast_outside_of_range, type.app_curried (expr.Interp (@ident.gen_interp cast_outside_of_range) rv) arg1
+ = type.app_curried InterpE arg2)
+ /\ Wf rv.
+
+ Lemma BoundsPipeline_correct_trans
+ (with_dead_code_elimination : bool := true)
+ (with_subst01 : bool)
+ (translate_to_fancy : option to_fancy_args)
+ (Hfancy : match translate_to_fancy with
+ | Some {| invert_low := il ; invert_high := ih |}
+ => (forall s v v' : Z, il s v = Some v' -> v = Z.land v' (2^(s/2)-1))
+ /\ (forall s v v' : Z, ih s v = Some v' -> v = Z.shiftr v' (s/2))
+ | None => True
+ end)
+ (possible_values : list Z)
+ {t}
+ (e : Expr t)
+ arg_bounds out_bounds
+ {type_good : type_goodT t}
+ (InterpE : type.interp base.interp t)
+ (InterpE_correct_and_Wf
+ : (forall arg1 arg2
+ (Harg12 : type.and_for_each_lhs_of_arrow (@type.eqv) arg1 arg2)
+ (Harg1 : type.andb_bool_for_each_lhs_of_arrow (@ZRange.type.option.is_bounded_by) arg_bounds arg1 = true),
+ type.app_curried (Interp e) arg1 = type.app_curried InterpE arg2)
+ /\ Wf e)
+ rv
+ (Hrv : BoundsPipeline (*with_dead_code_elimination*) with_subst01 translate_to_fancy possible_values e arg_bounds out_bounds = Success rv)
+ : BoundsPipeline_correct_transT arg_bounds out_bounds InterpE rv.
+ Proof.
+ destruct InterpE_correct_and_Wf as [InterpE_correct Hwf].
+ split; [ intros arg1 arg2 Harg12 Harg1; erewrite <- InterpE_correct | ]; try eapply @BoundsPipeline_correct;
+ lazymatch goal with
+ | [ |- type.andb_bool_for_each_lhs_of_arrow _ _ _ = true ] => eassumption
+ | _ => try assumption
+ end; try eassumption.
+ etransitivity; try eassumption; symmetry; assumption.
+ Qed.
+
+ Ltac solve_bounds_good :=
+ repeat first [ progress cbv [bounds_goodT Proper partial.abstract_domain_R type_base] in *
+ | progress cbn [type.and_for_each_lhs_of_arrow type.for_each_lhs_of_arrow partial.abstract_domain type.interp ZRange.type.base.option.interp type.related] in *
+ | exact I
+ | apply conj
+ | exact eq_refl ].
+
+ Global Instance bounds0_good {t : base.type} {bounds} : @bounds_goodT t bounds.
+ Proof. solve_bounds_good. Qed.
+
+ Global Instance bounds1_good {s d : base.type} {bounds} : @bounds_goodT (s -> d) bounds.
+ Proof. solve_bounds_good. Qed.
+
+ Global Instance bounds2_good {a b D : base.type} {bounds} : @bounds_goodT (a -> b -> D) bounds.
+ Proof. solve_bounds_good. Qed.
+
+ Global Instance bounds3_good {a b c D : base.type} {bounds} : @bounds_goodT (a -> b -> c -> D) bounds.
+ Proof. solve_bounds_good. Qed.
+End Pipeline.
+
+Module Export Hints.
+ Hint Extern 1 (@Pipeline.bounds_goodT _ _) => solve [ Pipeline.solve_bounds_good ] : typeclass_instances.
+ Global Strategy -100 [type.interp ZRange.type.option.interp ZRange.type.base.option.interp GallinaReify.Reify_as GallinaReify.reify type_base].
+ Global Strategy -10 [type.app_curried type.for_each_lhs_of_arrow type.and_for_each_lhs_of_arrow type.related type.interp base.interp base.base_interp type.andb_bool_for_each_lhs_of_arrow fst snd ZRange.type.option.is_bounded_by].
+End Hints.
+
+Module PipelineTactics.
+ Export Hints.
+
+ Ltac solve_side_conditions_of_BoundsPipeline_correct :=
+ repeat first [ progress cbn [fst snd] in *
+ | match goal with
+ | [ |- ?x = ?x ] => reflexivity
+ | [ |- unit ] => constructor
+ | [ |- True ] => constructor
+ | [ |- context[andb _ _ = true] ] => rewrite Bool.andb_true_iff
+ | [ |- and _ _ ] => apply conj
+ | [ |- ?x = ?y ] => is_evar y; reflexivity
+ | [ |- ZRange.type.base.option.is_bounded_by _ _ = true ] => assumption
+ end ].
+
+ Ltac do_unfolding :=
+ cbv [type.interp ZRange.type.option.interp ZRange.type.base.option.interp GallinaReify.Reify_as GallinaReify.reify type_base] in *;
+ cbn [type.app_curried type.for_each_lhs_of_arrow type.and_for_each_lhs_of_arrow type.related type.interp base.interp base.base_interp type.andb_bool_for_each_lhs_of_arrow fst snd ZRange.type.option.is_bounded_by] in *.
+
+ Ltac curry_args lem :=
+ let T := type of lem in
+ lazymatch (eval cbn [fst snd] in T) with
+ | forall x : ?A * ?B, _
+ => let a := fresh in
+ let b := fresh in
+ curry_args (fun (a : A) (b : B) => lem (a, b))
+ | forall x : unit, _
+ => curry_args (lem tt)
+ | forall x : True, _
+ => curry_args (lem I)
+ | forall x : ?A /\ ?B, _
+ => let a := fresh in
+ let b := fresh in
+ curry_args (fun (a : A) (b : B) => lem (conj a b))
+ | forall x : ?A, _
+ => constr:(fun x : A => ltac:(let v := curry_args (lem x) in exact v))
+ | ?T
+ => let T' := (eval cbn [fst snd] in T) in
+ constr:(lem : T')
+ end.
+
+ Ltac use_compilers_correctness Hres :=
+ eapply Pipeline.BoundsPipeline_correct in Hres;
+ [ | eauto using relax_zrange_gen_good with typeclass_instances.. ];
+ [ do_unfolding;
+ let Hres' := fresh in
+ destruct Hres as [Hres' _] (* remove Wf conjunct *);
+ let lem' := curry_args Hres' in
+ pose proof lem' as Hres; clear Hres';
+ let H1 := fresh in
+ let H2 := fresh in
+ edestruct Hres as [H1 H2]; revgoals;
+ [ first [ ((* first try to be smart about which side of the lemma we use *)
+ lazymatch goal with
+ | [ |- _ = true ] => eapply H1
+ | [ |- _ = _ ] => erewrite H2
+ | [ |- ?list_Z_bounded_by _ _ ] => eapply H1
+ end)
+ (* but if that doesn't work, try both ways *)
+ | eapply H1
+ | erewrite H2 ];
+ clear H1 H2 Hres
+ | .. ];
+ solve_side_conditions_of_BoundsPipeline_correct
+ | match goal with
+ | [ |- Wf _ ]
+ => repeat apply expr.Wf_APP; auto with wf wf_gen_cache
+ end ].
+End PipelineTactics.
diff --git a/src/Experiments/NewPipeline/CLI.v b/src/Experiments/NewPipeline/CLI.v
index 2b9dbdf23..ecce16e9d 100644
--- a/src/Experiments/NewPipeline/CLI.v
+++ b/src/Experiments/NewPipeline/CLI.v
@@ -8,8 +8,9 @@ Require Import Crypto.Util.Strings.Decimal.
Require Import Crypto.Util.Strings.HexString.
Require Import Crypto.Util.Option.
Require Import Crypto.Util.Strings.Show.
-Require Import Crypto.Experiments.NewPipeline.Toplevel1.
+Require Import Crypto.Experiments.NewPipeline.PushButtonSynthesis.
Require Import Crypto.Experiments.NewPipeline.CStringification.
+Require Import Crypto.Experiments.NewPipeline.BoundsPipeline.
Import ListNotations. Local Open Scope Z_scope. Local Open Scope string_scope.
Import CStringification.Compilers.
diff --git a/src/Experiments/NewPipeline/COperationSpecifications.v b/src/Experiments/NewPipeline/COperationSpecifications.v
new file mode 100644
index 000000000..55c0dfb03
--- /dev/null
+++ b/src/Experiments/NewPipeline/COperationSpecifications.v
@@ -0,0 +1,606 @@
+(** * C Operation Specifications *)
+(** The specifications for the various operations to be synthesized. *)
+Require Import Coq.ZArith.ZArith Coq.micromega.Lia.
+Require Import Coq.Lists.List.
+Require Import Crypto.Util.ZRange.
+Require Import Crypto.Util.ZUtil.Tactics.PullPush.Modulo.
+Require Import Crypto.Util.ZUtil.Tactics.LtbToLt.
+Require Import Crypto.Util.Bool.
+Require Import Crypto.Util.ListUtil.
+Require Import Crypto.Util.ListUtil.FoldBool.
+Require Import Crypto.Util.Tactics.SpecializeBy.
+Require Import Crypto.Util.Tactics.SplitInContext.
+Require Import Crypto.Util.Tactics.UniquePose.
+Require Import Crypto.Experiments.NewPipeline.Arithmetic.
+Local Open Scope Z_scope. Local Open Scope bool_scope.
+
+(** These Imports are only needed for the ring proof *)
+Require Import Crypto.Arithmetic.PrimeFieldTheorems.
+Require Import Crypto.Algebra.Ring.
+Require Import Crypto.Algebra.SubsetoidRing.
+
+Local Notation is_bounded_by0 r v
+:= ((lower r%zrange <=? v) && (v <=? upper r%zrange)).
+Local Notation is_bounded_by2 r v
+ := (let '(v1, v2) := v in is_bounded_by0 (fst r) v1 && is_bounded_by0 (snd r) v2).
+Local Notation is_bounded_by0o r
+ := (match r with Some r' => fun v' => is_bounded_by0 r' v' | None => fun _ => true end).
+Local Notation is_bounded_by bounds ls
+ := (fold_andb_map (fun r v'' => is_bounded_by0o r v'') bounds ls).
+
+Section list_Z_bounded.
+ Definition list_Z_bounded_by
+ (bounds : list (option zrange))
+ (v : list Z)
+ := is_bounded_by bounds v = true.
+
+ Lemma length_list_Z_bounded_by bounds ls
+ : list_Z_bounded_by bounds ls -> length ls = length bounds.
+ Proof using Type.
+ intro H.
+ apply fold_andb_map_length in H; congruence.
+ Qed.
+
+ Lemma eval_list_Z_bounded_by wt n' bounds bounds' f
+ (H : list_Z_bounded_by bounds f)
+ (Hb : bounds = List.map (@Some _) bounds')
+ (Hblen : length bounds' = n')
+ (Hwt : forall i, List.In i (seq 0 n') -> 0 <= wt i)
+ : Positional.eval wt n' (List.map lower bounds') <= Positional.eval wt n' f <= Positional.eval wt n' (List.map upper bounds').
+ Proof using Type.
+ setoid_rewrite in_seq in Hwt.
+ subst bounds.
+ pose proof H as H'; apply fold_andb_map_length in H'.
+ revert dependent bounds'; intro bounds'.
+ revert dependent f; intro f.
+ rewrite <- (List.rev_involutive bounds'), <- (List.rev_involutive f);
+ generalize (List.rev bounds') (List.rev f); clear bounds' f; intros bounds f; revert bounds f.
+ induction n' as [|n IHn], bounds as [|b bounds], f as [|f fs]; intros;
+ cbn [length rev map] in *; distr_length.
+ { rewrite !map_app in *; cbn [map] in *.
+ erewrite !Positional.eval_snoc by (distr_length; eauto).
+ cbv [list_Z_bounded_by] in *.
+ specialize_by (intros; auto with omega).
+ specialize (Hwt n); specialize_by omega.
+ repeat first [ progress Bool.split_andb
+ | rewrite Nat.add_1_r in *
+ | rewrite fold_andb_map_snoc in *
+ | rewrite Nat.succ_inj_wd in *
+ | progress Z.ltb_to_lt
+ | progress cbn [In seq] in *
+ | match goal with
+ | [ H : length _ = ?v |- _ ] => rewrite H in *
+ | [ H : ?v = length _ |- _ ] => rewrite <- H in *
+ end ].
+ split; apply Z.add_le_mono; try apply IHn; auto; distr_length; nia. }
+ Qed.
+End list_Z_bounded.
+
+Ltac pose_proof_length_list_Z_bounded_by :=
+ repeat match goal with
+ | [ H : list_Z_bounded_by _ _ |- _ ] => unique pose proof (length_list_Z_bounded_by _ _ H)
+ end.
+
+Module Primitives.
+ Definition mulx_correct s
+ (mulx : Z -> Z -> Z * Z)
+ := forall x y,
+ is_bounded_by0 r[0~>2^s-1] x = true
+ -> is_bounded_by0 r[0~>2^s-1] y = true
+ -> mulx x y = ((x * y) mod 2^s, (x * y) / 2^s)
+ /\ is_bounded_by2 (r[0~>2^s-1], r[0~>2^s-1]) (mulx x y) = true.
+
+ Definition addcarryx_correct s
+ (addcarryx : Z -> Z -> Z -> Z * Z)
+ := forall c x y,
+ is_bounded_by0 r[0~>1] c = true
+ -> is_bounded_by0 r[0~>2^s-1] x = true
+ -> is_bounded_by0 r[0~>2^s-1] y = true
+ -> addcarryx c x y = ((c + x + y) mod 2^s, (c + x + y) / 2^s)
+ /\ is_bounded_by2 (r[0~>2^s-1], r[0~>1]) (addcarryx c x y) = true.
+
+ Definition subborrowx_correct s
+ (subborrowx : Z -> Z -> Z -> Z * Z)
+ := forall b x y,
+ is_bounded_by0 r[0~>1] b = true
+ -> is_bounded_by0 r[0~>2^s-1] x = true
+ -> is_bounded_by0 r[0~>2^s-1] y = true
+ -> subborrowx b x y = ((-b + x + -y) mod 2^s, -((-b + x + -y) / 2^s))
+ /\ is_bounded_by2 (r[0~>2^s-1], r[0~>1]) (subborrowx b x y) = true.
+
+ Definition cmovznz_correct s
+ (cmovznz : Z -> Z -> Z -> Z)
+ := forall cond z nz,
+ is_bounded_by0 r[0~>1] cond = true
+ -> is_bounded_by0 r[0~>2^s-1] z = true
+ -> is_bounded_by0 r[0~>2^s-1] nz = true
+ -> cmovznz cond z nz = (if Decidable.dec (cond = 0) then z else nz)
+ /\ is_bounded_by0 r[0~>2^s-1] (cmovznz cond z nz) = true.
+End Primitives.
+
+Module selectznz.
+ Section __.
+ Context (wt : nat -> Z)
+ (n : nat)
+ (saturated_bounds : list (option zrange))
+ (length_saturated_bounds : length saturated_bounds = n).
+ Local Notation eval := (Positional.eval wt n).
+
+ Definition selectznz_correct
+ (selectznz : Z -> list Z -> list Z -> list Z)
+ := forall cond x y,
+ is_bounded_by0 r[0~>1] cond = true
+ -> list_Z_bounded_by saturated_bounds x
+ -> list_Z_bounded_by saturated_bounds y
+ -> eval (selectznz cond x y) = (if Decidable.dec (cond = 0) then eval x else eval y)
+ /\ list_Z_bounded_by saturated_bounds (selectznz cond x y).
+ End __.
+End selectznz.
+
+Module Solinas.
+ (** re-export [selectznz_correct] and the primitives. We
+ semi-arbitrarily choose to allow [Solinas.selectznz_correct] to
+ exist, but have the full name of the primitive operations start
+ with [Primitives.] *)
+ Export Primitives.
+ Include selectznz.
+
+ Section __.
+ Context (wt : nat -> Z)
+ (n : nat)
+ (n_bytes : nat)
+ (m : Z)
+ (s : Z) (* only for prime_bytes *)
+ (tight_bounds : list (option zrange))
+ (length_tight_bounds : length tight_bounds = n)
+ (loose_bounds : list (option zrange))
+ (length_loose_bounds : length loose_bounds = n)
+ (saturated_bounds : list (option zrange))
+ (length_saturated_bounds : length saturated_bounds = n)
+ (m_pos : 0 < m).
+ Local Notation eval := (Positional.eval wt n).
+ Local Notation bytes_eval := (Positional.eval (weight 8 1) n_bytes).
+
+ Let prime_bytes_upperbound_list : list Z
+ := Positional.encode_no_reduce (weight 8 1) n_bytes (s-1).
+ Let prime_bytes_bounds : list (option zrange)
+ := List.map (fun v => Some r[0 ~> v]%zrange) prime_bytes_upperbound_list.
+ Let prime_bound : zrange
+ := r[0~>(m - 1)]%zrange.
+
+ Definition from_bytes_correct
+ (from_bytes : list Z -> list Z)
+ := forall x,
+ list_Z_bounded_by prime_bytes_bounds x
+ -> eval (from_bytes x) mod m = bytes_eval x mod m
+ /\ list_Z_bounded_by tight_bounds (from_bytes x).
+
+ Definition to_bytes_correct
+ (to_bytes : list Z -> list Z)
+ := forall x,
+ list_Z_bounded_by tight_bounds x
+ -> to_bytes x = Partition.partition (weight 8 1) n_bytes (eval x mod m).
+
+ Definition carry_mul_correct
+ (carry_mul : list Z -> list Z -> list Z)
+ := forall x y,
+ list_Z_bounded_by loose_bounds x
+ -> list_Z_bounded_by loose_bounds y
+ -> eval (carry_mul x y) mod m = (Z.mul (eval x) (eval y)) mod m
+ /\ list_Z_bounded_by tight_bounds (carry_mul x y).
+
+ Definition carry_square_correct
+ (carry_square : list Z -> list Z)
+ := forall x,
+ list_Z_bounded_by loose_bounds x
+ -> eval (carry_square x) mod m = (eval x * eval x) mod m
+ /\ list_Z_bounded_by tight_bounds (carry_square x).
+
+ Definition carry_scmul_const_correct
+ (a : Z)
+ (carry_scmul_const : list Z -> list Z)
+ := forall x,
+ list_Z_bounded_by loose_bounds x
+ -> eval (carry_scmul_const x) mod m = (a * eval x) mod m
+ /\ list_Z_bounded_by tight_bounds (carry_scmul_const x).
+
+ Definition add_correct
+ (add : list Z -> list Z -> list Z)
+ := forall x y,
+ list_Z_bounded_by tight_bounds x
+ -> list_Z_bounded_by tight_bounds y
+ -> eval (add x y) mod m = (Z.add (eval x) (eval y)) mod m
+ /\ list_Z_bounded_by loose_bounds (add x y).
+
+ Definition sub_correct
+ (sub : list Z -> list Z -> list Z)
+ := forall x y,
+ list_Z_bounded_by tight_bounds x
+ -> list_Z_bounded_by tight_bounds y
+ -> eval (sub x y) mod m = (Z.sub (eval x) (eval y)) mod m
+ /\ list_Z_bounded_by loose_bounds (sub x y).
+
+ Definition opp_correct
+ (opp : list Z -> list Z)
+ := forall x,
+ list_Z_bounded_by tight_bounds x
+ -> eval (opp x) mod m = (Z.opp (eval x)) mod m
+ /\ list_Z_bounded_by loose_bounds (opp x).
+
+ Definition carry_correct
+ (carry : list Z -> list Z)
+ := forall x,
+ list_Z_bounded_by loose_bounds x
+ -> eval (carry x) mod m = (eval x) mod m
+ /\ list_Z_bounded_by tight_bounds (carry x).
+
+ Definition zero_correct
+ (zero : list Z)
+ := eval zero mod m = 0
+ /\ list_Z_bounded_by tight_bounds zero.
+
+ Definition one_correct
+ (one : list Z)
+ := eval one mod m = 1 mod m
+ /\ list_Z_bounded_by tight_bounds one.
+
+ Definition encode_correct
+ (encode : Z -> list Z)
+ := forall x,
+ is_bounded_by0 prime_bound x = true
+ -> eval (encode x) mod m = x mod m
+ /\ list_Z_bounded_by tight_bounds (encode x).
+
+ Section ring.
+ Context carry_mul (Hcarry_mul : carry_mul_correct carry_mul)
+ add (Hadd : add_correct add)
+ sub (Hsub : sub_correct sub)
+ opp (Hopp : opp_correct opp)
+ carry (Hcarry : carry_correct carry)
+ encode (Hencode : encode_correct encode)
+ zero (Hzero : zero_correct zero)
+ one (Hone : one_correct one)
+ (Hrelax : forall x, list_Z_bounded_by tight_bounds x -> list_Z_bounded_by loose_bounds x).
+
+ Let m' := Z.to_pos m.
+
+ Local Notation T := (list Z) (only parsing).
+ Local Notation encoded_ok ls
+ := (is_bounded_by tight_bounds ls = true) (only parsing).
+ Local Notation encoded_okf := (fun ls => encoded_ok ls) (only parsing).
+
+ Definition Fdecode (v : T) : F m'
+ := F.of_Z m' (eval v).
+ Definition T_eq (x y : T)
+ := Fdecode x = Fdecode y.
+
+ Definition encodedT := sig encoded_okf.
+
+ Definition ring_mul (x y : T) : T := carry_mul x y.
+ Definition ring_add (x y : T) : T := carry (add x y).
+ Definition ring_sub (x y : T) : T := carry (sub x y).
+ Definition ring_opp (x : T) : T := carry (opp x).
+ Definition ring_encode (x : F m') : T := encode (F.to_Z x).
+
+ Definition GoodT : Prop
+ := @subsetoid_ring
+ (list Z) encoded_okf T_eq
+ zero one ring_opp ring_add ring_sub ring_mul
+ /\ @is_subsetoid_homomorphism
+ (F m') (fun _ => True) eq 1%F F.add F.mul
+ (list Z) encoded_okf T_eq one ring_add ring_mul ring_encode
+ /\ @is_subsetoid_homomorphism
+ (list Z) encoded_okf T_eq one ring_add ring_mul
+ (F m') (fun _ => True) eq 1%F F.add F.mul
+ Fdecode.
+
+ Hint Rewrite ->@F.to_Z_add : push_FtoZ.
+ Hint Rewrite ->@F.to_Z_mul : push_FtoZ.
+ Hint Rewrite ->@F.to_Z_opp : push_FtoZ.
+ Hint Rewrite ->@F.to_Z_of_Z : push_FtoZ.
+
+ Lemma Fm_bounded_alt (x : F m')
+ : is_bounded_by0 prime_bound (F.to_Z x) = true.
+ Proof using m_pos.
+ clear -m_pos.
+ destruct x as [x H]; cbn [F.to_Z proj1_sig].
+ pose proof (Z.mod_pos_bound x (Z.pos m')).
+ subst m'; rewrite Z2Pos.id in * by lia.
+ cbv [prime_bound lower upper].
+ rewrite Bool.andb_true_iff; split; Z.ltb_to_lt; lia.
+ Qed.
+
+ Lemma Good : GoodT.
+ Proof.
+ split_and; simpl in *.
+ repeat match goal with
+ | [ H : context[andb _ true] |- _ ] => setoid_rewrite andb_true_r in H
+ end.
+ all: cbv [carry_mul_correct add_correct sub_correct opp_correct carry_correct encode_correct zero_correct one_correct] in *; split_and.
+ eapply subsetoid_ring_by_ring_isomorphism;
+ cbv [ring_opp ring_add ring_sub ring_mul ring_encode F.sub list_Z_bounded_by Fdecode m' F.one] in *; auto.
+ all: repeat first [ progress intros
+ | reflexivity
+ | progress autorewrite with push_FtoZ
+ | rewrite Z2Pos.id
+ | apply Fm_bounded_alt
+ | match goal with
+ | [ |- _ = _ :> F _ ] => apply F.eq_to_Z_iff
+ | [ |- _ mod _ = F.to_Z ?x ]
+ => etransitivity; [ | apply (F.mod_to_Z x) ]
+ | [ H : _ |- _ ] => apply H; clear H
+ | [ H : context[eval (?f _) mod ?m = _] |- context[eval (?f _) mod ?m] ]
+ => rewrite H
+ | [ H : context[eval (?f _ _) mod ?m = _] |- context[eval (?f _ _) mod ?m] ]
+ => rewrite H
+ end
+ | progress (push_Zmod; pull_Zmod); try (f_equal; lia) ].
+ Qed.
+ End ring.
+ End __.
+End Solinas.
+
+Module SaturatedSolinas.
+ Section __.
+ Context (wt : nat -> Z)
+ (n : nat)
+ (m : Z)
+ (saturated_bounds : list (option zrange))
+ (length_saturated_bounds : length saturated_bounds = n).
+ Local Notation eval := (Positional.eval wt n).
+
+ Definition mul_correct
+ (mul : list Z -> list Z -> list Z * Z)
+ := forall x y,
+ list_Z_bounded_by saturated_bounds x
+ -> list_Z_bounded_by saturated_bounds y
+ -> (eval (fst (mul x y)) + wt n * snd (mul x y)) mod m
+ = (eval x * eval y) mod m
+ /\ ((let '(v, c) := mul x y in
+ (is_bounded_by saturated_bounds v)
+ && true(*Should be: is_bounded_by0 r[0~>0] c, but bounds analysis is not good enough*))
+ = true).
+ End __.
+End SaturatedSolinas.
+
+Module WordByWordMontgomery.
+ Import Arithmetic.WordByWordMontgomery.
+ Local Coercion Z.of_nat : nat >-> Z.
+ Section __.
+ Context (bitwidth : Z)
+ (n : nat)
+ (n_bytes : nat)
+ (m r' : Z)
+ (s : Z) (* only for prime_bytes *)
+ (bounds : list (option zrange))
+ (length_bounds : length bounds = n)
+ (valid : list Z -> Prop)
+ (bytes_valid : list Z -> Prop)
+ (m_pos : 0 < m)
+ (from_montgomery : list Z -> list Z)
+ (* saturated_bounds is only for selectznz *)
+ (saturated_bounds : list (option zrange))
+ (length_saturated_bounds : length saturated_bounds = n).
+ Local Notation eval := (@WordByWordMontgomery.eval bitwidth n).
+ Local Notation bytes_eval := (Positional.eval (weight 8 1) n_bytes).
+ Let prime_bound : zrange
+ := r[0~>(m - 1)]%zrange.
+
+ Definition from_montgomery_correct
+ := forall v,
+ valid v
+ -> eval (from_montgomery v) mod m = (eval v * r'^n) mod m
+ /\ valid (from_montgomery v).
+
+ Definition mul_correct
+ (mul : list Z -> list Z -> list Z)
+ := forall a b,
+ valid a
+ -> valid b
+ -> eval (from_montgomery (mul a b)) mod m = (Z.mul (eval (from_montgomery a)) (eval (from_montgomery b))) mod m
+ /\ valid (mul a b).
+
+ Definition add_correct
+ (add : list Z -> list Z -> list Z)
+ := forall a b,
+ valid a
+ -> valid b
+ -> eval (from_montgomery (add a b)) mod m = (Z.add (eval (from_montgomery a)) (eval (from_montgomery b))) mod m
+ /\ valid (add a b).
+
+ Definition sub_correct
+ (sub : list Z -> list Z -> list Z)
+ := forall a b,
+ valid a
+ -> valid b
+ -> eval (from_montgomery (sub a b)) mod m = (Z.sub (eval (from_montgomery a)) (eval (from_montgomery b))) mod m
+ /\ valid (sub a b).
+
+ Definition opp_correct
+ (opp : list Z -> list Z)
+ := forall a,
+ valid a
+ -> eval (from_montgomery (opp a)) mod m = (Z.opp (eval (from_montgomery a))) mod m
+ /\ valid (opp a).
+
+ Definition square_correct
+ (square : list Z -> list Z)
+ := forall a,
+ valid a
+ -> eval (from_montgomery (square a)) mod m = (eval (from_montgomery a) * eval (from_montgomery a)) mod m
+ /\ valid (square a).
+
+ Definition zero_correct
+ (zero : list Z)
+ := eval (from_montgomery zero) mod m = 0
+ /\ valid zero.
+
+ Definition one_correct
+ (one : list Z)
+ := eval (from_montgomery one) mod m = 1 mod m
+ /\ valid one.
+
+ Definition encode_correct
+ (encode : Z -> list Z)
+ := forall x,
+ is_bounded_by0 prime_bound x = true
+ -> eval (from_montgomery (encode x)) mod m = x mod m
+ /\ valid (encode x).
+
+ Definition nonzero_correct
+ (nonzero : list Z -> Z)
+ := forall x,
+ valid x
+ -> (nonzero x = 0) <-> (eval (from_montgomery x) mod m = 0).
+
+ Definition to_bytes_correct
+ (to_bytes : list Z -> list Z)
+ := forall x,
+ valid x
+ -> to_bytes x = Partition.partition (weight 8 1) n_bytes (eval x mod m).
+
+ Definition from_bytes_correct
+ (from_bytes : list Z -> list Z)
+ := forall x,
+ bytes_valid x
+ -> eval (from_bytes x) mod m = bytes_eval x mod m
+ /\ valid (from_bytes x).
+
+ Definition selectznz_correct
+ (selectznz : Z -> list Z -> list Z -> list Z)
+ : Prop
+ := selectznz.selectznz_correct
+ (UniformWeight.uweight bitwidth)
+ n
+ saturated_bounds
+ selectznz.
+
+ Section ring.
+ Context mul (Hmul : mul_correct mul)
+ add (Hadd : add_correct add)
+ sub (Hsub : sub_correct sub)
+ opp (Hopp : opp_correct opp)
+ encode (Hencode : encode_correct encode)
+ zero (Hzero : zero_correct zero)
+ one (Hone : one_correct one).
+
+ Let m' := Z.to_pos m.
+
+ Local Notation T := (list Z) (only parsing).
+ Local Notation encoded_ok ls
+ := (valid ls) (only parsing).
+ Local Notation encoded_okf := (fun ls => encoded_ok ls) (only parsing).
+
+ Definition Fdecode (v : T) : F m'
+ := F.of_Z m' (eval (from_montgomery v)).
+ Definition T_eq (x y : T)
+ := Fdecode x = Fdecode y.
+
+ Definition encodedT := sig encoded_okf.
+
+ Definition ring_mul (x y : T) : T := mul x y.
+ Definition ring_add (x y : T) : T := add x y.
+ Definition ring_sub (x y : T) : T := sub x y.
+ Definition ring_opp (x : T) : T := opp x.
+ Definition ring_encode (x : F m') : T := encode (F.to_Z x).
+
+ Definition GoodT : Prop
+ := @subsetoid_ring
+ (list Z) encoded_okf T_eq
+ zero one ring_opp ring_add ring_sub ring_mul
+ /\ @is_subsetoid_homomorphism
+ (F m') (fun _ => True) eq 1%F F.add F.mul
+ (list Z) encoded_okf T_eq one ring_add ring_mul ring_encode
+ /\ @is_subsetoid_homomorphism
+ (list Z) encoded_okf T_eq one ring_add ring_mul
+ (F m') (fun _ => True) eq 1%F F.add F.mul
+ Fdecode.
+
+ Hint Rewrite ->@F.to_Z_add : push_FtoZ.
+ Hint Rewrite ->@F.to_Z_mul : push_FtoZ.
+ Hint Rewrite ->@F.to_Z_opp : push_FtoZ.
+ Hint Rewrite ->@F.to_Z_of_Z : push_FtoZ.
+
+ Lemma Fm_bounded_alt (x : F m')
+ : is_bounded_by0 prime_bound (F.to_Z x) = true.
+ Proof using m_pos.
+ clear -m_pos.
+ destruct x as [x H]; cbn [F.to_Z proj1_sig].
+ pose proof (Z.mod_pos_bound x (Z.pos m')).
+ subst m'; rewrite Z2Pos.id in * by lia.
+ cbv [prime_bound lower upper].
+ rewrite Bool.andb_true_iff; split; Z.ltb_to_lt; lia.
+ Qed.
+
+ Lemma Good : GoodT.
+ Proof.
+ split_and; simpl in *.
+ repeat match goal with
+ | [ H : context[andb _ true] |- _ ] => setoid_rewrite andb_true_r in H
+ end.
+ all: cbv [mul_correct add_correct sub_correct opp_correct encode_correct zero_correct one_correct] in *; split_and.
+ eapply subsetoid_ring_by_ring_isomorphism;
+ cbv [ring_opp ring_add ring_sub ring_mul ring_encode F.sub list_Z_bounded_by Fdecode m' F.one] in *; auto.
+ all: repeat first [ progress intros
+ | reflexivity
+ | progress autorewrite with push_FtoZ
+ | rewrite Z2Pos.id
+ | apply Fm_bounded_alt
+ | match goal with
+ | [ |- _ = _ :> F _ ] => apply F.eq_to_Z_iff
+ | [ |- _ mod _ = F.to_Z ?x ]
+ => etransitivity; [ | apply (F.mod_to_Z x) ]
+ | [ H : _ |- _ ] => apply H; clear H
+ | [ H : context[eval (?f _) mod ?m = _] |- context[eval (?f _) mod ?m] ]
+ => rewrite H
+ | [ H : context[eval (?f _ _) mod ?m = _] |- context[eval (?f _ _) mod ?m] ]
+ => rewrite H
+ end
+ | progress (push_Zmod; pull_Zmod); try (f_equal; lia) ].
+ Qed.
+ End ring.
+ End __.
+End WordByWordMontgomery.
+
+(*
+Module BarrettReduction.
+ Section __.
+ (** TODO(jadep, from jgross): Remove any of these not needed to state the spec *)
+ Context (k M muLow : Z)
+ (n nout : nat)
+ (k_bound : 2 <= k)
+ (M_pos : 0 < M)
+ (muLow_eq : muLow + 2 ^ k = 2 ^ (2 * k) / M)
+ (muLow_bounds : 0 <= muLow < 2 ^ k)
+ (M_bound1 : 2 ^ (k - 1) < M < 2 ^ k)
+ (M_bound2 : 2 * (2 ^ (2 * k) mod M) <= 2 ^ (k + 1) - (muLow + 2 ^ k))
+ (Hn_nz : n <> 0%nat)
+ (n_le_k : Z.of_nat n <= k)
+ (Hnout : nout = 2%nat).
+
+ Definition barrett_red_correct
+ (barrett_red : Z -> Z -> Z)
+ := forall xLow xHigh,
+ 0 <= xLow < 2 ^ k
+ -> 0 <= xHigh < M
+ -> barrett_red xLow xHigh = (xLow + 2 ^ k * xHigh) mod M.
+ End __.
+End BarrettReduction.
+
+Module MontgomeryReduction.
+ Section __.
+ Context (N R N' R' : Z).
+
+ Definition montred_correct
+ Context (T R R' N
+ Lemma montred'_correct lo_hi T (HT_range: 0 <= T < R * N)
+ (Hlo: fst lo_hi = T mod R) (Hhi: snd lo_hi = T / R): montred' lo_hi = (T * R') mod N.
+ Proof.
+ erewrite montred'_eq by eauto.
+ apply Z.equiv_modulo_mod_small; auto using reduce_via_partial_correct.
+ replace 0 with (Z.min 0 (R-N)) by (apply Z.min_l; omega).
+ apply reduce_via_partial_in_range; omega.
+ Qed.
+
+ End MontgomeryReduction.
+*)
diff --git a/src/Experiments/NewPipeline/PushButtonSynthesis.v b/src/Experiments/NewPipeline/PushButtonSynthesis.v
new file mode 100644
index 000000000..ab94ce267
--- /dev/null
+++ b/src/Experiments/NewPipeline/PushButtonSynthesis.v
@@ -0,0 +1,3170 @@
+(** * Push-Button Synthesis of Saturated Solinas *)
+Require Import Coq.Strings.String.
+Require Import Coq.micromega.Lia.
+Require Import Coq.ZArith.ZArith.
+Require Import Coq.MSets.MSetPositive.
+Require Import Coq.Lists.List.
+Require Import Coq.QArith.QArith_base Coq.QArith.Qround.
+Require Import Coq.Program.Tactics. (* For WBW Montgomery proofs *)
+Require Import Coq.derive.Derive.
+Require Import Crypto.Util.ErrorT.
+Require Import Crypto.Util.ListUtil.
+Require Import Crypto.Util.ListUtil.FoldBool.
+Require Import Crypto.Util.Strings.Decimal.
+Require Import Crypto.Util.Strings.Equality.
+Require Import Crypto.Util.ZRange.
+Require Import Crypto.Util.ZUtil.Definitions.
+Require Import Crypto.Util.ZUtil.Zselect.
+Require Import Crypto.Util.ZUtil.Tactics.LtbToLt.
+Require Import Crypto.Util.ZUtil.ModInv. (* Only needed for WBW Montgomery *)
+Require Import Crypto.Util.ZUtil.Modulo. (* Only needed for WBW Montgomery proofs *)
+Require Import Crypto.Util.ZUtil.Le. (* Only needed for WBW Montgomery proofs *)
+Require Import Crypto.Util.Prod. (* For WBW Montgomery proofs *)
+Require Import Crypto.Util.ZUtil.Tactics.PullPush.Modulo. (* For WBW montgomery proofs *)
+Require Import Crypto.Util.ZUtil.Tactics.RewriteModSmall. (* For WBW montgomery proofs *)
+Require Import Crypto.Util.ZUtil.Div. (* For WBW Montgomery proofs *)
+Require Import Crypto.Util.ZUtil.Tactics.DivModToQuotRem. (* For WBW Montgomery proofs *)
+Require Import Crypto.Util.ZUtil.Ones. (* For WBW montgomery proofs *)
+Require Import Crypto.Util.ZUtil.Shift. (* For WBW montgomery proofs *)
+Require Import Crypto.Util.LetIn. (* For Barrett *)
+Require Import Crypto.Util.ZUtil.Tactics.ZeroBounds. (* For Barrett *)
+Require Import Crypto.Arithmetic.BarrettReduction.Generalized. (* For Barrett *)
+Require Import Crypto.Util.Tactics.UniquePose. (* For Barrett *)
+Require Import Crypto.Util.ZUtil.Rshi. (* For Barrett *)
+Require Import Crypto.Algebra.Ring. (* For Barrett *)
+Require Import Crypto.Util.ZUtil.AddModulo. (* For Barrett *)
+Require Import Crypto.Util.ZUtil.Zselect. (* For Barrett *)
+Require Import Crypto.Util.ZUtil.CC. (* For Barrett *)
+Require Import Crypto.Util.ZUtil.EquivModulo. (* For MontgomeryReduction *)
+Require Import Crypto.Arithmetic.MontgomeryReduction.Definition. (* For MontgomeryReduction *)
+Require Import Crypto.Arithmetic.MontgomeryReduction.Proofs. (* For MontgomeryReduction *)
+Require Import Crypto.Util.Tactics.HasBody.
+Require Import Crypto.Util.Tactics.Head.
+Require Import Crypto.Util.Tactics.SpecializeBy.
+Require Import Crypto.Experiments.NewPipeline.LanguageWf.
+Require Import Crypto.Experiments.NewPipeline.Language.
+Require Import Crypto.Experiments.NewPipeline.AbstractInterpretation.
+Require Import Crypto.Experiments.NewPipeline.CStringification.
+Require Import Crypto.Experiments.NewPipeline.Arithmetic.
+Require Import Crypto.Experiments.NewPipeline.BoundsPipeline.
+Require Import Crypto.Experiments.NewPipeline.COperationSpecifications.
+Require Import Crypto.Experiments.NewPipeline.PushButtonSynthesis.ReificationCache.
+Import ListNotations.
+Local Open Scope Z_scope. Local Open Scope list_scope. Local Open Scope bool_scope.
+
+Import
+ LanguageWf.Compilers
+ Language.Compilers
+ AbstractInterpretation.Compilers
+ CStringification.Compilers.
+Import Compilers.defaults.
+
+Import COperationSpecifications.Primitives.
+Import COperationSpecifications.Solinas.
+
+Import Associational Positional.
+
+Local Coercion Z.of_nat : nat >-> Z.
+Local Coercion QArith_base.inject_Z : Z >-> Q.
+Local Coercion Z.pos : positive >-> Z.
+
+Local Set Keyed Unification. (* needed for making [autorewrite] fast, c.f. COQBUG(https://github.com/coq/coq/issues/9283) *)
+
+Module Export Primitives.
+ (**
+<<
+#!/usr/bin/env python
+
+indent = ' '
+
+print((indent + '(' + r'''**
+<<
+%s
+>>
+*''' + ')\n') % open(__file__, 'r').read())
+
+for (op, opmod) in (('id', '(@id (list Z))'), ('selectznz', 'Positional.select'), ('mulx', 'mulx'), ('addcarryx', 'addcarryx'), ('subborrowx', 'subborrowx'), ('cmovznz', 'cmovznz')):
+ print((r'''%sDerive reified_%s_gen
+ SuchThat (is_reification_of reified_%s_gen %s)
+ As reified_%s_gen_correct.
+Proof. Time cache_reify (). Time Qed.
+Hint Extern 1 (_ = _) => apply_cached_reification %s (proj1 reified_%s_gen_correct) : reify_cache_gen.
+Hint Immediate (proj2 reified_%s_gen_correct) : wf_gen_cache.
+Hint Rewrite (proj1 reified_%s_gen_correct) : interp_gen_cache.
+Local Opaque reified_%s_gen. (* needed for making [autorewrite] not take a very long time *)''' % (indent, op, op, opmod, op, opmod, op, op, op, op)).replace('\n', '\n%s' % indent) + '\n')
+
+>>
+*)
+
+ Derive reified_id_gen
+ SuchThat (is_reification_of reified_id_gen (@id (list Z)))
+ As reified_id_gen_correct.
+ Proof. Time cache_reify (). Time Qed.
+ Hint Extern 1 (_ = _) => apply_cached_reification (@id (list Z)) (proj1 reified_id_gen_correct) : reify_cache_gen.
+ Hint Immediate (proj2 reified_id_gen_correct) : wf_gen_cache.
+ Hint Rewrite (proj1 reified_id_gen_correct) : interp_gen_cache.
+ Local Opaque reified_id_gen. (* needed for making [autorewrite] not take a very long time *)
+
+ Derive reified_selectznz_gen
+ SuchThat (is_reification_of reified_selectznz_gen Positional.select)
+ As reified_selectznz_gen_correct.
+ Proof. Time cache_reify (). Time Qed.
+ Hint Extern 1 (_ = _) => apply_cached_reification Positional.select (proj1 reified_selectznz_gen_correct) : reify_cache_gen.
+ Hint Immediate (proj2 reified_selectznz_gen_correct) : wf_gen_cache.
+ Hint Rewrite (proj1 reified_selectznz_gen_correct) : interp_gen_cache.
+ Local Opaque reified_selectznz_gen. (* needed for making [autorewrite] not take a very long time *)
+
+ Derive reified_mulx_gen
+ SuchThat (is_reification_of reified_mulx_gen mulx)
+ As reified_mulx_gen_correct.
+ Proof. Time cache_reify (). Time Qed.
+ Hint Extern 1 (_ = _) => apply_cached_reification mulx (proj1 reified_mulx_gen_correct) : reify_cache_gen.
+ Hint Immediate (proj2 reified_mulx_gen_correct) : wf_gen_cache.
+ Hint Rewrite (proj1 reified_mulx_gen_correct) : interp_gen_cache.
+ Local Opaque reified_mulx_gen. (* needed for making [autorewrite] not take a very long time *)
+
+ Derive reified_addcarryx_gen
+ SuchThat (is_reification_of reified_addcarryx_gen addcarryx)
+ As reified_addcarryx_gen_correct.
+ Proof. Time cache_reify (). Time Qed.
+ Hint Extern 1 (_ = _) => apply_cached_reification addcarryx (proj1 reified_addcarryx_gen_correct) : reify_cache_gen.
+ Hint Immediate (proj2 reified_addcarryx_gen_correct) : wf_gen_cache.
+ Hint Rewrite (proj1 reified_addcarryx_gen_correct) : interp_gen_cache.
+ Local Opaque reified_addcarryx_gen. (* needed for making [autorewrite] not take a very long time *)
+
+ Derive reified_subborrowx_gen
+ SuchThat (is_reification_of reified_subborrowx_gen subborrowx)
+ As reified_subborrowx_gen_correct.
+ Proof. Time cache_reify (). Time Qed.
+ Hint Extern 1 (_ = _) => apply_cached_reification subborrowx (proj1 reified_subborrowx_gen_correct) : reify_cache_gen.
+ Hint Immediate (proj2 reified_subborrowx_gen_correct) : wf_gen_cache.
+ Hint Rewrite (proj1 reified_subborrowx_gen_correct) : interp_gen_cache.
+ Local Opaque reified_subborrowx_gen. (* needed for making [autorewrite] not take a very long time *)
+
+ Derive reified_cmovznz_gen
+ SuchThat (is_reification_of reified_cmovznz_gen cmovznz)
+ As reified_cmovznz_gen_correct.
+ Proof. Time cache_reify (). Time Qed.
+ Hint Extern 1 (_ = _) => apply_cached_reification cmovznz (proj1 reified_cmovznz_gen_correct) : reify_cache_gen.
+ Hint Immediate (proj2 reified_cmovznz_gen_correct) : wf_gen_cache.
+ Hint Rewrite (proj1 reified_cmovznz_gen_correct) : interp_gen_cache.
+ Local Opaque reified_cmovznz_gen. (* needed for making [autorewrite] not take a very long time *)
+
+ (* needed for making [autorewrite] with [Set Keyed Unification] fast *)
+ Local Opaque expr.Interp.
+
+ Local Notation arg_bounds_of_pipeline result
+ := ((fun a b c d e arg_bounds out_bounds result' (H : @Pipeline.BoundsPipeline a b c d e arg_bounds out_bounds = result') => arg_bounds) _ _ _ _ _ _ _ result eq_refl)
+ (only parsing).
+ Local Notation out_bounds_of_pipeline result
+ := ((fun a b c d e arg_bounds out_bounds result' (H : @Pipeline.BoundsPipeline a b c d e arg_bounds out_bounds = result') => out_bounds) _ _ _ _ _ _ _ result eq_refl)
+ (only parsing).
+
+ Notation FromPipelineToString prefix name result
+ := (((prefix ++ name)%string,
+ match result with
+ | Success E'
+ => let E := ToString.C.ToFunctionLines
+ true true (* static *) prefix (prefix ++ name)%string [] E' None
+ (arg_bounds_of_pipeline result)
+ (out_bounds_of_pipeline result) in
+ match E with
+ | inl E => Success E
+ | inr err => Error (Pipeline.Stringification_failed E' err)
+ end
+ | Error err => Error err
+ end)).
+
+ Ltac prove_correctness use_curve_good :=
+ let Hres := match goal with H : _ = Success _ |- _ => H end in
+ let H := fresh in
+ pose proof use_curve_good as H;
+ (* I want to just use [clear -H Hres], but then I can't use any lemmas in the section because of COQBUG(https://github.com/coq/coq/issues/8153) *)
+ repeat match goal with
+ | [ H' : _ |- _ ]
+ => tryif first [ has_body H' | constr_eq H' H | constr_eq H' Hres ]
+ then fail
+ else clear H'
+ end;
+ cbv zeta in *;
+ destruct_head'_and;
+ let f := match type of Hres with ?f = _ => head f end in
+ try cbv [f] in *;
+ hnf;
+ PipelineTactics.do_unfolding;
+ try (let m := match goal with m := _ - Associational.eval _ |- _ => m end in
+ cbv [m] in * );
+ intros;
+ try split; PipelineTactics.use_compilers_correctness Hres;
+ [ pose_proof_length_list_Z_bounded_by;
+ repeat first [ reflexivity
+ | progress autorewrite with interp interp_gen_cache push_eval
+ | progress autounfold with push_eval
+ | progress autorewrite with distr_length in * ]
+ | .. ].
+
+ Section __.
+ Context (n : nat)
+ (machine_wordsize : Z).
+
+ Definition saturated_bounds_list : list (option zrange)
+ := List.repeat (Some r[0 ~> 2^machine_wordsize-1]%zrange) n.
+ Definition saturated_bounds : ZRange.type.option.interp (base.type.list (base.type.Z))
+ := Some saturated_bounds_list.
+
+ Definition possible_values_of_machine_wordsize
+ := [machine_wordsize; 2 * machine_wordsize]%Z.
+
+ Definition possible_values_of_machine_wordsize_with_bytes
+ := [1; 8; machine_wordsize; 2 * machine_wordsize]%Z.
+
+ Let possible_values := possible_values_of_machine_wordsize.
+ Let possible_values_with_bytes := possible_values_of_machine_wordsize_with_bytes.
+
+ Lemma length_saturated_bounds_list : List.length saturated_bounds_list = n.
+ Proof using Type. cbv [saturated_bounds_list]; now autorewrite with distr_length. Qed.
+ Local Hint Rewrite length_saturated_bounds_list : distr_length.
+
+ Definition selectznz
+ := Pipeline.BoundsPipeline
+ false (* subst01 *)
+ None (* fancy *)
+ possible_values_with_bytes
+ reified_selectznz_gen
+ (Some r[0~>1], (saturated_bounds, (saturated_bounds, tt)))%zrange
+ saturated_bounds.
+
+ Definition sselectznz (prefix : string)
+ : string * (Pipeline.ErrorT (list string * ToString.C.ident_infos))
+ := Eval cbv beta in FromPipelineToString prefix "selectznz" selectznz.
+
+ Definition mulx (s : Z)
+ := Pipeline.BoundsPipeline
+ false (* subst01 *)
+ None (* fancy *)
+ possible_values_with_bytes
+ (reified_mulx_gen
+ @ GallinaReify.Reify s)
+ (Some r[0~>2^s-1], (Some r[0~>2^s-1], tt))%zrange
+ (Some r[0~>2^s-1], Some r[0~>2^s-1])%zrange.
+
+ Definition smulx (prefix : string) (s : Z)
+ : string * (Pipeline.ErrorT (list string * ToString.C.ident_infos))
+ := Eval cbv beta in FromPipelineToString prefix ("mulx_u" ++ decimal_string_of_Z s) (mulx s).
+
+ Definition addcarryx (s : Z)
+ := Pipeline.BoundsPipeline
+ false (* subst01 *)
+ None (* fancy *)
+ possible_values_with_bytes
+ (reified_addcarryx_gen
+ @ GallinaReify.Reify s)
+ (Some r[0~>1], (Some r[0~>2^s-1], (Some r[0~>2^s-1], tt)))%zrange
+ (Some r[0~>2^s-1], Some r[0~>1])%zrange.
+
+ Definition saddcarryx (prefix : string) (s : Z)
+ : string * (Pipeline.ErrorT (list string * ToString.C.ident_infos))
+ := Eval cbv beta in FromPipelineToString prefix ("addcarryx_u" ++ decimal_string_of_Z s) (addcarryx s).
+
+ Definition subborrowx (s : Z)
+ := Pipeline.BoundsPipeline
+ false (* subst01 *)
+ None (* fancy *)
+ possible_values_with_bytes
+ (reified_subborrowx_gen
+ @ GallinaReify.Reify s)
+ (Some r[0~>1], (Some r[0~>2^s-1], (Some r[0~>2^s-1], tt)))%zrange
+ (Some r[0~>2^s-1], Some r[0~>1])%zrange.
+
+ Definition ssubborrowx (prefix : string) (s : Z)
+ : string * (Pipeline.ErrorT (list string * ToString.C.ident_infos))
+ := Eval cbv beta in FromPipelineToString prefix ("subborrowx_u" ++ decimal_string_of_Z s) (subborrowx s).
+
+ Definition cmovznz (s : Z)
+ := Pipeline.BoundsPipeline
+ false (* subst01 *)
+ None (* fancy *)
+ possible_values_with_bytes
+ (reified_cmovznz_gen
+ @ GallinaReify.Reify s)
+ (Some r[0~>1], (Some r[0~>2^s-1], (Some r[0~>2^s-1], tt)))%zrange
+ (Some r[0~>2^s-1])%zrange.
+
+ Definition scmovznz (prefix : string) (s : Z)
+ : string * (Pipeline.ErrorT (list string * ToString.C.ident_infos))
+ := Eval cbv beta in FromPipelineToString prefix ("cmovznz_u" ++ decimal_string_of_Z s) (cmovznz s).
+
+ Local Ltac solve_extra_bounds_side_conditions :=
+ cbn [lower upper fst snd] in *; Bool.split_andb; Z.ltb_to_lt; lia.
+
+ Local Hint Rewrite
+ eval_select
+ Arithmetic.mulx_correct
+ Arithmetic.addcarryx_correct
+ Arithmetic.subborrowx_correct
+ Arithmetic.cmovznz_correct
+ Z.zselect_correct
+ using solve [ auto | congruence | solve_extra_bounds_side_conditions ] : push_eval.
+
+ Strategy -1000 [mulx]. (* if we don't tell the kernel to unfold this early, then [Qed] seems to run off into the weeds *)
+ Lemma mulx_correct s' res
+ (Hres : mulx s' = Success res)
+ : mulx_correct s' (Interp res).
+ Proof using Type. prove_correctness I. Qed.
+
+ Strategy -1000 [addcarryx]. (* if we don't tell the kernel to unfold this early, then [Qed] seems to run off into the weeds *)
+ Lemma addcarryx_correct s' res
+ (Hres : addcarryx s' = Success res)
+ : addcarryx_correct s' (Interp res).
+ Proof using Type. prove_correctness I. Qed.
+
+ Strategy -1000 [subborrowx]. (* if we don't tell the kernel to unfold this early, then [Qed] seems to run off into the weeds *)
+ Lemma subborrowx_correct s' res
+ (Hres : subborrowx s' = Success res)
+ : subborrowx_correct s' (Interp res).
+ Proof using Type. prove_correctness I. Qed.
+
+ Strategy -1000 [cmovznz]. (* if we don't tell the kernel to unfold this early, then [Qed] seems to run off into the weeds *)
+ Lemma cmovznz_correct s' res
+ (Hres : cmovznz s' = Success res)
+ : cmovznz_correct s' (Interp res).
+ Proof using Type. prove_correctness I. Qed.
+
+ Lemma selectznz_correct limbwidth res
+ (Hres : selectznz = Success res)
+ : selectznz_correct (weight (Qnum limbwidth) (QDen limbwidth)) n saturated_bounds_list (Interp res).
+ Proof using Type. prove_correctness I. Qed.
+
+ Section for_stringification.
+ Context (valid_names : string)
+ (known_functions : list (string
+ * (string
+ -> string *
+ Pipeline.ErrorT (list string * ToString.C.ident_infos))))
+ (extra_special_synthesis : string ->
+ list
+ (option
+ (string *
+ Pipeline.ErrorT
+ (list string * ToString.C.ident_infos)))).
+
+ Definition aggregate_infos {A B C} (ls : list (A * ErrorT B (C * ToString.C.ident_infos))) : ToString.C.ident_infos
+ := fold_right
+ ToString.C.ident_info_union
+ ToString.C.ident_info_empty
+ (List.map
+ (fun '(_, res) => match res with
+ | Success (_, infos) => infos
+ | Error _ => ToString.C.ident_info_empty
+ end)
+ ls).
+
+ Definition extra_synthesis (function_name_prefix : string) (infos : ToString.C.ident_infos)
+ : list (string * Pipeline.ErrorT (list string)) * PositiveSet.t
+ := let ls_addcarryx := List.flat_map
+ (fun lg_split:positive => [saddcarryx function_name_prefix lg_split; ssubborrowx function_name_prefix lg_split])
+ (PositiveSet.elements (ToString.C.addcarryx_lg_splits infos)) in
+ let ls_mulx := List.map
+ (fun lg_split:positive => smulx function_name_prefix lg_split)
+ (PositiveSet.elements (ToString.C.mulx_lg_splits infos)) in
+ let ls_cmov := List.map
+ (fun bitwidth:positive => scmovznz function_name_prefix bitwidth)
+ (PositiveSet.elements (ToString.C.cmovznz_bitwidths infos)) in
+ let ls := ls_addcarryx ++ ls_mulx ++ ls_cmov in
+ let infos := aggregate_infos ls in
+ (List.map (fun '(name, res) => (name, (res <- res; Success (fst res))%error)) ls,
+ ToString.C.bitwidths_used infos).
+
+
+ Definition synthesize_of_name (function_name_prefix : string) (name : string)
+ : string * ErrorT Pipeline.ErrorMessage (list string * ToString.C.ident_infos)
+ := fold_right
+ (fun v default
+ => match v with
+ | Some res => res
+ | None => default
+ end)
+ ((name,
+ Error
+ (Pipeline.Invalid_argument
+ ("Unrecognized request to synthesize """ ++ name ++ """; valid names are " ++ valid_names ++ "."))))
+ ((map
+ (fun '(expected_name, resf) => if string_beq name expected_name then Some (resf function_name_prefix) else None)
+ known_functions)
+ ++ extra_special_synthesis name).
+
+ (** Note: If you change the name or type signature of this
+ function, you will need to update the code in CLI.v *)
+ Definition Synthesize (function_name_prefix : string) (requests : list string)
+ : list (string * Pipeline.ErrorT (list string)) * PositiveSet.t (* types used *)
+ := let ls := match requests with
+ | nil => List.map (fun '(_, sr) => sr function_name_prefix) known_functions
+ | requests => List.map (synthesize_of_name function_name_prefix) requests
+ end in
+ let infos := aggregate_infos ls in
+ let '(extra_ls, extra_bit_widths) := extra_synthesis function_name_prefix infos in
+ (extra_ls ++ List.map (fun '(name, res) => (name, (res <- res; Success (fst res))%error)) ls,
+ PositiveSet.union extra_bit_widths (ToString.C.bitwidths_used infos)).
+ End for_stringification.
+ End __.
+End Primitives.
+
+Module UnsaturatedSolinas.
+ Definition zeromod limbwidth_num limbwidth_den s c n := encodemod limbwidth_num limbwidth_den s c n 0.
+ Definition onemod limbwidth_num limbwidth_den s c n := encodemod limbwidth_num limbwidth_den s c n 1.
+ Definition primemod limbwidth_num limbwidth_den s c n := encodemod limbwidth_num limbwidth_den s c n (s - Associational.eval c).
+
+ (**
+<<
+#!/usr/bin/env python
+
+indent = ' '
+
+print((indent + '(' + r'''**
+<<
+%s
+>>
+*''' + ')\n') % open(__file__, 'r').read())
+
+for i in ('carry_mul', 'carry_square', 'carry_scmul', 'carry', 'encode', 'add', 'sub', 'opp', 'zero', 'one', 'prime'):
+ print((r'''%sDerive reified_%s_gen
+ SuchThat (is_reification_of reified_%s_gen %smod)
+ As reified_%s_gen_correct.
+Proof. Time cache_reify (). Time Qed.
+Hint Extern 1 (_ = _) => apply_cached_reification %smod (proj1 reified_%s_gen_correct) : reify_cache_gen.
+Hint Immediate (proj2 reified_%s_gen_correct) : wf_gen_cache.
+Hint Rewrite (proj1 reified_%s_gen_correct) : interp_gen_cache.
+Local Opaque reified_%s_gen. (* needed for making [autorewrite] not take a very long time *)''' % (indent, i, i, i, i, i, i, i, i, i)).replace('\n', '\n%s' % indent) + '\n')
+
+for (op, opmod) in (('to_bytes', 'freeze_to_bytesmod'), ('from_bytes', 'from_bytesmod')):
+ print((r'''%sDerive reified_%s_gen
+ SuchThat (is_reification_of reified_%s_gen %s)
+ As reified_%s_gen_correct.
+Proof. Time cache_reify (). Time Qed.
+Hint Extern 1 (_ = _) => apply_cached_reification %s (proj1 reified_%s_gen_correct) : reify_cache_gen.
+Hint Immediate (proj2 reified_%s_gen_correct) : wf_gen_cache.
+Hint Rewrite (proj1 reified_%s_gen_correct) : interp_gen_cache.
+Local Opaque reified_%s_gen. (* needed for making [autorewrite] not take a very long time *)''' % (indent, op, op, opmod, op, opmod, op, op, op, op)).replace('\n', '\n%s' % indent) + '\n')
+
+>>
+*)
+
+ Derive reified_carry_mul_gen
+ SuchThat (is_reification_of reified_carry_mul_gen carry_mulmod)
+ As reified_carry_mul_gen_correct.
+ Proof. Time cache_reify (). Time Qed.
+ Hint Extern 1 (_ = _) => apply_cached_reification carry_mulmod (proj1 reified_carry_mul_gen_correct) : reify_cache_gen.
+ Hint Immediate (proj2 reified_carry_mul_gen_correct) : wf_gen_cache.
+ Hint Rewrite (proj1 reified_carry_mul_gen_correct) : interp_gen_cache.
+ Local Opaque reified_carry_mul_gen. (* needed for making [autorewrite] not take a very long time *)
+
+ Derive reified_carry_square_gen
+ SuchThat (is_reification_of reified_carry_square_gen carry_squaremod)
+ As reified_carry_square_gen_correct.
+ Proof. Time cache_reify (). Time Qed.
+ Hint Extern 1 (_ = _) => apply_cached_reification carry_squaremod (proj1 reified_carry_square_gen_correct) : reify_cache_gen.
+ Hint Immediate (proj2 reified_carry_square_gen_correct) : wf_gen_cache.
+ Hint Rewrite (proj1 reified_carry_square_gen_correct) : interp_gen_cache.
+ Local Opaque reified_carry_square_gen. (* needed for making [autorewrite] not take a very long time *)
+
+ Derive reified_carry_scmul_gen
+ SuchThat (is_reification_of reified_carry_scmul_gen carry_scmulmod)
+ As reified_carry_scmul_gen_correct.
+ Proof. Time cache_reify (). Time Qed.
+ Hint Extern 1 (_ = _) => apply_cached_reification carry_scmulmod (proj1 reified_carry_scmul_gen_correct) : reify_cache_gen.
+ Hint Immediate (proj2 reified_carry_scmul_gen_correct) : wf_gen_cache.
+ Hint Rewrite (proj1 reified_carry_scmul_gen_correct) : interp_gen_cache.
+ Local Opaque reified_carry_scmul_gen. (* needed for making [autorewrite] not take a very long time *)
+
+ Derive reified_carry_gen
+ SuchThat (is_reification_of reified_carry_gen carrymod)
+ As reified_carry_gen_correct.
+ Proof. Time cache_reify (). Time Qed.
+ Hint Extern 1 (_ = _) => apply_cached_reification carrymod (proj1 reified_carry_gen_correct) : reify_cache_gen.
+ Hint Immediate (proj2 reified_carry_gen_correct) : wf_gen_cache.
+ Hint Rewrite (proj1 reified_carry_gen_correct) : interp_gen_cache.
+ Local Opaque reified_carry_gen. (* needed for making [autorewrite] not take a very long time *)
+
+ Derive reified_encode_gen
+ SuchThat (is_reification_of reified_encode_gen encodemod)
+ As reified_encode_gen_correct.
+ Proof. Time cache_reify (). Time Qed.
+ Hint Extern 1 (_ = _) => apply_cached_reification encodemod (proj1 reified_encode_gen_correct) : reify_cache_gen.
+ Hint Immediate (proj2 reified_encode_gen_correct) : wf_gen_cache.
+ Hint Rewrite (proj1 reified_encode_gen_correct) : interp_gen_cache.
+ Local Opaque reified_encode_gen. (* needed for making [autorewrite] not take a very long time *)
+
+ Derive reified_add_gen
+ SuchThat (is_reification_of reified_add_gen addmod)
+ As reified_add_gen_correct.
+ Proof. Time cache_reify (). Time Qed.
+ Hint Extern 1 (_ = _) => apply_cached_reification addmod (proj1 reified_add_gen_correct) : reify_cache_gen.
+ Hint Immediate (proj2 reified_add_gen_correct) : wf_gen_cache.
+ Hint Rewrite (proj1 reified_add_gen_correct) : interp_gen_cache.
+ Local Opaque reified_add_gen. (* needed for making [autorewrite] not take a very long time *)
+
+ Derive reified_sub_gen
+ SuchThat (is_reification_of reified_sub_gen submod)
+ As reified_sub_gen_correct.
+ Proof. Time cache_reify (). Time Qed.
+ Hint Extern 1 (_ = _) => apply_cached_reification submod (proj1 reified_sub_gen_correct) : reify_cache_gen.
+ Hint Immediate (proj2 reified_sub_gen_correct) : wf_gen_cache.
+ Hint Rewrite (proj1 reified_sub_gen_correct) : interp_gen_cache.
+ Local Opaque reified_sub_gen. (* needed for making [autorewrite] not take a very long time *)
+
+ Derive reified_opp_gen
+ SuchThat (is_reification_of reified_opp_gen oppmod)
+ As reified_opp_gen_correct.
+ Proof. Time cache_reify (). Time Qed.
+ Hint Extern 1 (_ = _) => apply_cached_reification oppmod (proj1 reified_opp_gen_correct) : reify_cache_gen.
+ Hint Immediate (proj2 reified_opp_gen_correct) : wf_gen_cache.
+ Hint Rewrite (proj1 reified_opp_gen_correct) : interp_gen_cache.
+ Local Opaque reified_opp_gen. (* needed for making [autorewrite] not take a very long time *)
+
+ Derive reified_zero_gen
+ SuchThat (is_reification_of reified_zero_gen zeromod)
+ As reified_zero_gen_correct.
+ Proof. Time cache_reify (). Time Qed.
+ Hint Extern 1 (_ = _) => apply_cached_reification zeromod (proj1 reified_zero_gen_correct) : reify_cache_gen.
+ Hint Immediate (proj2 reified_zero_gen_correct) : wf_gen_cache.
+ Hint Rewrite (proj1 reified_zero_gen_correct) : interp_gen_cache.
+ Local Opaque reified_zero_gen. (* needed for making [autorewrite] not take a very long time *)
+
+ Derive reified_one_gen
+ SuchThat (is_reification_of reified_one_gen onemod)
+ As reified_one_gen_correct.
+ Proof. Time cache_reify (). Time Qed.
+ Hint Extern 1 (_ = _) => apply_cached_reification onemod (proj1 reified_one_gen_correct) : reify_cache_gen.
+ Hint Immediate (proj2 reified_one_gen_correct) : wf_gen_cache.
+ Hint Rewrite (proj1 reified_one_gen_correct) : interp_gen_cache.
+ Local Opaque reified_one_gen. (* needed for making [autorewrite] not take a very long time *)
+
+ Derive reified_prime_gen
+ SuchThat (is_reification_of reified_prime_gen primemod)
+ As reified_prime_gen_correct.
+ Proof. Time cache_reify (). Time Qed.
+ Hint Extern 1 (_ = _) => apply_cached_reification primemod (proj1 reified_prime_gen_correct) : reify_cache_gen.
+ Hint Immediate (proj2 reified_prime_gen_correct) : wf_gen_cache.
+ Hint Rewrite (proj1 reified_prime_gen_correct) : interp_gen_cache.
+ Local Opaque reified_prime_gen. (* needed for making [autorewrite] not take a very long time *)
+
+ Derive reified_to_bytes_gen
+ SuchThat (is_reification_of reified_to_bytes_gen freeze_to_bytesmod)
+ As reified_to_bytes_gen_correct.
+ Proof. Time cache_reify (). Time Qed.
+ Hint Extern 1 (_ = _) => apply_cached_reification freeze_to_bytesmod (proj1 reified_to_bytes_gen_correct) : reify_cache_gen.
+ Hint Immediate (proj2 reified_to_bytes_gen_correct) : wf_gen_cache.
+ Hint Rewrite (proj1 reified_to_bytes_gen_correct) : interp_gen_cache.
+ Local Opaque reified_to_bytes_gen. (* needed for making [autorewrite] not take a very long time *)
+
+ Derive reified_from_bytes_gen
+ SuchThat (is_reification_of reified_from_bytes_gen from_bytesmod)
+ As reified_from_bytes_gen_correct.
+ Proof. Time cache_reify (). Time Qed.
+ Hint Extern 1 (_ = _) => apply_cached_reification from_bytesmod (proj1 reified_from_bytes_gen_correct) : reify_cache_gen.
+ Hint Immediate (proj2 reified_from_bytes_gen_correct) : wf_gen_cache.
+ Hint Rewrite (proj1 reified_from_bytes_gen_correct) : interp_gen_cache.
+ Local Opaque reified_from_bytes_gen. (* needed for making [autorewrite] not take a very long time *)
+
+ (* needed for making [autorewrite] with [Set Keyed Unification] fast *)
+ Local Opaque expr.Interp.
+
+ Section __.
+ Context (n : nat)
+ (s : Z)
+ (c : list (Z * Z))
+ (machine_wordsize : Z).
+
+ Let limbwidth := (Z.log2_up (s - Associational.eval c) / Z.of_nat n)%Q.
+ Let idxs := (List.seq 0 n ++ [0; 1])%list%nat.
+ Let coef := 2.
+ Let n_bytes := bytes_n (Qnum limbwidth) (Qden limbwidth) n.
+ Let prime_upperbound_list : list Z
+ := encode_no_reduce (weight (Qnum limbwidth) (Qden limbwidth)) n (s-1).
+ Let prime_bytes_upperbound_list : list Z
+ := encode_no_reduce (weight 8 1) n_bytes (s-1).
+ Let tight_upperbounds : list Z
+ := List.map
+ (fun v : Z => Qceiling (11/10 * v))
+ prime_upperbound_list.
+ Definition prime_bound : ZRange.type.option.interp (base.type.Z)
+ := Some r[0~>(s - Associational.eval c - 1)]%zrange.
+ Definition prime_bounds : ZRange.type.option.interp (base.type.list (base.type.Z))
+ := Some (List.map (fun v => Some r[0 ~> v]%zrange) prime_upperbound_list).
+ Definition prime_bytes_bounds : ZRange.type.option.interp (base.type.list (base.type.Z))
+ := Some (List.map (fun v => Some r[0 ~> v]%zrange) prime_bytes_upperbound_list).
+ Local Notation saturated_bounds_list := (saturated_bounds_list n machine_wordsize).
+ Local Notation saturated_bounds := (saturated_bounds n machine_wordsize).
+
+ Let m : Z := s - Associational.eval c.
+ Definition m_enc : list Z
+ := encode (weight (Qnum limbwidth) (Qden limbwidth)) n s c m.
+
+ Definition possible_values_of_machine_wordsize
+ := [machine_wordsize; 2 * machine_wordsize]%Z.
+
+ Definition possible_values_of_machine_wordsize_with_bytes
+ := [1; 8; machine_wordsize; 2 * machine_wordsize]%Z.
+
+ Let possible_values := possible_values_of_machine_wordsize.
+ Let possible_values_with_bytes := possible_values_of_machine_wordsize_with_bytes.
+ Definition tight_bounds : list (ZRange.type.option.interp base.type.Z)
+ := List.map (fun u => Some r[0~>u]%zrange) tight_upperbounds.
+ Definition loose_bounds : list (ZRange.type.option.interp base.type.Z)
+ := List.map (fun u => Some r[0 ~> 3*u]%zrange) tight_upperbounds.
+
+ Lemma length_prime_upperbound_list : List.length prime_upperbound_list = n.
+ Proof using Type. cbv [prime_upperbound_list]; now autorewrite with distr_length. Qed.
+ Local Hint Rewrite length_prime_upperbound_list : distr_length.
+ Lemma length_tight_upperbounds : List.length tight_upperbounds = n.
+ Proof using Type. cbv [tight_upperbounds]; now autorewrite with distr_length. Qed.
+ Local Hint Rewrite length_tight_upperbounds : distr_length.
+ Lemma length_tight_bounds : List.length tight_bounds = n.
+ Proof using Type. cbv [tight_bounds]; now autorewrite with distr_length. Qed.
+ Local Hint Rewrite length_tight_bounds : distr_length.
+ Lemma length_loose_bounds : List.length loose_bounds = n.
+ Proof using Type. cbv [loose_bounds]; now autorewrite with distr_length. Qed.
+ Local Hint Rewrite length_loose_bounds : distr_length.
+ Lemma length_prime_bytes_upperbound_list : List.length prime_bytes_upperbound_list = bytes_n (Qnum limbwidth) (Qden limbwidth) n.
+ Proof using Type. cbv [prime_bytes_upperbound_list]; now autorewrite with distr_length. Qed.
+ Local Hint Rewrite length_prime_bytes_upperbound_list : distr_length.
+ Lemma length_saturated_bounds_list : List.length saturated_bounds_list = n.
+ Proof using Type. cbv [saturated_bounds_list]; now autorewrite with distr_length. Qed.
+ Local Hint Rewrite length_saturated_bounds_list : distr_length.
+
+ (** Note: If you change the name or type signature of this
+ function, you will need to update the code in CLI.v *)
+ Definition check_args {T} (res : Pipeline.ErrorT T)
+ : Pipeline.ErrorT T
+ := fold_right
+ (fun '(b, e) k => if b:bool then Error e else k)
+ res
+ [(negb (Qle_bool 1 limbwidth)%Q, Pipeline.Value_not_leQ "limbwidth < 1" 1%Q limbwidth);
+ ((negb (0 <? Associational.eval c))%Z, Pipeline.Value_not_ltZ "Associational.eval c ≤ 0" 0 (Associational.eval c));
+ ((negb (Associational.eval c <? s))%Z, Pipeline.Value_not_ltZ "s ≤ Associational.eval c" (Associational.eval c) s);
+ ((s =? 0)%Z, Pipeline.Values_not_provably_distinctZ "s = 0" s 0);
+ ((n =? 0)%nat, Pipeline.Values_not_provably_distinctZ "n = 0" n 0%nat);
+ ((negb (0 <? machine_wordsize)), Pipeline.Value_not_ltZ "machine_wordsize ≤ 0" 0 machine_wordsize);
+ (let v1 := s in
+ let v2 := weight (Qnum limbwidth) (QDen limbwidth) n in
+ (negb (v1 =? v2), Pipeline.Values_not_provably_equalZ "s ≠ weight n (needed for to_bytes)" v1 v2));
+ (let v1 := (map (Z.land (Z.ones machine_wordsize)) m_enc) in
+ let v2 := m_enc in
+ (negb (list_beq _ Z.eqb v1 v2), Pipeline.Values_not_provably_equal_listZ "map mask m_enc ≠ m_enc (needed for to_bytes)" v1 v2));
+ (let v1 := eval (weight (Qnum limbwidth) (QDen limbwidth)) n m_enc in
+ let v2 := s - Associational.eval c in
+ (negb (v1 =? v2)%Z, Pipeline.Values_not_provably_equalZ "eval m_enc ≠ s - Associational.eval c (needed for to_bytes)" v1 v2));
+ (let v1 := eval (weight (Qnum limbwidth) (QDen limbwidth)) n tight_upperbounds in
+ let v2 := 2 * eval (weight (Qnum limbwidth) (QDen limbwidth)) n m_enc in
+ (negb (v1 <? v2)%Z, Pipeline.Value_not_ltZ "2 * eval m_enc ≤ eval tight_upperbounds (needed for to_bytes)" v1 v2))].
+
+ Local Ltac use_curve_good_t :=
+ repeat first [ assumption
+ | progress rewrite ?map_length, ?Z.mul_0_r, ?Pos.mul_1_r, ?Z.mul_1_r in *
+ | reflexivity
+ | lia
+ | rewrite expr.interp_reify_list, ?map_map
+ | rewrite map_ext with (g:=id), map_id
+ | progress distr_length
+ | progress cbv [Qceiling Qfloor Qopp Qdiv Qplus inject_Z Qmult Qinv] in *
+ | progress cbv [Qle] in *
+ | progress cbn -[reify_list] in *
+ | progress intros
+ | solve [ auto ] ].
+
+ Context (curve_good : check_args (Success tt) = Success tt).
+
+ Lemma use_curve_good
+ : let eval := eval (weight (Qnum limbwidth) (QDen limbwidth)) n in
+ s - Associational.eval c <> 0
+ /\ s <> 0
+ /\ 0 < machine_wordsize
+ /\ n <> 0%nat
+ /\ List.length tight_bounds = n
+ /\ List.length loose_bounds = n
+ /\ List.length prime_bytes_upperbound_list = n_bytes
+ /\ List.length saturated_bounds_list = n
+ /\ 0 < Qden limbwidth <= Qnum limbwidth
+ /\ s = weight (Qnum limbwidth) (QDen limbwidth) n
+ /\ map (Z.land (Z.ones machine_wordsize)) m_enc = m_enc
+ /\ eval m_enc = s - Associational.eval c
+ /\ Datatypes.length m_enc = n
+ /\ 0 < Associational.eval c < s
+ /\ eval tight_upperbounds < 2 * eval m_enc
+ /\ 0 < m.
+ Proof using curve_good.
+ clear -curve_good.
+ cbv [check_args fold_right] in curve_good.
+ cbv [tight_bounds loose_bounds prime_bound m_enc] in *.
+ break_innermost_match_hyps; try discriminate.
+ rewrite negb_false_iff in *.
+ Z.ltb_to_lt.
+ rewrite Qle_bool_iff in *.
+ rewrite NPeano.Nat.eqb_neq in *.
+ intros.
+ cbv [Qnum Qden limbwidth Qceiling Qfloor Qopp Qdiv Qplus inject_Z Qmult Qinv] in *.
+ rewrite ?map_length, ?Z.mul_0_r, ?Pos.mul_1_r, ?Z.mul_1_r in *.
+ specialize_by lia.
+ repeat match goal with H := _ |- _ => subst H end.
+ repeat match goal with
+ | [ H : list_beq _ _ _ _ = true |- _ ] => apply internal_list_dec_bl in H; [ | intros; Z.ltb_to_lt; omega.. ]
+ end.
+ repeat apply conj.
+ { destruct (s - Associational.eval c) eqn:?; cbn; lia. }
+ { use_curve_good_t. }
+ { use_curve_good_t. }
+ { use_curve_good_t. }
+ { use_curve_good_t. }
+ { use_curve_good_t. }
+ { use_curve_good_t. }
+ { use_curve_good_t. }
+ { use_curve_good_t. }
+ { use_curve_good_t. }
+ { use_curve_good_t. }
+ { use_curve_good_t. }
+ { use_curve_good_t. }
+ { use_curve_good_t. }
+ { use_curve_good_t. }
+ { use_curve_good_t. }
+ { use_curve_good_t. }
+ { use_curve_good_t. }
+ Qed.
+
+ Definition carry_mul
+ := Pipeline.BoundsPipeline
+ false (* subst01 *)
+ None (* fancy *)
+ possible_values
+ (reified_carry_mul_gen
+ @ GallinaReify.Reify (Qnum limbwidth) @ GallinaReify.Reify (Z.pos (Qden limbwidth)) @ GallinaReify.Reify s @ GallinaReify.Reify c @ GallinaReify.Reify n @ GallinaReify.Reify idxs)
+ (Some loose_bounds, (Some loose_bounds, tt))
+ (Some tight_bounds).
+
+ Definition scarry_mul (prefix : string)
+ : string * (Pipeline.ErrorT (list string * ToString.C.ident_infos))
+ := Eval cbv beta in FromPipelineToString prefix "carry_mul" carry_mul.
+
+ Definition carry_square
+ := Pipeline.BoundsPipeline
+ false (* subst01 *)
+ None (* fancy *)
+ possible_values
+ (reified_carry_square_gen
+ @ GallinaReify.Reify (Qnum limbwidth) @ GallinaReify.Reify (Z.pos (Qden limbwidth)) @ GallinaReify.Reify s @ GallinaReify.Reify c @ GallinaReify.Reify n @ GallinaReify.Reify idxs)
+ (Some loose_bounds, tt)
+ (Some tight_bounds).
+
+ Definition scarry_square (prefix : string)
+ : string * (Pipeline.ErrorT (list string * ToString.C.ident_infos))
+ := Eval cbv beta in FromPipelineToString prefix "carry_square" carry_square.
+
+ Definition carry_scmul_const (x : Z)
+ := Pipeline.BoundsPipeline
+ false (* subst01 *)
+ None (* fancy *)
+ possible_values
+ (reified_carry_scmul_gen
+ @ GallinaReify.Reify (Qnum limbwidth) @ GallinaReify.Reify (Z.pos (Qden limbwidth)) @ GallinaReify.Reify s @ GallinaReify.Reify c @ GallinaReify.Reify n @ GallinaReify.Reify idxs @ GallinaReify.Reify x)
+ (Some loose_bounds, tt)
+ (Some tight_bounds).
+
+ Definition scarry_scmul_const (prefix : string) (x : Z)
+ : string * (Pipeline.ErrorT (list string * ToString.C.ident_infos))
+ := Eval cbv beta in FromPipelineToString prefix ("carry_scmul_" ++ decimal_string_of_Z x) (carry_scmul_const x).
+
+ Definition carry
+ := Pipeline.BoundsPipeline
+ true (* subst01 *)
+ None (* fancy *)
+ possible_values
+ (reified_carry_gen
+ @ GallinaReify.Reify (Qnum limbwidth) @ GallinaReify.Reify (Z.pos (Qden limbwidth)) @ GallinaReify.Reify s @ GallinaReify.Reify c @ GallinaReify.Reify n @ GallinaReify.Reify idxs)
+ (Some loose_bounds, tt)
+ (Some tight_bounds).
+
+ Definition scarry (prefix : string)
+ : string * (Pipeline.ErrorT (list string * ToString.C.ident_infos))
+ := Eval cbv beta in FromPipelineToString prefix "carry" carry.
+
+ Definition add
+ := Pipeline.BoundsPipeline
+ true (* subst01 *)
+ None (* fancy *)
+ possible_values
+ (reified_add_gen
+ @ GallinaReify.Reify (Qnum limbwidth) @ GallinaReify.Reify (Z.pos (Qden limbwidth)) @ GallinaReify.Reify n)
+ (Some tight_bounds, (Some tight_bounds, tt))
+ (Some loose_bounds).
+
+ Definition sadd (prefix : string)
+ : string * (Pipeline.ErrorT (list string * ToString.C.ident_infos))
+ := Eval cbv beta in FromPipelineToString prefix "add" add.
+
+ Definition sub
+ := Pipeline.BoundsPipeline
+ true (* subst01 *)
+ None (* fancy *)
+ possible_values
+ (reified_sub_gen
+ @ GallinaReify.Reify (Qnum limbwidth) @ GallinaReify.Reify (Z.pos (Qden limbwidth)) @ GallinaReify.Reify s @ GallinaReify.Reify c @ GallinaReify.Reify n @ GallinaReify.Reify coef)
+ (Some tight_bounds, (Some tight_bounds, tt))
+ (Some loose_bounds).
+
+ Definition ssub (prefix : string)
+ : string * (Pipeline.ErrorT (list string * ToString.C.ident_infos))
+ := Eval cbv beta in FromPipelineToString prefix "sub" sub.
+
+ Definition opp
+ := Pipeline.BoundsPipeline
+ true (* subst01 *)
+ None (* fancy *)
+ possible_values
+ (reified_opp_gen
+ @ GallinaReify.Reify (Qnum limbwidth) @ GallinaReify.Reify (Z.pos (Qden limbwidth)) @ GallinaReify.Reify s @ GallinaReify.Reify c @ GallinaReify.Reify n @ GallinaReify.Reify coef)
+ (Some tight_bounds, tt)
+ (Some loose_bounds).
+
+ Definition sopp (prefix : string)
+ : string * (Pipeline.ErrorT (list string * ToString.C.ident_infos))
+ := Eval cbv beta in FromPipelineToString prefix "opp" opp.
+
+ Definition to_bytes
+ := Pipeline.BoundsPipeline
+ false (* subst01 *)
+ None (* fancy *)
+ possible_values_with_bytes
+ (reified_to_bytes_gen
+ @ GallinaReify.Reify (Qnum limbwidth) @ GallinaReify.Reify (Z.pos (Qden limbwidth)) @ GallinaReify.Reify n @ GallinaReify.Reify machine_wordsize @ GallinaReify.Reify m_enc)
+ (Some tight_bounds, tt)
+ prime_bytes_bounds.
+
+ Definition sto_bytes (prefix : string)
+ : string * (Pipeline.ErrorT (list string * ToString.C.ident_infos))
+ := Eval cbv beta in FromPipelineToString prefix "to_bytes" to_bytes.
+
+ Definition from_bytes
+ := Pipeline.BoundsPipeline
+ false (* subst01 *)
+ None (* fancy *)
+ possible_values_with_bytes
+ (reified_from_bytes_gen
+ @ GallinaReify.Reify (Qnum limbwidth) @ GallinaReify.Reify (Z.pos (Qden limbwidth)) @ GallinaReify.Reify n)
+ (prime_bytes_bounds, tt)
+ (Some tight_bounds).
+
+ Definition sfrom_bytes (prefix : string)
+ : string * (Pipeline.ErrorT (list string * ToString.C.ident_infos))
+ := Eval cbv beta in FromPipelineToString prefix "from_bytes" from_bytes.
+
+ Definition encode
+ := Pipeline.BoundsPipeline
+ true (* subst01 *)
+ None (* fancy *)
+ possible_values
+ (reified_encode_gen
+ @ GallinaReify.Reify (Qnum limbwidth) @ GallinaReify.Reify (Z.pos (Qden limbwidth)) @ GallinaReify.Reify s @ GallinaReify.Reify c @ GallinaReify.Reify n)
+ (prime_bound, tt)
+ (Some tight_bounds).
+
+ Definition sencode (prefix : string)
+ : string * (Pipeline.ErrorT (list string * ToString.C.ident_infos))
+ := Eval cbv beta in FromPipelineToString prefix "encode" encode.
+
+ Definition zero
+ := Pipeline.BoundsPipeline
+ true (* subst01 *)
+ None (* fancy *)
+ possible_values
+ (reified_zero_gen
+ @ GallinaReify.Reify (Qnum limbwidth) @ GallinaReify.Reify (Z.pos (Qden limbwidth)) @ GallinaReify.Reify s @ GallinaReify.Reify c @ GallinaReify.Reify n)
+ tt
+ (Some tight_bounds).
+
+ Definition szero (prefix : string)
+ : string * (Pipeline.ErrorT (list string * ToString.C.ident_infos))
+ := Eval cbv beta in FromPipelineToString prefix "zero" zero.
+
+ Definition one
+ := Pipeline.BoundsPipeline
+ true (* subst01 *)
+ None (* fancy *)
+ possible_values
+ (reified_one_gen
+ @ GallinaReify.Reify (Qnum limbwidth) @ GallinaReify.Reify (Z.pos (Qden limbwidth)) @ GallinaReify.Reify s @ GallinaReify.Reify c @ GallinaReify.Reify n)
+ tt
+ (Some tight_bounds).
+
+ Definition sone (prefix : string)
+ : string * (Pipeline.ErrorT (list string * ToString.C.ident_infos))
+ := Eval cbv beta in FromPipelineToString prefix "one" one.
+
+ Definition selectznz : Pipeline.ErrorT _ := Primitives.selectznz n machine_wordsize.
+ Definition sselectznz (prefix : string)
+ : string * (Pipeline.ErrorT (list string * ToString.C.ident_infos))
+ := Primitives.sselectznz n machine_wordsize prefix.
+
+ Local Ltac solve_extra_bounds_side_conditions :=
+ cbn [lower upper fst snd] in *; Bool.split_andb; Z.ltb_to_lt; lia.
+
+ Local Hint Rewrite
+ eval_carry_mulmod
+ eval_carry_squaremod
+ eval_carry_scmulmod
+ eval_addmod
+ eval_submod
+ eval_oppmod
+ eval_carrymod
+ freeze_to_bytesmod_partitions
+ eval_to_bytesmod
+ eval_from_bytesmod
+ eval_encodemod
+ using solve [ auto | congruence | solve_extra_bounds_side_conditions ] : push_eval.
+ Hint Unfold zeromod onemod : push_eval.
+
+ Local Ltac prove_correctness _ :=
+ Primitives.prove_correctness use_curve_good;
+ try solve [ auto | congruence | solve_extra_bounds_side_conditions ].
+
+ Lemma carry_mul_correct res
+ (Hres : carry_mul = Success res)
+ : carry_mul_correct (weight (Qnum limbwidth) (QDen limbwidth)) n m tight_bounds loose_bounds (Interp res).
+ Proof using curve_good. prove_correctness (). Qed.
+
+ Lemma carry_square_correct res
+ (Hres : carry_square = Success res)
+ : carry_square_correct (weight (Qnum limbwidth) (QDen limbwidth)) n m tight_bounds loose_bounds (Interp res).
+ Proof using curve_good. prove_correctness (). Qed.
+
+ Lemma carry_scmul_const_correct a res
+ (Hres : carry_scmul_const a = Success res)
+ : carry_scmul_const_correct (weight (Qnum limbwidth) (QDen limbwidth)) n m tight_bounds loose_bounds a (Interp res).
+ Proof using curve_good.
+ prove_correctness ().
+ erewrite eval_carry_scmulmod by (auto || congruence); reflexivity.
+ Qed.
+
+ Lemma carry_correct res
+ (Hres : carry = Success res)
+ : carry_correct (weight (Qnum limbwidth) (QDen limbwidth)) n m tight_bounds loose_bounds (Interp res).
+ Proof using curve_good. prove_correctness (). Qed.
+
+ Lemma add_correct res
+ (Hres : add = Success res)
+ : add_correct (weight (Qnum limbwidth) (QDen limbwidth)) n m tight_bounds loose_bounds (Interp res).
+ Proof using curve_good. prove_correctness (). Qed.
+
+ Lemma sub_correct res
+ (Hres : sub = Success res)
+ : sub_correct (weight (Qnum limbwidth) (QDen limbwidth)) n m tight_bounds loose_bounds (Interp res).
+ Proof using curve_good. prove_correctness (). Qed.
+
+ Lemma opp_correct res
+ (Hres : opp = Success res)
+ : opp_correct (weight (Qnum limbwidth) (QDen limbwidth)) n m tight_bounds loose_bounds (Interp res).
+ Proof using curve_good. prove_correctness (). Qed.
+
+ Lemma from_bytes_correct res
+ (Hres : from_bytes = Success res)
+ : from_bytes_correct (weight (Qnum limbwidth) (QDen limbwidth)) n n_bytes m s tight_bounds (Interp res).
+ Proof using curve_good. prove_correctness (). Qed.
+
+ Lemma relax_correct
+ : forall x, list_Z_bounded_by tight_bounds x -> list_Z_bounded_by loose_bounds x.
+ Proof using Type.
+ cbv [tight_bounds loose_bounds list_Z_bounded_by].
+ intro.
+ rewrite !fold_andb_map_map1, !fold_andb_map_iff; cbn [upper lower].
+ setoid_rewrite Bool.andb_true_iff.
+ intro H.
+ repeat first [ let H' := fresh in destruct H as [H' H]; split; [ assumption | ]
+ | let x := fresh in intro x; specialize (H x) ].
+ Z.ltb_to_lt; lia.
+ Qed.
+
+ Lemma to_bytes_correct res
+ (Hres : to_bytes = Success res)
+ : to_bytes_correct (weight (Qnum limbwidth) (QDen limbwidth)) n n_bytes m tight_bounds (Interp res).
+ Proof using curve_good.
+ prove_correctness (); [].
+ erewrite freeze_to_bytesmod_partitions; [ reflexivity | .. ].
+ all: repeat apply conj; autorewrite with distr_length; (congruence || auto).
+ all: cbv [tight_bounds] in *.
+ all: lazymatch goal with
+ | [ H1 : list_Z_bounded_by (List.map (fun x => Some (@?f x)) ?b) ?x, H2 : eval ?wt ?n ?b < _
+ |- context[eval ?wt ?n ?x] ]
+ => unshelve epose proof (eval_list_Z_bounded_by wt n (List.map (fun x => Some (f x)) b) (List.map f b) x H1 _ _ (fun A B => Z.lt_le_incl _ _ (weight_positive _ _))); clear H1
+ end.
+ all: congruence || auto.
+ all: repeat first [ reflexivity
+ | apply wprops
+ | progress rewrite ?map_map in *
+ | progress rewrite ?map_id in *
+ | progress cbn [upper lower] in *
+ | lia
+ | match goal with
+ | [ H : context[List.map (fun _ => 0) _] |- _ ] => erewrite <- zeros_ext_map, ?eval_zeros in H by reflexivity
+ end
+ | progress autorewrite with distr_length push_eval in *
+ | progress cbv [tight_upperbounds] in * ].
+ Qed.
+
+ Strategy -1000 [encode]. (* if we don't tell the kernel to unfold this early, then [Qed] seems to run off into the weeds *)
+ Lemma encode_correct res
+ (Hres : encode = Success res)
+ : encode_correct (weight (Qnum limbwidth) (QDen limbwidth)) n m tight_bounds (Interp res).
+ Proof using curve_good. prove_correctness (). Qed.
+
+ Strategy -1000 [zero]. (* if we don't tell the kernel to unfold this early, then [Qed] seems to run off into the weeds *)
+ Lemma zero_correct res
+ (Hres : zero = Success res)
+ : zero_correct (weight (Qnum limbwidth) (QDen limbwidth)) n m tight_bounds (Interp res).
+ Proof using curve_good. prove_correctness (). Qed.
+
+ Strategy -1000 [one]. (* if we don't tell the kernel to unfold this early, then [Qed] seems to run off into the weeds *)
+ Lemma one_correct res
+ (Hres : one = Success res)
+ : one_correct (weight (Qnum limbwidth) (QDen limbwidth)) n m tight_bounds (Interp res).
+ Proof using curve_good. prove_correctness (). Qed.
+
+ Section ring.
+ Context carry_mul_res (Hcarry_mul : carry_mul = Success carry_mul_res)
+ add_res (Hadd : add = Success add_res)
+ sub_res (Hsub : sub = Success sub_res)
+ opp_res (Hopp : opp = Success opp_res)
+ carry_res (Hcarry : carry = Success carry_res)
+ encode_res (Hencode : encode = Success encode_res)
+ zero_res (Hzero : zero = Success zero_res)
+ one_res (Hone : one = Success one_res).
+
+ Definition GoodT : Prop
+ := GoodT
+ (weight (Qnum limbwidth) (QDen limbwidth)) n m tight_bounds
+ (Interp carry_mul_res)
+ (Interp add_res)
+ (Interp sub_res)
+ (Interp opp_res)
+ (Interp carry_res)
+ (Interp encode_res)
+ (Interp zero_res)
+ (Interp one_res).
+
+ Theorem Good : GoodT.
+ Proof using curve_good Hcarry_mul Hadd Hsub Hopp Hcarry Hencode Hzero Hone.
+ pose proof use_curve_good; cbv zeta in *; destruct_head'_and.
+ eapply Good.
+ all: repeat first [ assumption
+ | apply carry_mul_correct
+ | apply add_correct
+ | apply sub_correct
+ | apply opp_correct
+ | apply carry_correct
+ | apply encode_correct
+ | apply zero_correct
+ | apply one_correct
+ | apply relax_correct ].
+ Qed.
+ End ring.
+
+ Section for_stringification.
+ Local Open Scope string_scope.
+ Local Open Scope list_scope.
+
+ Definition known_functions
+ := [("carry_mul", scarry_mul);
+ ("carry_square", scarry_square);
+ ("carry", scarry);
+ ("add", sadd);
+ ("sub", ssub);
+ ("opp", sopp);
+ ("selectznz", sselectznz);
+ ("to_bytes", sto_bytes);
+ ("from_bytes", sfrom_bytes)].
+
+ Definition valid_names : string
+ := Eval compute in String.concat ", " (List.map (@fst _ _) known_functions) ++ ", or 'carry_scmul' followed by a decimal literal".
+
+ Definition extra_special_synthesis (function_name_prefix : string) (name : string)
+ : list (option (string * Pipeline.ErrorT (list string * ToString.C.ident_infos)))
+ := [if prefix "carry_scmul" name
+ then let sc := substring (String.length "carry_scmul") (String.length name) name in
+ let scZ := Z_of_decimal_string sc in
+ if string_beq sc (decimal_string_of_Z scZ)
+ then Some (scarry_scmul_const function_name_prefix scZ)
+ else None
+ else None].
+
+ (** Note: If you change the name or type signature of this
+ function, you will need to update the code in CLI.v *)
+ Definition Synthesize (function_name_prefix : string) (requests : list string)
+ : list (string * Pipeline.ErrorT (list string)) * PositiveSet.t (* types used *)
+ := Primitives.Synthesize
+ machine_wordsize valid_names known_functions (extra_special_synthesis function_name_prefix)
+ function_name_prefix requests.
+ End for_stringification.
+ End __.
+End UnsaturatedSolinas.
+
+Module SaturatedSolinas.
+ Import COperationSpecifications.SaturatedSolinas.
+
+ Definition mulmod
+ (s : Z)
+ (c : list (Z * Z))
+ (log2base : Z)
+ (n nreductions : nat)
+ := @Rows.mulmod (weight log2base 1) (2^log2base) s c n nreductions.
+
+ Derive reified_mul_gen
+ SuchThat (is_reification_of reified_mul_gen mulmod)
+ As reified_mul_gen_correct.
+ Proof. Time cache_reify (). Time Qed.
+ Hint Extern 1 (_ = _) => apply_cached_reification mulmod (proj1 reified_mul_gen_correct) : reify_cache_gen.
+ Hint Immediate (proj2 reified_mul_gen_correct) : wf_gen_cache.
+ Hint Rewrite (proj1 reified_mul_gen_correct) : interp_gen_cache.
+ Local Opaque reified_mul_gen. (* needed for making [autorewrite] not take a very long time *)
+
+ (* needed for making [autorewrite] with [Set Keyed Unification] fast *)
+ Local Opaque expr.Interp.
+
+ Section __.
+ Context (s : Z)
+ (c : list (Z * Z))
+ (machine_wordsize : Z).
+
+ Definition possible_values_of_machine_wordsize
+ := [1; machine_wordsize]%Z.
+
+ Let n : nat := Z.to_nat (Qceiling (Z.log2_up s / machine_wordsize)).
+ Let m := s - Associational.eval c.
+ (* Number of reductions is calculated as follows :
+ Let i be the highest limb index of c. Then, each reduction
+ decreases the number of extra limbs by (n-i). So, to go from
+ the n extra limbs we have post-multiplication down to 0, we
+ need ceil (n / (n - i)) reductions. *)
+ Let nreductions : nat :=
+ let i := fold_right Z.max 0 (map (fun t => Z.log2 (fst t) / machine_wordsize) c) in
+ Z.to_nat (Qceiling (Z.of_nat n / (Z.of_nat n - i))).
+ Let possible_values := possible_values_of_machine_wordsize.
+ Let bound := Some r[0 ~> (2^machine_wordsize - 1)]%zrange.
+ Let boundsn : list (ZRange.type.option.interp base.type.Z)
+ := repeat bound n.
+
+ (** Note: If you change the name or type signature of this
+ function, you will need to update the code in CLI.v *)
+ Definition check_args {T} (res : Pipeline.ErrorT T)
+ : Pipeline.ErrorT T
+ := fold_right
+ (fun '(b, e) k => if b:bool then Error e else k)
+ res
+ [((negb (0 <? s - Associational.eval c))%Z, Pipeline.Value_not_ltZ "s - Associational.eval c ≤ 0" 0 (s - Associational.eval c));
+ ((s =? 0)%Z, Pipeline.Values_not_provably_distinctZ "s ≠ 0" s 0);
+ ((n =? 0)%nat, Pipeline.Values_not_provably_distinctZ "n ≠ 0" n 0);
+ ((negb (0 <? machine_wordsize)), Pipeline.Value_not_ltZ "0 < machine_wordsize" 0 machine_wordsize)].
+
+ Local Ltac use_curve_good_t :=
+ repeat first [ assumption
+ | progress rewrite ?map_length, ?Z.mul_0_r, ?Pos.mul_1_r, ?Z.mul_1_r in *
+ | reflexivity
+ | lia
+ | rewrite expr.interp_reify_list, ?map_map
+ | rewrite map_ext with (g:=id), map_id
+ | progress distr_length
+ | progress cbv [Qceiling Qfloor Qopp Qdiv Qplus inject_Z Qmult Qinv] in *
+ | progress cbv [Qle] in *
+ | progress cbn -[reify_list] in *
+ | progress intros
+ | solve [ auto ] ].
+
+ Context (curve_good : check_args (Success tt) = Success tt).
+
+ Lemma use_curve_good
+ : 0 < s - Associational.eval c
+ /\ s - Associational.eval c <> 0
+ /\ s <> 0
+ /\ 0 < machine_wordsize
+ /\ n <> 0%nat.
+ Proof using curve_good.
+ clear -curve_good.
+ cbv [check_args fold_right] in curve_good.
+ break_innermost_match_hyps; try discriminate.
+ rewrite negb_false_iff in *.
+ Z.ltb_to_lt.
+ rewrite NPeano.Nat.eqb_neq in *.
+ intros.
+ rewrite ?map_length, ?Z.mul_0_r, ?Pos.mul_1_r, ?Z.mul_1_r in *.
+ specialize_by lia.
+ repeat match goal with H := _ |- _ => subst H end.
+ repeat match goal with
+ | [ H : list_beq _ _ _ _ = true |- _ ] => apply internal_list_dec_bl in H; [ | intros; Z.ltb_to_lt; omega.. ]
+ end.
+ repeat apply conj.
+ { destruct (s - Associational.eval c) eqn:?; cbn; lia. }
+ { use_curve_good_t. }
+ { use_curve_good_t. }
+ { use_curve_good_t. }
+ { use_curve_good_t. }
+ Qed.
+
+ Definition mul
+ := Pipeline.BoundsPipeline
+ false (* subst01 *)
+ None (* fancy *)
+ possible_values
+ (reified_mul_gen
+ @ GallinaReify.Reify s @ GallinaReify.Reify c @ GallinaReify.Reify machine_wordsize @ GallinaReify.Reify n @ GallinaReify.Reify nreductions)
+ (Some boundsn, (Some boundsn, tt))
+ (Some boundsn, None (* Should be: Some r[0~>0]%zrange, but bounds analysis is not good enough *) ).
+
+ Definition smul (prefix : string)
+ : string * (Pipeline.ErrorT (list string * ToString.C.ident_infos))
+ := Eval cbv beta in FromPipelineToString prefix "mul" mul.
+
+ Local Ltac solve_extra_bounds_side_conditions :=
+ cbn [lower upper fst snd] in *; Bool.split_andb; Z.ltb_to_lt; lia.
+
+ Local Hint Rewrite
+ (fun pf => @Rows.eval_mulmod (weight machine_wordsize 1) (@wprops _ _ pf))
+ using solve [ auto with zarith | congruence | solve_extra_bounds_side_conditions ] : push_eval.
+ Hint Unfold mulmod : push_eval.
+
+ Local Ltac prove_correctness _ := Primitives.prove_correctness use_curve_good.
+
+ Lemma mul_correct res
+ (Hres : mul = Success res)
+ : mul_correct (weight machine_wordsize 1) n m boundsn (Interp res).
+ Proof using curve_good. prove_correctness (). Qed.
+
+ Section for_stringification.
+ Local Open Scope string_scope.
+ Local Open Scope list_scope.
+
+ Definition known_functions
+ := [("mul", smul)].
+
+ Definition valid_names : string := Eval compute in String.concat ", " (List.map (@fst _ _) known_functions).
+
+ (** Note: If you change the name or type signature of this
+ function, you will need to update the code in CLI.v *)
+ Definition Synthesize (function_name_prefix : string) (requests : list string)
+ : list (string * Pipeline.ErrorT (list string)) * PositiveSet.t (* types used *)
+ := Primitives.Synthesize
+ machine_wordsize valid_names known_functions (fun _ => nil)
+ function_name_prefix requests.
+ End for_stringification.
+ End __.
+End SaturatedSolinas.
+
+Module WordByWordMontgomery.
+ Import Arithmetic.WordByWordMontgomery.
+ Import COperationSpecifications.WordByWordMontgomery.
+
+ Definition zeromod bitwidth n m m' := encodemod bitwidth n m m' 0.
+ Definition onemod bitwidth n m m' := encodemod bitwidth n m m' 1.
+
+ (* we would do something faster, but it generally breaks extraction COQBUG(https://github.com/coq/coq/issues/7954) *)
+ Local Ltac precache_reify_faster _ :=
+ split;
+ [ let marker := fresh "marker" in
+ pose I as marker;
+ intros;
+ let LHS := lazymatch goal with |- ?LHS = _ => LHS end in
+ let reified_op_gen := lazymatch LHS with context[expr.Interp _ ?reified_op_gen] => reified_op_gen end in
+ subst reified_op_gen;
+ etransitivity;
+ [
+ | let opmod := match goal with |- _ = ?RHS => head RHS end in
+ cbv [opmod]; solve [ eauto with reify_cache_gen nocore ] ];
+ repeat lazymatch goal with
+ | [ H : _ |- _ ] => tryif constr_eq H marker then fail else revert H
+ end;
+ clear marker
+ | ].
+ Local Ltac cache_reify_faster_2arg _ :=
+ precache_reify_faster ();
+ [ lazymatch goal with
+ | [ |- forall bw n m m' v, ?interp ?ev bw n m m' v = ?interp' ?reified_mul_gen bw n m m' (@?A bw n m m' v) (@?B bw n m m' v) ]
+ => let rv := constr:(fun F bw n m m' v => (F bw n m m' (A bw n m m' v) (B bw n m m' v)):list Z) in
+ intros;
+ instantiate (1:=ltac:(let r := Reify rv in
+ refine (r @ reified_mul_gen)%Expr))
+ end;
+ reflexivity
+ | prove_Wf () ].
+ Local Ltac cache_reify_faster_1arg _ :=
+ precache_reify_faster ();
+ [ lazymatch goal with
+ | [ |- forall bw n m m', ?interp ?ev bw n m m' = ?interp' ?reified_op_gen bw n m m' (@?A bw n m m') ]
+ => let rv := constr:(fun F bw n m m' => (F bw n m m' (A bw n m m')):list Z) in
+ intros;
+ instantiate (1:=ltac:(let r := Reify rv in
+ refine (r @ reified_op_gen)%Expr))
+ end;
+ reflexivity
+ | prove_Wf () ].
+
+ (**
+<<
+#!/usr/bin/env python
+
+indent = ' '
+
+print((indent + '(' + r'''**
+<<
+%s
+>>
+*''' + ')\n') % open(__file__, 'r').read())
+
+for i in ('mul', 'add', 'sub', 'opp', 'to_bytes', 'from_bytes', 'nonzero'):
+ print((r'''%sDerive reified_%s_gen
+ SuchThat (is_reification_of reified_%s_gen %smod)
+ As reified_%s_gen_correct.
+Proof. Time cache_reify (). Time Qed.
+Hint Extern 1 (_ = _) => apply_cached_reification %smod (proj1 reified_%s_gen_correct) : reify_cache_gen.
+Hint Immediate (proj2 reified_%s_gen_correct) : wf_gen_cache.
+Hint Rewrite (proj1 reified_%s_gen_correct) : interp_gen_cache.
+Local Opaque reified_%s_gen. (* needed for making [autorewrite] not take a very long time *)''' % (indent, i, i, i, i, i, i, i, i, i)).replace('\n', '\n%s' % indent) + '\n')
+
+for i in ('square', 'encode', 'from_montgomery'):
+ print((r'''%sDerive reified_%s_gen
+ SuchThat (is_reification_of reified_%s_gen %smod)
+ As reified_%s_gen_correct.
+Proof.
+ Time cache_reify ().
+ (* we would do something faster, but it breaks extraction COQBUG(https://github.com/coq/coq/issues/7954) *)
+ (* Time cache_reify_faster_2arg (). *)
+Time Qed.
+Hint Extern 1 (_ = _) => apply_cached_reification %smod (proj1 reified_%s_gen_correct) : reify_cache_gen.
+Hint Immediate (proj2 reified_%s_gen_correct) : wf_gen_cache.
+Hint Rewrite (proj1 reified_%s_gen_correct) : interp_gen_cache.
+Local Opaque reified_%s_gen. (* needed for making [autorewrite] not take a very long time *)''' % (indent, i, i, i, i, i, i, i, i, i)).replace('\n', '\n%s' % indent) + '\n')
+
+
+for i in ('zero', 'one'):
+ print((r'''%sDerive reified_%s_gen
+ SuchThat (is_reification_of reified_%s_gen %smod)
+ As reified_%s_gen_correct.
+Proof.
+ (* Time cache_reify (). *)
+ (* we do something faster *)
+ Time cache_reify_faster_1arg ().
+Time Qed.
+Hint Extern 1 (_ = _) => apply_cached_reification %smod (proj1 reified_%s_gen_correct) : reify_cache_gen.
+Hint Immediate (proj2 reified_%s_gen_correct) : wf_gen_cache.
+Hint Rewrite (proj1 reified_%s_gen_correct) : interp_gen_cache.
+Local Opaque reified_%s_gen. (* needed for making [autorewrite] not take a very long time *)''' % (indent, i, i, i, i, i, i, i, i, i)).replace('\n', '\n%s' % indent) + '\n')
+
+>>
+*)
+
+ Derive reified_mul_gen
+ SuchThat (is_reification_of reified_mul_gen mulmod)
+ As reified_mul_gen_correct.
+ Proof. Time cache_reify (). Time Qed.
+ Hint Extern 1 (_ = _) => apply_cached_reification mulmod (proj1 reified_mul_gen_correct) : reify_cache_gen.
+ Hint Immediate (proj2 reified_mul_gen_correct) : wf_gen_cache.
+ Hint Rewrite (proj1 reified_mul_gen_correct) : interp_gen_cache.
+ Local Opaque reified_mul_gen. (* needed for making [autorewrite] not take a very long time *)
+
+ Derive reified_add_gen
+ SuchThat (is_reification_of reified_add_gen addmod)
+ As reified_add_gen_correct.
+ Proof. Time cache_reify (). Time Qed.
+ Hint Extern 1 (_ = _) => apply_cached_reification addmod (proj1 reified_add_gen_correct) : reify_cache_gen.
+ Hint Immediate (proj2 reified_add_gen_correct) : wf_gen_cache.
+ Hint Rewrite (proj1 reified_add_gen_correct) : interp_gen_cache.
+ Local Opaque reified_add_gen. (* needed for making [autorewrite] not take a very long time *)
+
+ Derive reified_sub_gen
+ SuchThat (is_reification_of reified_sub_gen submod)
+ As reified_sub_gen_correct.
+ Proof. Time cache_reify (). Time Qed.
+ Hint Extern 1 (_ = _) => apply_cached_reification submod (proj1 reified_sub_gen_correct) : reify_cache_gen.
+ Hint Immediate (proj2 reified_sub_gen_correct) : wf_gen_cache.
+ Hint Rewrite (proj1 reified_sub_gen_correct) : interp_gen_cache.
+ Local Opaque reified_sub_gen. (* needed for making [autorewrite] not take a very long time *)
+
+ Derive reified_opp_gen
+ SuchThat (is_reification_of reified_opp_gen oppmod)
+ As reified_opp_gen_correct.
+ Proof. Time cache_reify (). Time Qed.
+ Hint Extern 1 (_ = _) => apply_cached_reification oppmod (proj1 reified_opp_gen_correct) : reify_cache_gen.
+ Hint Immediate (proj2 reified_opp_gen_correct) : wf_gen_cache.
+ Hint Rewrite (proj1 reified_opp_gen_correct) : interp_gen_cache.
+ Local Opaque reified_opp_gen. (* needed for making [autorewrite] not take a very long time *)
+
+ Derive reified_to_bytes_gen
+ SuchThat (is_reification_of reified_to_bytes_gen to_bytesmod)
+ As reified_to_bytes_gen_correct.
+ Proof. Time cache_reify (). Time Qed.
+ Hint Extern 1 (_ = _) => apply_cached_reification to_bytesmod (proj1 reified_to_bytes_gen_correct) : reify_cache_gen.
+ Hint Immediate (proj2 reified_to_bytes_gen_correct) : wf_gen_cache.
+ Hint Rewrite (proj1 reified_to_bytes_gen_correct) : interp_gen_cache.
+ Local Opaque reified_to_bytes_gen. (* needed for making [autorewrite] not take a very long time *)
+
+ Derive reified_from_bytes_gen
+ SuchThat (is_reification_of reified_from_bytes_gen from_bytesmod)
+ As reified_from_bytes_gen_correct.
+ Proof. Time cache_reify (). Time Qed.
+ Hint Extern 1 (_ = _) => apply_cached_reification from_bytesmod (proj1 reified_from_bytes_gen_correct) : reify_cache_gen.
+ Hint Immediate (proj2 reified_from_bytes_gen_correct) : wf_gen_cache.
+ Hint Rewrite (proj1 reified_from_bytes_gen_correct) : interp_gen_cache.
+ Local Opaque reified_from_bytes_gen. (* needed for making [autorewrite] not take a very long time *)
+
+ Derive reified_nonzero_gen
+ SuchThat (is_reification_of reified_nonzero_gen nonzeromod)
+ As reified_nonzero_gen_correct.
+ Proof. Time cache_reify (). Time Qed.
+ Hint Extern 1 (_ = _) => apply_cached_reification nonzeromod (proj1 reified_nonzero_gen_correct) : reify_cache_gen.
+ Hint Immediate (proj2 reified_nonzero_gen_correct) : wf_gen_cache.
+ Hint Rewrite (proj1 reified_nonzero_gen_correct) : interp_gen_cache.
+ Local Opaque reified_nonzero_gen. (* needed for making [autorewrite] not take a very long time *)
+
+ Derive reified_square_gen
+ SuchThat (is_reification_of reified_square_gen squaremod)
+ As reified_square_gen_correct.
+ Proof.
+ Time cache_reify ().
+ (* we would do something faster, but it breaks extraction COQBUG(https://github.com/coq/coq/issues/7954) *)
+ (* Time cache_reify_faster_2arg (). *)
+ Time Qed.
+ Hint Extern 1 (_ = _) => apply_cached_reification squaremod (proj1 reified_square_gen_correct) : reify_cache_gen.
+ Hint Immediate (proj2 reified_square_gen_correct) : wf_gen_cache.
+ Hint Rewrite (proj1 reified_square_gen_correct) : interp_gen_cache.
+ Local Opaque reified_square_gen. (* needed for making [autorewrite] not take a very long time *)
+
+ Derive reified_encode_gen
+ SuchThat (is_reification_of reified_encode_gen encodemod)
+ As reified_encode_gen_correct.
+ Proof.
+ Time cache_reify ().
+ (* we would do something faster, but it breaks extraction COQBUG(https://github.com/coq/coq/issues/7954) *)
+ (* Time cache_reify_faster_2arg (). *)
+ Time Qed.
+ Hint Extern 1 (_ = _) => apply_cached_reification encodemod (proj1 reified_encode_gen_correct) : reify_cache_gen.
+ Hint Immediate (proj2 reified_encode_gen_correct) : wf_gen_cache.
+ Hint Rewrite (proj1 reified_encode_gen_correct) : interp_gen_cache.
+ Local Opaque reified_encode_gen. (* needed for making [autorewrite] not take a very long time *)
+
+ Derive reified_from_montgomery_gen
+ SuchThat (is_reification_of reified_from_montgomery_gen from_montgomerymod)
+ As reified_from_montgomery_gen_correct.
+ Proof.
+ Time cache_reify ().
+ (* we would do something faster, but it breaks extraction COQBUG(https://github.com/coq/coq/issues/7954) *)
+ (* Time cache_reify_faster_2arg (). *)
+ Time Qed.
+ Hint Extern 1 (_ = _) => apply_cached_reification from_montgomerymod (proj1 reified_from_montgomery_gen_correct) : reify_cache_gen.
+ Hint Immediate (proj2 reified_from_montgomery_gen_correct) : wf_gen_cache.
+ Hint Rewrite (proj1 reified_from_montgomery_gen_correct) : interp_gen_cache.
+ Local Opaque reified_from_montgomery_gen. (* needed for making [autorewrite] not take a very long time *)
+
+ Derive reified_zero_gen
+ SuchThat (is_reification_of reified_zero_gen zeromod)
+ As reified_zero_gen_correct.
+ Proof.
+ (* Time cache_reify (). *)
+ (* we do something faster *)
+ Time cache_reify_faster_1arg ().
+ Time Qed.
+ Hint Extern 1 (_ = _) => apply_cached_reification zeromod (proj1 reified_zero_gen_correct) : reify_cache_gen.
+ Hint Immediate (proj2 reified_zero_gen_correct) : wf_gen_cache.
+ Hint Rewrite (proj1 reified_zero_gen_correct) : interp_gen_cache.
+ Local Opaque reified_zero_gen. (* needed for making [autorewrite] not take a very long time *)
+
+ Derive reified_one_gen
+ SuchThat (is_reification_of reified_one_gen onemod)
+ As reified_one_gen_correct.
+ Proof.
+ (* Time cache_reify (). *)
+ (* we do something faster *)
+ Time cache_reify_faster_1arg ().
+ Time Qed.
+ Hint Extern 1 (_ = _) => apply_cached_reification onemod (proj1 reified_one_gen_correct) : reify_cache_gen.
+ Hint Immediate (proj2 reified_one_gen_correct) : wf_gen_cache.
+ Hint Rewrite (proj1 reified_one_gen_correct) : interp_gen_cache.
+ Local Opaque reified_one_gen. (* needed for making [autorewrite] not take a very long time *)
+
+ (* needed for making [autorewrite] with [Set Keyed Unification] fast *)
+ Local Opaque expr.Interp.
+
+ Section __.
+ Context (s : Z)
+ (c : list (Z * Z))
+ (machine_wordsize : Z).
+
+ Let n : nat := Z.to_nat (Qceiling (Z.log2_up s / machine_wordsize)).
+ Let m := s - Associational.eval c.
+ Let r := 2^machine_wordsize.
+ Let r' := match Z.modinv r m with
+ | Some r' => r'
+ | None => 0
+ end.
+ Let m' := match Z.modinv (-m) r with
+ | Some m' => m'
+ | None => 0
+ end.
+ Let n_bytes := bytes_n machine_wordsize 1 n.
+ Let prime_upperbound_list : list Z
+ := Partition.partition (UniformWeight.uweight machine_wordsize) n (s-1).
+ Let prime_bytes_upperbound_list : list Z
+ := Partition.partition (weight 8 1) n_bytes (s-1).
+ Let upperbounds : list Z := prime_upperbound_list.
+ Definition prime_bound : ZRange.type.option.interp (base.type.Z)
+ := Some r[0~>(s - Associational.eval c - 1)]%zrange.
+ Definition prime_bounds : ZRange.type.option.interp (base.type.list (base.type.Z))
+ := Some (List.map (fun v => Some r[0 ~> v]%zrange) prime_upperbound_list).
+ Definition prime_bytes_bounds : ZRange.type.option.interp (base.type.list (base.type.Z))
+ := Some (List.map (fun v => Some r[0 ~> v]%zrange) prime_bytes_upperbound_list).
+ Local Notation saturated_bounds_list := (saturated_bounds_list n machine_wordsize).
+ Local Notation saturated_bounds := (saturated_bounds n machine_wordsize).
+
+ Definition m_enc : list Z
+ := encode (UniformWeight.uweight machine_wordsize) n s c (s-Associational.eval c).
+
+ Definition possible_values_of_machine_wordsize
+ := [1; machine_wordsize; 2 * machine_wordsize]%Z.
+
+ Definition possible_values_of_machine_wordsize_with_bytes
+ := [1; 8; machine_wordsize; 2 * machine_wordsize]%Z.
+
+ Let possible_values := possible_values_of_machine_wordsize.
+ Let possible_values_with_bytes := possible_values_of_machine_wordsize_with_bytes.
+ Definition bounds : list (ZRange.type.option.interp base.type.Z)
+ := Option.invert_Some saturated_bounds (*List.map (fun u => Some r[0~>u]%zrange) upperbounds*).
+
+ (** Note: If you change the name or type signature of this
+ function, you will need to update the code in CLI.v *)
+ Definition check_args {T} (res : Pipeline.ErrorT T)
+ : Pipeline.ErrorT T
+ := fold_right
+ (fun '(b, e) k => if b:bool then Error e else k)
+ res
+ [(negb (1 <? machine_wordsize)%Z, Pipeline.Value_not_ltZ "machine_wordsize <= 1" 1 machine_wordsize);
+ ((negb (0 <? Associational.eval c))%Z, Pipeline.Value_not_ltZ "Associational.eval c ≤ 0" 0 (Associational.eval c));
+ ((negb (Associational.eval c <? s))%Z, Pipeline.Value_not_ltZ "s ≤ Associational.eval c" (Associational.eval c) s);
+ ((s =? 0)%Z, Pipeline.Values_not_provably_distinctZ "s = 0" s 0);
+ ((n =? 0)%nat, Pipeline.Values_not_provably_distinctZ "n = 0" n 0%nat);
+ ((r' =? 0)%Z, Pipeline.No_modular_inverse "r⁻¹ mod m" r m);
+ (negb ((r * r') mod m =? 1)%Z, Pipeline.Values_not_provably_equalZ "(r * r') mod m ≠ 1" ((r * r') mod m) 1);
+ (negb ((m * m') mod r =? (-1) mod r)%Z, Pipeline.Values_not_provably_equalZ "(m * m') mod r ≠ (-1) mod r" ((m * m') mod r) ((-1) mod r));
+ (negb (s <=? r^n), Pipeline.Value_not_leZ "r^n ≤ s" s (r^n));
+ (negb (1 <? s - Associational.eval c), Pipeline.Value_not_ltZ "s - Associational.eval c ≤ 1" 1 (s - Associational.eval c));
+ (negb (s =? 2^Z.log2 s), Pipeline.Values_not_provably_equalZ "s ≠ 2^log2(s) (needed for from_bytes)" s (2^Z.log2 s));
+ (negb (s <=? UniformWeight.uweight machine_wordsize n), Pipeline.Value_not_leZ "weight n < s (needed for from_bytes)" s (UniformWeight.uweight machine_wordsize n));
+ (negb (UniformWeight.uweight machine_wordsize n =? UniformWeight.uweight 8 n_bytes), Pipeline.Values_not_provably_equalZ "weight n ≠ bytes_weight n_bytes (needed for from_bytes)" (UniformWeight.uweight machine_wordsize n) (UniformWeight.uweight 8 n_bytes))].
+
+ Local Ltac use_curve_good_t :=
+ repeat first [ assumption
+ | progress rewrite ?map_length, ?Z.mul_0_r, ?Pos.mul_1_r, ?Z.mul_1_r in *
+ | reflexivity
+ | lia
+ | rewrite expr.interp_reify_list, ?map_map
+ | rewrite map_ext with (g:=id), map_id
+ | progress distr_length
+ | progress cbv [Qceiling Qfloor Qopp Qdiv Qplus inject_Z Qmult Qinv] in *
+ | progress cbv [Qle] in *
+ | progress cbn -[reify_list] in *
+ | progress intros
+ | solve [ auto ] ].
+
+ Context (curve_good : check_args (Success tt) = Success tt).
+
+ Lemma use_curve_good
+ : Z.pos (Z.to_pos m) = s - Associational.eval c
+ /\ Z.pos (Z.to_pos m) <> 0
+ /\ s - Associational.eval c <> 0
+ /\ s <> 0
+ /\ 0 < machine_wordsize
+ /\ n <> 0%nat
+ /\ List.length bounds = n
+ /\ 0 < 1 <= machine_wordsize
+ /\ 0 < Associational.eval c < s
+ /\ (r * r') mod m = 1
+ /\ (m * m') mod r = (-1) mod r
+ /\ 0 < machine_wordsize
+ /\ 1 < m
+ /\ m < r^n
+ /\ s = 2^Z.log2 s
+ /\ s <= UniformWeight.uweight machine_wordsize n
+ /\ s <= UniformWeight.uweight 8 n_bytes
+ /\ UniformWeight.uweight machine_wordsize n = UniformWeight.uweight 8 n_bytes.
+ Proof.
+ clear -curve_good.
+ cbv [check_args fold_right] in curve_good.
+ cbv [bounds prime_bound m_enc prime_bounds saturated_bounds] in *.
+ break_innermost_match_hyps; try discriminate.
+ rewrite negb_false_iff in *.
+ Z.ltb_to_lt.
+ rewrite NPeano.Nat.eqb_neq in *.
+ intros.
+ cbv [Qnum Qden Qceiling Qfloor Qopp Qdiv Qplus inject_Z Qmult Qinv] in *.
+ rewrite ?map_length, ?Z.mul_0_r, ?Pos.mul_1_r, ?Z.mul_1_r in *.
+ specialize_by lia.
+ repeat match goal with H := _ |- _ => subst H end.
+ repeat match goal with
+ | [ H : list_beq _ _ _ _ = true |- _ ] => apply internal_list_dec_bl in H; [ | intros; Z.ltb_to_lt; omega.. ]
+ end.
+ repeat apply conj.
+ { destruct (s - Associational.eval c) eqn:?; cbn; lia. }
+ { use_curve_good_t. }
+ { use_curve_good_t. }
+ { use_curve_good_t. }
+ { use_curve_good_t. }
+ { use_curve_good_t. }
+ { use_curve_good_t. }
+ { use_curve_good_t. }
+ { use_curve_good_t. }
+ { use_curve_good_t. }
+ { use_curve_good_t. }
+ { use_curve_good_t. }
+ { use_curve_good_t. }
+ { use_curve_good_t. }
+ { use_curve_good_t. }
+ { use_curve_good_t. }
+ { use_curve_good_t. }
+ { use_curve_good_t. }
+ { use_curve_good_t. }
+ { use_curve_good_t. }
+ Qed.
+
+
+ Definition mul
+ := Pipeline.BoundsPipeline
+ false (* subst01 *)
+ None (* fancy *)
+ possible_values
+ (reified_mul_gen
+ @ GallinaReify.Reify machine_wordsize @ GallinaReify.Reify n @ GallinaReify.Reify m @ GallinaReify.Reify m')
+ (Some bounds, (Some bounds, tt))
+ (Some bounds).
+
+ Definition smul (prefix : string)
+ : string * (Pipeline.ErrorT (list string * ToString.C.ident_infos))
+ := Eval cbv beta in FromPipelineToString prefix "mul" mul.
+
+ Definition square
+ := Pipeline.BoundsPipeline
+ false (* subst01 *)
+ None (* fancy *)
+ possible_values
+ (reified_square_gen
+ @ GallinaReify.Reify machine_wordsize @ GallinaReify.Reify n @ GallinaReify.Reify m @ GallinaReify.Reify m')
+ (Some bounds, tt)
+ (Some bounds).
+
+ Definition ssquare (prefix : string)
+ : string * (Pipeline.ErrorT (list string * ToString.C.ident_infos))
+ := Eval cbv beta in FromPipelineToString prefix "square" square.
+
+ Definition add
+ := Pipeline.BoundsPipeline
+ true (* subst01 *)
+ None (* fancy *)
+ possible_values
+ (reified_add_gen
+ @ GallinaReify.Reify machine_wordsize @ GallinaReify.Reify n @ GallinaReify.Reify m)
+ (Some bounds, (Some bounds, tt))
+ (Some bounds).
+
+ Definition sadd (prefix : string)
+ : string * (Pipeline.ErrorT (list string * ToString.C.ident_infos))
+ := Eval cbv beta in FromPipelineToString prefix "add" add.
+
+ Definition sub
+ := Pipeline.BoundsPipeline
+ true (* subst01 *)
+ None (* fancy *)
+ possible_values
+ (reified_sub_gen
+ @ GallinaReify.Reify machine_wordsize @ GallinaReify.Reify n @ GallinaReify.Reify m)
+ (Some bounds, (Some bounds, tt))
+ (Some bounds).
+
+ Definition ssub (prefix : string)
+ : string * (Pipeline.ErrorT (list string * ToString.C.ident_infos))
+ := Eval cbv beta in FromPipelineToString prefix "sub" sub.
+
+ Definition opp
+ := Pipeline.BoundsPipeline
+ true (* subst01 *)
+ None (* fancy *)
+ possible_values
+ (reified_opp_gen
+ @ GallinaReify.Reify machine_wordsize @ GallinaReify.Reify n @ GallinaReify.Reify m)
+ (Some bounds, tt)
+ (Some bounds).
+
+ Definition sopp (prefix : string)
+ : string * (Pipeline.ErrorT (list string * ToString.C.ident_infos))
+ := Eval cbv beta in FromPipelineToString prefix "opp" opp.
+
+ Definition from_montgomery
+ := Pipeline.BoundsPipeline
+ true (* subst01 *)
+ None (* fancy *)
+ possible_values
+ (reified_from_montgomery_gen
+ @ GallinaReify.Reify machine_wordsize @ GallinaReify.Reify n @ GallinaReify.Reify m @ GallinaReify.Reify m')
+ (Some bounds, tt)
+ (Some bounds).
+
+ Definition sfrom_montgomery (prefix : string)
+ : string * (Pipeline.ErrorT (list string * ToString.C.ident_infos))
+ := Eval cbv beta in FromPipelineToString prefix "from_montgomery" from_montgomery.
+
+ Definition nonzero
+ := Pipeline.BoundsPipeline
+ true (* subst01 *)
+ None (* fancy *)
+ possible_values
+ reified_nonzero_gen
+ (Some bounds, tt)
+ (Some r[0~>r-1]%zrange).
+
+ Definition snonzero (prefix : string)
+ : string * (Pipeline.ErrorT (list string * ToString.C.ident_infos))
+ := Eval cbv beta in FromPipelineToString prefix "nonzero" nonzero.
+
+ Definition to_bytes
+ := Pipeline.BoundsPipeline
+ false (* subst01 *)
+ None (* fancy *)
+ possible_values_with_bytes
+ (reified_to_bytes_gen
+ @ GallinaReify.Reify machine_wordsize @ GallinaReify.Reify n)
+ (prime_bounds, tt)
+ prime_bytes_bounds.
+
+ Definition sto_bytes (prefix : string)
+ : string * (Pipeline.ErrorT (list string * ToString.C.ident_infos))
+ := Eval cbv beta in FromPipelineToString prefix "to_bytes" to_bytes.
+
+ Definition from_bytes
+ := Pipeline.BoundsPipeline
+ false (* subst01 *)
+ None (* fancy *)
+ possible_values_with_bytes
+ (reified_from_bytes_gen
+ @ GallinaReify.Reify machine_wordsize @ GallinaReify.Reify 1 @ GallinaReify.Reify n)
+ (prime_bytes_bounds, tt)
+ prime_bounds.
+
+ Definition sfrom_bytes (prefix : string)
+ : string * (Pipeline.ErrorT (list string * ToString.C.ident_infos))
+ := Eval cbv beta in FromPipelineToString prefix "from_bytes" from_bytes.
+
+ Definition encode
+ := Pipeline.BoundsPipeline
+ true (* subst01 *)
+ None (* fancy *)
+ possible_values
+ (reified_encode_gen
+ @ GallinaReify.Reify machine_wordsize @ GallinaReify.Reify n @ GallinaReify.Reify m @ GallinaReify.Reify m')
+ (prime_bound, tt)
+ (Some bounds).
+
+ Definition sencode (prefix : string)
+ : string * (Pipeline.ErrorT (list string * ToString.C.ident_infos))
+ := Eval cbv beta in FromPipelineToString prefix "encode" encode.
+
+ Definition zero
+ := Pipeline.BoundsPipeline
+ true (* subst01 *)
+ None (* fancy *)
+ possible_values
+ (reified_zero_gen
+ @ GallinaReify.Reify machine_wordsize @ GallinaReify.Reify n @ GallinaReify.Reify m @ GallinaReify.Reify m')
+ tt
+ (Some bounds).
+
+ Definition szero (prefix : string)
+ : string * (Pipeline.ErrorT (list string * ToString.C.ident_infos))
+ := Eval cbv beta in FromPipelineToString prefix "zero" zero.
+
+ Definition one
+ := Pipeline.BoundsPipeline
+ true (* subst01 *)
+ None (* fancy *)
+ possible_values
+ (reified_one_gen
+ @ GallinaReify.Reify machine_wordsize @ GallinaReify.Reify n @ GallinaReify.Reify m @ GallinaReify.Reify m')
+ tt
+ (Some bounds).
+
+ Definition sone (prefix : string)
+ : string * (Pipeline.ErrorT (list string * ToString.C.ident_infos))
+ := Eval cbv beta in FromPipelineToString prefix "one" one.
+
+ Definition selectznz : Pipeline.ErrorT _ := Primitives.selectznz n machine_wordsize.
+ Definition sselectznz (prefix : string)
+ : string * (Pipeline.ErrorT (list string * ToString.C.ident_infos))
+ := Primitives.sselectznz n machine_wordsize prefix.
+
+ Local Notation valid := (Arithmetic.WordByWordMontgomery.valid machine_wordsize n m).
+ Local Notation bytes_valid := (Arithmetic.WordByWordMontgomery.valid 8 n_bytes m).
+
+ Lemma bounded_by_of_valid x
+ (H : valid x)
+ : ZRange.type.base.option.is_bounded_by (t:=base.type.list base.type.Z) (Some bounds) x = true.
+ Proof using curve_good.
+ pose proof use_curve_good as use_curve_good.
+ clear -H use_curve_good curve_good.
+ destruct H as [H _]; destruct_head'_and.
+ cbv [small] in H.
+ cbv [ZRange.type.base.option.is_bounded_by bounds saturated_bounds saturated_bounds_list Option.invert_Some].
+ replace n with (List.length x) by now rewrite H, Partition.length_partition.
+ rewrite <- map_const, fold_andb_map_map1, fold_andb_map_iff.
+ cbv [ZRange.type.base.is_bounded_by is_bounded_by_bool lower upper].
+ split; [ reflexivity | ].
+ intros *; rewrite combine_same, in_map_iff, Bool.andb_true_iff, !Z.leb_le.
+ intros; destruct_head'_ex; destruct_head'_and; subst *; cbn [fst snd].
+ match goal with
+ | [ H : In ?v x |- _ ] => revert v H
+ end.
+ rewrite H.
+ generalize (eval (n:=n) machine_wordsize x).
+ cbn [base.interp base.base_interp].
+ generalize n.
+ intro n'.
+ induction n' as [|n' IHn'].
+ { cbv [Partition.partition seq map In]; tauto. }
+ { intros *; rewrite Partition.partition_step, in_app_iff; cbn [List.In].
+ intros; destruct_head'_or; subst *; eauto; try tauto; [].
+ rewrite UniformWeight.uweight_S by lia.
+ assert (0 < UniformWeight.uweight machine_wordsize n') by now apply UniformWeight.uwprops.
+ assert (0 < 2 ^ machine_wordsize) by auto with zarith.
+ assert (0 < 2 ^ machine_wordsize * UniformWeight.uweight machine_wordsize n') by nia.
+ rewrite <- Z.mod_pull_div by lia.
+ rewrite Z.le_sub_1_iff.
+ auto with zarith. }
+ Qed.
+
+ (* XXX FIXME *)
+ Lemma bounded_by_prime_bounds_of_valid_gen lgr n' x
+ (Hlgr : 0 < lgr)
+ (Hs : s = 2^Z.log2 s)
+ (Hs' : s <= UniformWeight.uweight lgr n')
+ (H : WordByWordMontgomery.valid lgr n' m x)
+ : ZRange.type.base.option.is_bounded_by (t:=base.type.list base.type.Z) (Some (List.map (fun v => Some r[0~>v]%zrange) (Partition.partition (UniformWeight.uweight lgr) n' (s-1)))) x = true.
+ Proof using curve_good.
+ pose proof use_curve_good as use_curve_good.
+ clear -H use_curve_good curve_good Hlgr Hs Hs'.
+ destruct H as [H ?]; destruct_head'_and.
+ cbv [small] in H.
+ cbv [ZRange.type.base.option.is_bounded_by].
+ replace n' with (List.length x) by now rewrite H, Partition.length_partition.
+ rewrite fold_andb_map_map1, fold_andb_map_iff.
+ split; [ now autorewrite with distr_length | ].
+ cbv [ZRange.type.base.is_bounded_by is_bounded_by_bool lower upper].
+ rewrite H; autorewrite with distr_length.
+ intros [v1 v0]; cbn [fst snd].
+ rewrite !Partition.recursive_partition_equiv by now apply UniformWeight.uwprops.
+ rename x into x'.
+ generalize dependent (eval (n:=n') lgr x').
+ cbv [m].
+ intro x; intros ???; subst x'.
+ assert (H' : 0 <= x < s) by lia.
+ revert H'; generalize x; clear dependent x.
+ replace s with (2^Z.log2 s) by easy.
+ clear Hs.
+ assert (1 < s) by lia.
+ assert (0 < Z.log2 s) by now apply Z.log2_pos.
+ assert (H' : 1 < 2^Z.log2 s) by auto with zarith; revert H'.
+ generalize (Z.log2 s); intro lgs.
+ revert lgs.
+ induction n' as [|n' IHn']; [ cbn; tauto | ].
+ cbn [Partition.recursive_partition List.combine List.In] in *.
+ rewrite UniformWeight.uweight_1, weight_0, Z.div_1_r by ((now apply UniformWeight.uwprops) || lia).
+ intros lgs ?.
+ assert (0 < 2^lgr) by auto with zarith.
+ assert (1 < 2^lgr) by auto with zarith.
+ intros; destruct_head'_or; [ rewrite Bool.andb_true_iff, !Z.leb_le | ];
+ inversion_prod; subst *.
+ { push_Zmod; pull_Zmod; autorewrite with zsimplify_const.
+ (*rewrite Z_mod_nz_opp_full by (Z.rewrite_mod_small; lia).
+ Z.rewrite_mod_small.
+ rewrite Z.le_sub_1_iff; auto with zarith. }
+ { rewrite <- Z.add_opp_r, !Z.div_add_l', !Z_div_nz_opp_full, !Z.div_1_l, !Z.sub_0_l, !Z.add_opp_r in * by (Z.rewrite_mod_small; lia).
+ rewrite !UniformWeight.uweight_recursive_partition_change_start with (i:=1%nat) (j:=0%nat) in * by lia.
+ eapply IHn'; [ | eassumption ].
+ Z.generalize_div_eucl x (2^lgr); intros; subst *.
+ nia. }*)
+ Admitted.
+
+ Lemma length_of_valid lgr n' x
+ (H : WordByWordMontgomery.valid lgr n' m x)
+ : List.length x = n'.
+ Proof using Type.
+ destruct H as [H _]; rewrite H.
+ now autorewrite with distr_length.
+ Qed.
+
+ Lemma bounded_by_prime_bounds_of_valid x
+ (H : valid x)
+ : ZRange.type.base.option.is_bounded_by (t:=base.type.list base.type.Z) prime_bounds x = true.
+ Proof using curve_good.
+ pose proof use_curve_good as use_curve_good.
+ destruct_head'_and.
+ now apply bounded_by_prime_bounds_of_valid_gen.
+ Qed.
+
+ Lemma bounded_by_prime_bytes_bounds_of_bytes_valid x
+ (H : bytes_valid x)
+ : ZRange.type.base.option.is_bounded_by (t:=base.type.list base.type.Z) prime_bytes_bounds x = true.
+ Proof using curve_good.
+ pose proof use_curve_good as use_curve_good.
+ destruct_head'_and.
+ now apply bounded_by_prime_bounds_of_valid_gen.
+ Qed.
+
+ Lemma weight_bounded_of_bytes_valid x
+ (H : bytes_valid x)
+ : 0 <= eval 8 (n:=n_bytes) x < weight machine_wordsize 1 n.
+ Proof using curve_good.
+ cbv [bytes_valid] in H.
+ destruct H as [_ H].
+ pose proof use_curve_good.
+ cbv [m UniformWeight.uweight] in *; destruct_head'_and; lia.
+ Qed.
+
+ Local Ltac solve_extra_bounds_side_conditions :=
+ solve [ cbn [lower upper fst snd] in *; Bool.split_andb; Z.ltb_to_lt; cbv [m] in *; lia
+ | cbv [valid small eval UniformWeight.uweight n_bytes] in *; destruct_head'_and; auto
+ | now apply weight_bounded_of_bytes_valid
+ | eapply length_of_valid; eassumption ].
+
+ Local Hint Rewrite
+ (@eval_mulmod machine_wordsize n m r' m')
+ (@eval_squaremod machine_wordsize n m r' m')
+ (@eval_addmod machine_wordsize n m r' m')
+ (@eval_submod machine_wordsize n m r' m')
+ (@eval_oppmod machine_wordsize n m r' m')
+ (@eval_from_montgomerymod machine_wordsize n m r' m')
+ (@eval_encodemod machine_wordsize n m r' m')
+ eval_to_bytesmod
+ eval_from_bytesmod
+ using solve [ eauto using length_of_valid | congruence | solve_extra_bounds_side_conditions ] : push_eval.
+ (* needed for making [autorewrite] fast enough *)
+ Local Opaque
+ Arithmetic.WordByWordMontgomery.onemod
+ Arithmetic.WordByWordMontgomery.from_montgomerymod
+ Arithmetic.WordByWordMontgomery.mulmod
+ Arithmetic.WordByWordMontgomery.squaremod
+ Arithmetic.WordByWordMontgomery.encodemod
+ Arithmetic.WordByWordMontgomery.addmod
+ Arithmetic.WordByWordMontgomery.submod
+ Arithmetic.WordByWordMontgomery.oppmod
+ Arithmetic.WordByWordMontgomery.to_bytesmod.
+ Hint Unfold eval zeromod onemod : push_eval.
+
+ Local Ltac prove_correctness op_correct :=
+ let dont_clear H := first [ constr_eq H curve_good ] in
+ let Hres := match goal with H : _ = Success _ |- _ => H end in
+ let H := fresh in
+ pose proof use_curve_good as H;
+ (* I want to just use [clear -H Hres], but then I can't use any lemmas in the section because of COQBUG(https://github.com/coq/coq/issues/8153) *)
+ repeat match goal with
+ | [ H' : _ |- _ ]
+ => tryif first [ has_body H' | constr_eq H' H | constr_eq H' Hres | dont_clear H' ]
+ then fail
+ else clear H'
+ end;
+ cbv zeta in *;
+ destruct_head'_and;
+ let f := match type of Hres with ?f = _ => head f end in
+ try cbv [f] in *;
+ hnf;
+ PipelineTactics.do_unfolding;
+ try (let m := match goal with m := _ - Associational.eval _ |- _ => m end in
+ cbv [m] in * );
+ intros;
+ lazymatch goal with
+ | [ |- _ <-> _ ] => idtac
+ | [ |- _ = _ ] => idtac
+ | _ => split; [ | try split ];
+ cbv [small]
+ end;
+ PipelineTactics.use_compilers_correctness Hres;
+ repeat first [ reflexivity
+ | now apply bounded_by_of_valid
+ | now apply bounded_by_prime_bounds_of_valid
+ | now apply bounded_by_prime_bytes_bounds_of_bytes_valid
+ | now apply weight_bounded_of_bytes_valid
+ | solve [ eapply op_correct; try eassumption; solve_extra_bounds_side_conditions ]
+ | progress autorewrite with interp interp_gen_cache push_eval
+ | progress autounfold with push_eval
+ | progress autorewrite with distr_length in *
+ | solve [ cbv [valid small eval UniformWeight.uweight n_bytes] in *; destruct_head'_and; auto ] ].
+
+ (** TODO: DESIGN DECISION:
+
+ The correctness lemmas for most of the montgomery things are
+ parameterized over a `from_montgomery`. When filling this in
+ for, e.g., mul-correctness, should I use `from_montgomery`
+ from arithmetic, or should I use `Interp
+ reified_from_montgomery` (the post-pipeline version), and take
+ in success of the pipeline on `from_montgomery` as well? *)
+
+ Local Notation from_montgomery_res := (from_montgomerymod machine_wordsize n m m').
+
+ Lemma mul_correct res
+ (Hres : mul = Success res)
+ : mul_correct machine_wordsize n m valid from_montgomery_res (Interp res).
+ Proof using curve_good. prove_correctness mulmod_correct. Qed.
+
+ Lemma square_correct res
+ (Hres : square = Success res)
+ : square_correct machine_wordsize n m valid from_montgomery_res (Interp res).
+ Proof using curve_good. prove_correctness squaremod_correct. Qed.
+
+ Lemma add_correct res
+ (Hres : add = Success res)
+ : add_correct machine_wordsize n m valid from_montgomery_res (Interp res).
+ Proof using curve_good. prove_correctness addmod_correct. Qed.
+
+ Lemma sub_correct res
+ (Hres : sub = Success res)
+ : sub_correct machine_wordsize n m valid from_montgomery_res (Interp res).
+ Proof using curve_good. prove_correctness submod_correct. Qed.
+
+ Lemma opp_correct res
+ (Hres : opp = Success res)
+ : opp_correct machine_wordsize n m valid from_montgomery_res (Interp res).
+ Proof using curve_good. prove_correctness oppmod_correct. Qed.
+
+ Lemma from_montgomery_correct res
+ (Hres : from_montgomery = Success res)
+ : from_montgomery_correct machine_wordsize n m r' valid (Interp res).
+ Proof using curve_good. prove_correctness from_montgomerymod_correct. Qed.
+
+ Lemma nonzero_correct res
+ (Hres : nonzero = Success res)
+ : nonzero_correct machine_wordsize n m valid from_montgomery_res (Interp res).
+ Proof using curve_good. prove_correctness nonzeromod_correct. Qed.
+
+ Lemma to_bytes_correct res
+ (Hres : to_bytes = Success res)
+ : to_bytes_correct machine_wordsize n n_bytes m valid (Interp res).
+ Proof using curve_good. prove_correctness to_bytesmod_correct. Qed.
+
+ Lemma from_bytes_correct res
+ (Hres : from_bytes = Success res)
+ : from_bytes_correct machine_wordsize n n_bytes m valid bytes_valid (Interp res).
+ Proof using curve_good. prove_correctness eval_from_bytesmod_and_partitions. Qed.
+
+ Strategy -1000 [encode]. (* if we don't tell the kernel to unfold this early, then [Qed] seems to run off into the weeds *)
+ Lemma encode_correct res
+ (Hres : encode = Success res)
+ : encode_correct machine_wordsize n m valid from_montgomery_res (Interp res).
+ Proof using curve_good. prove_correctness encodemod_correct. Qed.
+
+ Strategy -1000 [zero]. (* if we don't tell the kernel to unfold this early, then [Qed] seems to run off into the weeds *)
+ Lemma zero_correct res
+ (Hres : zero = Success res)
+ : zero_correct machine_wordsize n m valid from_montgomery_res (Interp res).
+ Proof using curve_good. prove_correctness encodemod_correct. Qed.
+
+ Strategy -1000 [one]. (* if we don't tell the kernel to unfold this early, then [Qed] seems to run off into the weeds *)
+ Lemma one_correct res
+ (Hres : one = Success res)
+ : one_correct machine_wordsize n m valid from_montgomery_res (Interp res).
+ Proof using curve_good. prove_correctness encodemod_correct. Qed.
+
+ Local Opaque Pipeline.BoundsPipeline. (* need this or else [eapply Pipeline.BoundsPipeline_correct in Hres] takes forever *)
+ Lemma selectznz_correct res
+ (Hres : selectznz = Success res)
+ : selectznz_correct machine_wordsize n saturated_bounds_list (Interp res).
+ Proof using curve_good. Primitives.prove_correctness use_curve_good. Qed.
+
+ Section ring.
+ Context from_montgomery_res (Hfrom_montgomery : from_montgomery = Success from_montgomery_res)
+ mul_res (Hmul : mul = Success mul_res)
+ add_res (Hadd : add = Success add_res)
+ sub_res (Hsub : sub = Success sub_res)
+ opp_res (Hopp : opp = Success opp_res)
+ encode_res (Hencode : encode = Success encode_res)
+ zero_res (Hzero : zero = Success zero_res)
+ one_res (Hone : one = Success one_res).
+
+ Definition GoodT : Prop
+ := GoodT
+ machine_wordsize n m valid
+ (Interp from_montgomery_res)
+ (Interp mul_res)
+ (Interp add_res)
+ (Interp sub_res)
+ (Interp opp_res)
+ (Interp encode_res)
+ (Interp zero_res)
+ (Interp one_res).
+
+ Theorem Good : GoodT.
+ Proof using curve_good Hfrom_montgomery Hmul Hadd Hsub Hopp Hencode Hzero Hone.
+ pose proof use_curve_good; cbv zeta in *; destruct_head'_and.
+ eapply Good.
+ all: repeat first [ assumption
+ | apply from_montgomery_correct
+ | lia ].
+ all: hnf; intros.
+ all: push_Zmod; erewrite !(fun v Hv => proj1 (from_montgomery_correct _ Hfrom_montgomery v Hv)), <- !eval_from_montgomerymod; try eassumption; pull_Zmod.
+ all: repeat first [ assumption
+ | lazymatch goal with
+ | [ |- context[mul_res] ] => apply mul_correct
+ | [ |- context[add_res] ] => apply add_correct
+ | [ |- context[sub_res] ] => apply sub_correct
+ | [ |- context[opp_res] ] => apply opp_correct
+ | [ |- context[encode_res] ] => apply encode_correct
+ | [ |- context[zero_res] ] => apply zero_correct
+ | [ |- context[one_res] ] => apply one_correct
+ end ].
+ Qed.
+ End ring.
+
+ Section for_stringification.
+ Local Open Scope string_scope.
+ Local Open Scope list_scope.
+
+ Definition known_functions
+ := [("mul", smul);
+ ("square", ssquare);
+ ("add", sadd);
+ ("sub", ssub);
+ ("opp", sopp);
+ ("from_montgomery", sfrom_montgomery);
+ ("nonzero", snonzero);
+ ("selectznz", sselectznz);
+ ("to_bytes", sto_bytes);
+ ("from_bytes", sfrom_bytes)].
+
+ Definition valid_names : string := Eval compute in String.concat ", " (List.map (@fst _ _) known_functions).
+
+ (** Note: If you change the name or type signature of this
+ function, you will need to update the code in CLI.v *)
+ Definition Synthesize (function_name_prefix : string) (requests : list string)
+ : list (string * Pipeline.ErrorT (list string)) * PositiveSet.t (* types used *)
+ := Primitives.Synthesize
+ machine_wordsize valid_names known_functions (fun _ => nil)
+ function_name_prefix requests.
+ End for_stringification.
+ End __.
+End WordByWordMontgomery.
+
+Module Import InvertHighLow.
+ Section with_wordmax.
+ Context (log2wordmax : Z) (consts : list Z).
+ Let wordmax := 2 ^ log2wordmax.
+ Let half_bits := log2wordmax / 2.
+ Let wordmax_half_bits := 2 ^ half_bits.
+
+ Inductive kind_of_constant := upper_half (c : BinInt.Z) | lower_half (c : BinInt.Z).
+
+ Definition constant_to_scalar_single (const x : BinInt.Z) : option kind_of_constant :=
+ if x =? (BinInt.Z.shiftr const half_bits)
+ then Some (upper_half const)
+ else if x =? (BinInt.Z.land const (wordmax_half_bits - 1))
+ then Some (lower_half const)
+ else None.
+
+ Definition constant_to_scalar (x : BinInt.Z)
+ : option kind_of_constant :=
+ fold_right (fun c res => match res with
+ | Some s => Some s
+ | None => constant_to_scalar_single c x
+ end) None consts.
+
+ Definition invert_low (v : BinInt.Z) : option BinInt.Z
+ := match constant_to_scalar v with
+ | Some (lower_half v) => Some v
+ | _ => None
+ end.
+
+ Definition invert_high (v : BinInt.Z) : option BinInt.Z
+ := match constant_to_scalar v with
+ | Some (upper_half v) => Some v
+ | _ => None
+ end.
+ End with_wordmax.
+End InvertHighLow.
+
+(** TODO: Port Barrett and Montgomery to the new glue style, and remove these tactics. These tactics are only needed for the old-glue-style derivations. *)
+Require Import Crypto.Util.Equality. (* fg_equal_rel *)
+Require Import Crypto.Util.Tactics.SubstEvars.
+Require Import Crypto.Util.Tactics.GetGoal.
+Ltac peel_interp_app _ :=
+ lazymatch goal with
+ | [ |- ?R' (?InterpE ?arg) (?f ?arg) ]
+ => apply fg_equal_rel; [ | reflexivity ];
+ try peel_interp_app ()
+ | [ |- ?R' (Interp ?ev) (?f ?x) ]
+ => let sv := type of x in
+ let fx := constr:(f x) in
+ let dv := type of fx in
+ let rs := reify_type sv in
+ let rd := reify_type dv in
+ etransitivity;
+ [ apply @expr.Interp_APP_rel_reflexive with (s:=rs) (d:=rd) (R:=R');
+ typeclasses eauto
+ | apply fg_equal_rel;
+ [ try peel_interp_app ()
+ | try lazymatch goal with
+ | [ |- ?R (Interp ?ev) (Interp _) ]
+ => reflexivity
+ | [ |- ?R (Interp ?ev) ?c ]
+ => let rc := constr:(GallinaReify.Reify c) in
+ unify ev rc; vm_compute; reflexivity
+ end ] ]
+ end.
+Ltac pre_cache_reify _ :=
+ let H' := fresh in
+ lazymatch goal with
+ | [ |- ?P /\ Wf ?e ]
+ => let P' := fresh in
+ evar (P' : Prop);
+ assert (H' : P' /\ Wf e); subst P'
+ end;
+ [
+ | split; [ destruct H' as [H' _] | destruct H' as [_ H']; exact H' ];
+ cbv [type.app_curried];
+ let arg := fresh "arg" in
+ let arg2 := fresh in
+ intros arg arg2;
+ cbn [type.and_for_each_lhs_of_arrow type.eqv];
+ let H := fresh in
+ intro H;
+ repeat match type of H with
+ | and _ _ => let H' := fresh in
+ destruct H as [H' H];
+ rewrite <- H'
+ end;
+ clear dependent arg2; clear H;
+ intros _;
+ peel_interp_app ();
+ [ lazymatch goal with
+ | [ |- ?R (Interp ?ev) _ ]
+ => (tryif is_evar ev
+ then let ev' := fresh "ev" in set (ev' := ev)
+ else idtac)
+ end;
+ cbv [pointwise_relation];
+ repeat lazymatch goal with
+ | [ H : _ |- _ ] => first [ constr_eq H H'; fail 1
+ | revert H ]
+ end;
+ eexact H'
+ | .. ] ];
+ [ intros; clear | .. ].
+Ltac do_inline_cache_reify do_if_not_cached :=
+ pre_cache_reify ();
+ [ try solve [
+ cbv beta zeta;
+ repeat match goal with H := ?e |- _ => is_evar e; subst H end;
+ try solve [ split; [ solve [ eauto with nocore reify_gen_cache ] | solve [ eauto with wf_gen_cache; prove_Wf () ] ] ];
+ do_if_not_cached ()
+ ];
+ cache_reify ()
+ | .. ].
+
+(* TODO: MOVE ME *)
+Ltac vm_compute_lhs_reflexivity :=
+ lazymatch goal with
+ | [ |- ?LHS = ?RHS ]
+ => let x := (eval vm_compute in LHS) in
+ (* we cannot use the unify tactic, which just gives "not
+ unifiable" as the error message, because we want to see the
+ terms that were not unifable. See also
+ COQBUG(https://github.com/coq/coq/issues/7291) *)
+ let _unify := constr:(ltac:(reflexivity) : RHS = x) in
+ vm_cast_no_check (eq_refl x)
+ end.
+
+Ltac solve_rop' rop_correct do_if_not_cached machine_wordsizev :=
+ eapply rop_correct with (machine_wordsize:=machine_wordsizev);
+ [ do_inline_cache_reify do_if_not_cached
+ | subst_evars; vm_compute_lhs_reflexivity (* lazy; reflexivity *) ].
+Ltac solve_rop_nocache rop_correct :=
+ solve_rop' rop_correct ltac:(fun _ => idtac).
+Ltac solve_rop rop_correct :=
+ solve_rop'
+ rop_correct
+ ltac:(fun _ => let G := get_goal in fail 2 "Could not find a solution in reify_gen_cache for" G).
+
+Module BarrettReduction.
+ (* TODO : generalize to multi-word and operate on (list Z) instead of T; maybe stop taking ops as context variables *)
+ Section Generic.
+ Context {T} (rep : T -> Z -> Prop)
+ (k : Z) (k_pos : 0 < k)
+ (low : T -> Z)
+ (low_correct : forall a x, rep a x -> low a = x mod 2 ^ k)
+ (shiftr : T -> Z -> T)
+ (shiftr_correct : forall a x n,
+ rep a x ->
+ 0 <= n <= k ->
+ rep (shiftr a n) (x / 2 ^ n))
+ (mul_high : T -> T -> Z -> T)
+ (mul_high_correct : forall a b x y x0y1,
+ rep a x ->
+ rep b y ->
+ 2 ^ k <= x < 2^(k+1) ->
+ 0 <= y < 2^(k+1) ->
+ x0y1 = x mod 2 ^ k * (y / 2 ^ k) ->
+ rep (mul_high a b x0y1) (x * y / 2 ^ k))
+ (mul : Z -> Z -> T)
+ (mul_correct : forall x y,
+ 0 <= x < 2^k ->
+ 0 <= y < 2^k ->
+ rep (mul x y) (x * y))
+ (sub : T -> T -> T)
+ (sub_correct : forall a b x y,
+ rep a x ->
+ rep b y ->
+ 0 <= x - y < 2^k * 2^k ->
+ rep (sub a b) (x - y))
+ (cond_sub1 : T -> Z -> Z)
+ (cond_sub1_correct : forall a x y,
+ rep a x ->
+ 0 <= x < 2 * y ->
+ 0 <= y < 2 ^ k ->
+ cond_sub1 a y = if (x <? 2 ^ k) then x else x - y)
+ (cond_sub2 : Z -> Z -> Z)
+ (cond_sub2_correct : forall x y, cond_sub2 x y = if (x <? y) then x else x - y).
+ Context (xt mut : T) (M muSelect: Z).
+
+ Let mu := 2 ^ (2 * k) / M.
+ Context x (mu_rep : rep mut mu) (x_rep : rep xt x).
+ Context (M_nz : 0 < M)
+ (x_range : 0 <= x < M * 2 ^ k)
+ (M_range : 2 ^ (k - 1) < M < 2 ^ k)
+ (M_good : 2 * (2 ^ (2 * k) mod M) <= 2 ^ (k + 1) - mu)
+ (muSelect_correct: muSelect = mu mod 2 ^ k * (x / 2 ^ (k - 1) / 2 ^ k)).
+
+ Definition qt :=
+ dlet_nd muSelect := muSelect in (* makes sure muSelect is not inlined in the output *)
+ dlet_nd q1 := shiftr xt (k - 1) in
+ dlet_nd twoq := mul_high mut q1 muSelect in
+ shiftr twoq 1.
+ Definition reduce :=
+ dlet_nd qt := qt in
+ dlet_nd r2 := mul (low qt) M in
+ dlet_nd r := sub xt r2 in
+ let q3 := cond_sub1 r M in
+ cond_sub2 q3 M.
+
+ Lemma looser_bound : M * 2 ^ k < 2 ^ (2*k).
+ Proof. clear -M_range M_nz x_range k_pos; rewrite <-Z.add_diag, Z.pow_add_r; nia. Qed.
+
+ Lemma pow_2k_eq : 2 ^ (2*k) = 2 ^ (k - 1) * 2 ^ (k + 1).
+ Proof. clear -k_pos; rewrite <-Z.pow_add_r by omega. f_equal; ring. Qed.
+
+ Lemma mu_bounds : 2 ^ k <= mu < 2^(k+1).
+ Proof.
+ pose proof looser_bound.
+ subst mu. split.
+ { apply Z.div_le_lower_bound; omega. }
+ { apply Z.div_lt_upper_bound; try omega.
+ rewrite pow_2k_eq; apply Z.mul_lt_mono_pos_r; auto with zarith. }
+ Qed.
+
+ Lemma shiftr_x_bounds : 0 <= x / 2 ^ (k - 1) < 2^(k+1).
+ Proof.
+ pose proof looser_bound.
+ split; [ solve [Z.zero_bounds] | ].
+ apply Z.div_lt_upper_bound; auto with zarith.
+ rewrite <-pow_2k_eq. omega.
+ Qed.
+ Hint Resolve shiftr_x_bounds.
+
+ Ltac solve_rep := eauto using shiftr_correct, mul_high_correct, mul_correct, sub_correct with omega.
+
+ Let q := mu * (x / 2 ^ (k - 1)) / 2 ^ (k + 1).
+
+ Lemma q_correct : rep qt q .
+ Proof.
+ pose proof mu_bounds. cbv [qt]; subst q.
+ rewrite Z.pow_add_r, <-Z.div_div by Z.zero_bounds.
+ solve_rep.
+ Qed.
+ Hint Resolve q_correct.
+
+ Lemma x_mod_small : x mod 2 ^ (k - 1) <= M.
+ Proof. transitivity (2 ^ (k - 1)); auto with zarith. Qed.
+ Hint Resolve x_mod_small.
+
+ Lemma q_bounds : 0 <= q < 2 ^ k.
+ Proof.
+ pose proof looser_bound. pose proof x_mod_small. pose proof mu_bounds.
+ split; subst q; [ solve [Z.zero_bounds] | ].
+ edestruct q_nice_strong with (n:=M) as [? Hqnice];
+ try rewrite Hqnice; auto; try omega; [ ].
+ apply Z.le_lt_trans with (m:= x / M).
+ { break_match; omega. }
+ { apply Z.div_lt_upper_bound; omega. }
+ Qed.
+
+ Lemma two_conditional_subtracts :
+ forall a x,
+ rep a x ->
+ 0 <= x < 2 * M ->
+ cond_sub2 (cond_sub1 a M) M = cond_sub2 (cond_sub2 x M) M.
+ Proof.
+ intros.
+ erewrite !cond_sub2_correct, !cond_sub1_correct by (eassumption || omega).
+ break_match; Z.ltb_to_lt; try lia; discriminate.
+ Qed.
+
+ Lemma r_bounds : 0 <= x - q * M < 2 * M.
+ Proof.
+ pose proof looser_bound. pose proof q_bounds. pose proof x_mod_small.
+ subst q mu; split.
+ { Z.zero_bounds. apply qn_small; omega. }
+ { apply r_small_strong; rewrite ?Z.pow_1_r; auto; omega. }
+ Qed.
+
+ Lemma reduce_correct : reduce = x mod M.
+ Proof.
+ pose proof looser_bound. pose proof r_bounds. pose proof q_bounds.
+ assert (2 * M < 2^k * 2^k) by nia.
+ rewrite barrett_reduction_small with (k:=k) (m:=mu) (offset:=1) (b:=2) by (auto; omega).
+ cbv [reduce Let_In].
+ erewrite low_correct by eauto. Z.rewrite_mod_small.
+ erewrite two_conditional_subtracts by solve_rep.
+ rewrite !cond_sub2_correct.
+ subst q; reflexivity.
+ Qed.
+ End Generic.
+
+ Section BarrettReduction.
+ Context (k : Z) (k_bound : 2 <= k).
+ Context (M muLow : Z).
+ Context (M_pos : 0 < M)
+ (muLow_eq : muLow + 2^k = 2^(2*k) / M)
+ (muLow_bounds : 0 <= muLow < 2^k)
+ (M_bound1 : 2 ^ (k - 1) < M < 2^k)
+ (M_bound2: 2 * (2 ^ (2 * k) mod M) <= 2 ^ (k + 1) - (muLow + 2^k)).
+
+ Context (n:nat) (Hn_nz: n <> 0%nat) (n_le_k : Z.of_nat n <= k).
+ Context (nout : nat) (Hnout : nout = 2%nat).
+ Let w := weight k 1.
+ Local Lemma k_range : 0 < 1 <= k. Proof. omega. Qed.
+ Let props : @weight_properties w := wprops k 1 k_range.
+
+ Hint Rewrite Positional.eval_nil Positional.eval_snoc : push_eval.
+
+ Definition low (t : list Z) : Z := nth_default 0 t 0.
+ Definition high (t : list Z) : Z := nth_default 0 t 1.
+ Definition represents (t : list Z) (x : Z) :=
+ t = [x mod 2^k; x / 2^k] /\ 0 <= x < 2^k * 2^k.
+
+ Lemma represents_eq t x :
+ represents t x -> t = [x mod 2^k; x / 2^k].
+ Proof. cbv [represents]; tauto. Qed.
+
+ Lemma represents_length t x : represents t x -> length t = 2%nat.
+ Proof. cbv [represents]; intuition. subst t; reflexivity. Qed.
+
+ Lemma represents_low t x :
+ represents t x -> low t = x mod 2^k.
+ Proof. cbv [represents]; intros; rewrite (represents_eq t x) by auto; reflexivity. Qed.
+
+ Lemma represents_high t x :
+ represents t x -> high t = x / 2^k.
+ Proof. cbv [represents]; intros; rewrite (represents_eq t x) by auto; reflexivity. Qed.
+
+ Lemma represents_low_range t x :
+ represents t x -> 0 <= x mod 2^k < 2^k.
+ Proof. auto with zarith. Qed.
+
+ Lemma represents_high_range t x :
+ represents t x -> 0 <= x / 2^k < 2^k.
+ Proof.
+ destruct 1 as [? [? ?] ]; intros.
+ auto using Z.div_lt_upper_bound with zarith.
+ Qed.
+ Hint Resolve represents_length represents_low_range represents_high_range.
+
+ Lemma represents_range t x :
+ represents t x -> 0 <= x < 2^k*2^k.
+ Proof. cbv [represents]; tauto. Qed.
+
+ Lemma represents_id x :
+ 0 <= x < 2^k * 2^k ->
+ represents [x mod 2^k; x / 2^k] x.
+ Proof.
+ intros; cbv [represents]; autorewrite with cancel_pair.
+ Z.rewrite_mod_small; tauto.
+ Qed.
+
+ Local Ltac push_rep :=
+ repeat match goal with
+ | H : represents ?t ?x |- _ => unique pose proof (represents_low_range _ _ H)
+ | H : represents ?t ?x |- _ => unique pose proof (represents_high_range _ _ H)
+ | H : represents ?t ?x |- _ => rewrite (represents_low t x) in * by assumption
+ | H : represents ?t ?x |- _ => rewrite (represents_high t x) in * by assumption
+ end.
+
+ Definition shiftr (t : list Z) (n : Z) : list Z :=
+ [Z.rshi (2^k) (high t) (low t) n; Z.rshi (2^k) 0 (high t) n].
+
+ Lemma shiftr_represents a i x :
+ represents a x ->
+ 0 <= i <= k ->
+ represents (shiftr a i) (x / 2 ^ i).
+ Proof.
+ cbv [shiftr]; intros; push_rep.
+ match goal with H : _ |- _ => pose proof (represents_range _ _ H) end.
+ assert (0 < 2 ^ i) by auto with zarith.
+ assert (x < 2 ^ i * 2 ^ k * 2 ^ k) by nia.
+ assert (0 <= x / 2 ^ k / 2 ^ i < 2 ^ k) by
+ (split; Z.zero_bounds; auto using Z.div_lt_upper_bound with zarith).
+ repeat match goal with
+ | _ => rewrite Z.rshi_correct by auto with zarith
+ | _ => rewrite <-Z.div_mod''' by auto with zarith
+ | _ => progress autorewrite with zsimplify_fast
+ | _ => progress Z.rewrite_mod_small
+ | |- context [represents [(?a / ?c) mod ?b; ?a / ?b / ?c] ] =>
+ rewrite (Z.div_div_comm a b c) by auto with zarith
+ | _ => solve [auto using represents_id, Z.div_lt_upper_bound with zarith lia]
+ end.
+ Qed.
+
+ Context (Hw : forall i, w i = (2 ^ k) ^ Z.of_nat i).
+ Ltac change_weight := rewrite !Hw, ?Z.pow_0_r, ?Z.pow_1_r, ?Z.pow_2_r.
+
+ Definition wideadd t1 t2 := fst (Rows.add w 2 t1 t2).
+ (* TODO: use this definition once issue #352 is resolved *)
+ (* Definition widesub t1 t2 := fst (Rows.sub w 2 t1 t2). *)
+ Definition widesub (t1 t2 : list Z) :=
+ let t1_0 := hd 0 t1 in
+ let t1_1 := hd 0 (tl t1) in
+ let t2_0 := hd 0 t2 in
+ let t2_1 := hd 0 (tl t2) in
+ dlet_nd x0 := Z.sub_get_borrow_full (2^k) t1_0 t2_0 in
+ dlet_nd x1 := Z.sub_with_get_borrow_full (2^k) (snd x0) t1_1 t2_1 in
+ [fst x0; fst x1].
+ Definition widemul := BaseConversion.widemul_inlined k n nout.
+
+ Lemma partition_represents x :
+ 0 <= x < 2^k*2^k ->
+ represents (Partition.partition w 2 x) x.
+ Proof.
+ intros; cbn. change_weight.
+ Z.rewrite_mod_small.
+ autorewrite with zsimplify_fast.
+ auto using represents_id.
+ Qed.
+
+ Lemma eval_represents t x :
+ represents t x -> eval w 2 t = x.
+ Proof.
+ intros; rewrite (represents_eq t x) by assumption.
+ cbn. change_weight; push_rep.
+ autorewrite with zsimplify. reflexivity.
+ Qed.
+
+ Ltac wide_op partitions_pf :=
+ repeat match goal with
+ | _ => rewrite partitions_pf by eauto
+ | _ => rewrite partitions_pf by auto with zarith
+ | _ => erewrite eval_represents by eauto
+ | _ => solve [auto using partition_represents, represents_id]
+ end.
+
+ Lemma wideadd_represents t1 t2 x y :
+ represents t1 x ->
+ represents t2 y ->
+ 0 <= x + y < 2^k*2^k ->
+ represents (wideadd t1 t2) (x + y).
+ Proof. intros; cbv [wideadd]. wide_op Rows.add_partitions. Qed.
+
+ Lemma widesub_represents t1 t2 x y :
+ represents t1 x ->
+ represents t2 y ->
+ 0 <= x - y < 2^k*2^k ->
+ represents (widesub t1 t2) (x - y).
+ Proof.
+ intros; cbv [widesub Let_In].
+ rewrite (represents_eq t1 x) by assumption.
+ rewrite (represents_eq t2 y) by assumption.
+ cbn [hd tl].
+ autorewrite with to_div_mod.
+ pull_Zmod.
+ match goal with |- represents [?m; ?d] ?x =>
+ replace d with (x / 2 ^ k); [solve [auto using represents_id] |] end.
+ rewrite <-(Z.mod_small ((x - y) / 2^k) (2^k)) by (split; try apply Z.div_lt_upper_bound; Z.zero_bounds).
+ f_equal.
+ transitivity ((x mod 2^k - y mod 2^k + 2^k * (x / 2 ^ k) - 2^k * (y / 2^k)) / 2^k). {
+ rewrite (Z.div_mod x (2^k)) at 1 by auto using Z.pow_nonzero with omega.
+ rewrite (Z.div_mod y (2^k)) at 1 by auto using Z.pow_nonzero with omega.
+ f_equal. ring. }
+ autorewrite with zsimplify.
+ ring.
+ Qed.
+ (* Works with Rows.sub-based widesub definition
+ Proof. intros; cbv [widesub]. wide_op Rows.sub_partitions. Qed.
+ *)
+
+ (* TODO: MOVE Equivlalent Keys decl to Arithmetic? *)
+ Declare Equivalent Keys BaseConversion.widemul BaseConversion.widemul_inlined.
+ Lemma widemul_represents x y :
+ 0 <= x < 2^k ->
+ 0 <= y < 2^k ->
+ represents (widemul x y) (x * y).
+ Proof.
+ intros; cbv [widemul].
+ assert (0 <= x * y < 2^k*2^k) by auto with zarith.
+ wide_op BaseConversion.widemul_correct.
+ Qed.
+
+ Definition mul_high (a b : list Z) a0b1 : list Z :=
+ dlet_nd a0b0 := widemul (low a) (low b) in
+ dlet_nd ab := wideadd [high a0b0; high b] [low b; 0] in
+ wideadd ab [a0b1; 0].
+
+ Lemma mul_high_idea d a b a0 a1 b0 b1 :
+ d <> 0 ->
+ a = d * a1 + a0 ->
+ b = d * b1 + b0 ->
+ (a * b) / d = a0 * b0 / d + d * a1 * b1 + a1 * b0 + a0 * b1.
+ Proof.
+ intros. subst a b. autorewrite with push_Zmul.
+ ring_simplify_subterms. rewrite Z.pow_2_r.
+ rewrite Z.div_add_exact by (push_Zmod; autorewrite with zsimplify; omega).
+ repeat match goal with
+ | |- context [d * ?a * ?b * ?c] =>
+ replace (d * a * b * c) with (a * b * c * d) by ring
+ | |- context [d * ?a * ?b] =>
+ replace (d * a * b) with (a * b * d) by ring
+ end.
+ rewrite !Z.div_add by omega.
+ autorewrite with zsimplify.
+ rewrite (Z.mul_comm a0 b0).
+ ring_simplify. ring.
+ Qed.
+
+ Lemma represents_trans t x y:
+ represents t y -> y = x ->
+ represents t x.
+ Proof. congruence. Qed.
+
+ Lemma represents_add x y :
+ 0 <= x < 2 ^ k ->
+ 0 <= y < 2 ^ k ->
+ represents [x;y] (x + 2^k*y).
+ Proof.
+ intros; cbv [represents]; autorewrite with zsimplify.
+ repeat split; (reflexivity || nia).
+ Qed.
+
+ Lemma represents_small x :
+ 0 <= x < 2^k ->
+ represents [x; 0] x.
+ Proof.
+ intros.
+ eapply represents_trans.
+ { eauto using represents_add with zarith. }
+ { ring. }
+ Qed.
+
+ Lemma mul_high_represents a b x y a0b1 :
+ represents a x ->
+ represents b y ->
+ 2^k <= x < 2^(k+1) ->
+ 0 <= y < 2^(k+1) ->
+ a0b1 = x mod 2^k * (y / 2^k) ->
+ represents (mul_high a b a0b1) ((x * y) / 2^k).
+ Proof.
+ cbv [mul_high Let_In]; rewrite Z.pow_add_r, Z.pow_1_r by omega; intros.
+ assert (4 <= 2 ^ k) by (transitivity (Z.pow 2 2); auto with zarith).
+ assert (0 <= x * y / 2^k < 2^k*2^k) by (Z.div_mod_to_quot_rem_in_goal; nia).
+
+ rewrite mul_high_idea with (a:=x) (b:=y) (a0 := low a) (a1 := high a) (b0 := low b) (b1 := high b) in *
+ by (push_rep; Z.div_mod_to_quot_rem_in_goal; lia).
+
+ push_rep. subst a0b1.
+ assert (y / 2 ^ k < 2) by (apply Z.div_lt_upper_bound; omega).
+ replace (x / 2 ^ k) with 1 in * by (rewrite Z.div_between_1; lia).
+ autorewrite with zsimplify_fast in *.
+
+ eapply represents_trans.
+ { repeat (apply wideadd_represents;
+ [ | apply represents_small; Z.div_mod_to_quot_rem_in_goal; nia| ]).
+ erewrite represents_high; [ | apply widemul_represents; solve [ auto with zarith ] ].
+ { apply represents_add; try reflexivity; solve [auto with zarith]. }
+ { match goal with H : 0 <= ?x + ?y < ?z |- 0 <= ?x < ?z =>
+ split; [ solve [Z.zero_bounds] | ];
+ eapply Z.le_lt_trans with (m:= x + y); nia
+ end. }
+ { omega. } }
+ { ring. }
+ Qed.
+
+ Definition cond_sub1 (a : list Z) y : Z :=
+ dlet_nd maybe_y := Z.zselect (Z.cc_l (high a)) 0 y in
+ dlet_nd diff := Z.sub_get_borrow_full (2^k) (low a) maybe_y in
+ fst diff.
+
+ Lemma cc_l_only_bit : forall x s, 0 <= x < 2 * s -> Z.cc_l (x / s) = 0 <-> x < s.
+ Proof.
+ cbv [Z.cc_l]; intros.
+ rewrite Z.div_between_0_if by omega.
+ break_match; Z.ltb_to_lt; Z.rewrite_mod_small; omega.
+ Qed.
+
+ Lemma cond_sub1_correct a x y :
+ represents a x ->
+ 0 <= x < 2 * y ->
+ 0 <= y < 2 ^ k ->
+ cond_sub1 a y = if (x <? 2 ^ k) then x else x - y.
+ Proof.
+ intros; cbv [cond_sub1 Let_In]. rewrite Z.zselect_correct. push_rep.
+ break_match; Z.ltb_to_lt; rewrite cc_l_only_bit in *; try omega;
+ autorewrite with zsimplify_fast to_div_mod pull_Zmod; auto with zarith.
+ Qed.
+
+ Definition cond_sub2 x y := Z.add_modulo x 0 y.
+ Lemma cond_sub2_correct x y :
+ cond_sub2 x y = if (x <? y) then x else x - y.
+ Proof.
+ cbv [cond_sub2]. rewrite Z.add_modulo_correct.
+ autorewrite with zsimplify_fast. break_match; Z.ltb_to_lt; omega.
+ Qed.
+
+ Section Defn.
+ Context (xLow xHigh : Z) (xLow_bounds : 0 <= xLow < 2^k) (xHigh_bounds : 0 <= xHigh < M).
+ Let xt := [xLow; xHigh].
+ Let x := xLow + 2^k * xHigh.
+
+ Lemma x_rep : represents xt x.
+ Proof. cbv [represents]; subst xt x; autorewrite with cancel_pair zsimplify; repeat split; nia. Qed.
+
+ Lemma x_bounds : 0 <= x < M * 2 ^ k.
+ Proof. subst x; nia. Qed.
+
+ Definition muSelect := Z.zselect (Z.cc_m (2 ^ k) xHigh) 0 muLow.
+
+ Local Hint Resolve Z.div_nonneg Z.div_lt_upper_bound.
+ Local Hint Resolve shiftr_represents mul_high_represents widemul_represents widesub_represents
+ cond_sub1_correct cond_sub2_correct represents_low represents_add.
+
+ Lemma muSelect_correct :
+ muSelect = (2 ^ (2 * k) / M) mod 2 ^ k * ((x / 2 ^ (k - 1)) / 2 ^ k).
+ Proof.
+ (* assertions to help arith tactics *)
+ pose proof x_bounds.
+ assert (2^k * M < 2 ^ (2*k)) by (rewrite <-Z.add_diag, Z.pow_add_r; nia).
+ assert (0 <= x / (2 ^ k * (2 ^ k / 2)) < 2) by (Z.div_mod_to_quot_rem_in_goal; auto with nia).
+ assert (0 < 2 ^ k / 2) by Z.zero_bounds.
+ assert (2 ^ (k - 1) <> 0) by auto with zarith.
+ assert (2 < 2 ^ k) by (eapply Z.le_lt_trans with (m:=2 ^ 1); auto with zarith).
+
+ cbv [muSelect]. rewrite <-muLow_eq.
+ rewrite Z.zselect_correct, Z.cc_m_eq by auto with zarith.
+ replace xHigh with (x / 2^k) by (subst x; autorewrite with zsimplify; lia).
+ autorewrite with pull_Zdiv push_Zpow.
+ rewrite (Z.mul_comm (2 ^ k / 2)).
+ break_match; [ ring | ].
+ match goal with H : 0 <= ?x < 2, H' : ?x <> 0 |- _ => replace x with 1 by omega end.
+ autorewrite with zsimplify; reflexivity.
+ Qed.
+
+ Lemma mu_rep : represents [muLow; 1] (2 ^ (2 * k) / M).
+ Proof. rewrite <-muLow_eq. eapply represents_trans; auto with zarith. Qed.
+
+ Derive barrett_reduce
+ SuchThat (barrett_reduce = x mod M)
+ As barrett_reduce_correct.
+ Proof.
+ erewrite <-reduce_correct with (rep:=represents) (muSelect:=muSelect) (k0:=k) (mut:=[muLow;1]) (xt0:=xt)
+ by (auto using x_bounds, muSelect_correct, x_rep, mu_rep; omega).
+ subst barrett_reduce. reflexivity.
+ Qed.
+ End Defn.
+ End BarrettReduction.
+
+ (* all the list operations from for_reification.ident *)
+ Strategy 100 [length seq repeat combine map flat_map partition app rev fold_right update_nth nth_default ].
+ Strategy -10 [barrett_reduce reduce].
+
+ Derive reified_barrett_red_gen
+ SuchThat (is_reification_of reified_barrett_red_gen barrett_reduce)
+ As reified_barrett_red_gen_correct.
+ Proof. Time cache_reify (). Time Qed.
+
+ Module Export ReifyHints.
+ Hint Extern 1 (_ = _) => apply_cached_reification barrett_reduce (proj1 reified_barrett_red_gen_correct) : reify_cache_gen.
+ Hint Immediate (proj2 reified_barrett_red_gen_correct) : wf_gen_cache.
+ Hint Rewrite (proj1 reified_barrett_red_gen_correct) : interp_gen_cache.
+ End ReifyHints.
+ Local Opaque reified_barrett_red_gen. (* needed for making [autorewrite] not take a very long time *)
+
+ Section rbarrett_red.
+ Context (M : Z)
+ (machine_wordsize : Z).
+
+ Let value_range := r[0 ~> (2^machine_wordsize - 1)%Z]%zrange.
+ Let flag_range := r[0 ~> 1]%zrange.
+ Let bound := Some value_range.
+ Let mu := (2 ^ (2 * machine_wordsize)) / M.
+ Let muLow := mu mod (2 ^ machine_wordsize).
+ Let consts_list := [M; muLow].
+
+ Definition possible_values_of_machine_wordsize
+ := [1; machine_wordsize / 2; machine_wordsize; 2 * machine_wordsize]%Z.
+ Let possible_values := possible_values_of_machine_wordsize.
+
+ Definition check_args {T} (res : Pipeline.ErrorT T)
+ : Pipeline.ErrorT T
+ := fold_right
+ (fun '(b, e) k => if b:bool then Error e else k)
+ res
+ [((mu / (2 ^ machine_wordsize) =? 0), Pipeline.Values_not_provably_distinctZ "mu / 2 ^ k ≠ 0" (mu / 2 ^ machine_wordsize) 0);
+ ((machine_wordsize <? 2), Pipeline.Value_not_leZ "~ (2 <=k)" 2 machine_wordsize);
+ (negb (Z.log2 M + 1 =? machine_wordsize), Pipeline.Values_not_provably_equalZ "log2(M)+1 != k" (Z.log2 M + 1) machine_wordsize);
+ ((2 ^ (machine_wordsize + 1) - mu <? 2 * (2 ^ (2 * machine_wordsize) mod M)),
+ Pipeline.Value_not_leZ "~ (2 * (2 ^ (2*k) mod M) <= 2^(k + 1) - mu)"
+ (2 * (2 ^ (2*machine_wordsize) mod M))
+ (2^(machine_wordsize + 1) - mu))].
+
+ Let fancy_args
+ := (Some {| Pipeline.invert_low log2wordsize := invert_low log2wordsize consts_list;
+ Pipeline.invert_high log2wordsize := invert_high log2wordsize consts_list;
+ Pipeline.value_range := value_range;
+ Pipeline.flag_range := flag_range |}).
+
+ Lemma fancy_args_good
+ : match fancy_args with
+ | Some {| Pipeline.invert_low := il ; Pipeline.invert_high := ih |}
+ => (forall s v v' : Z, il s v = Some v' -> v = Z.land v' (2^(s/2)-1))
+ /\ (forall s v v' : Z, ih s v = Some v' -> v = Z.shiftr v' (s/2))
+ | None => True
+ end.
+ Proof.
+ cbv [fancy_args invert_low invert_high constant_to_scalar constant_to_scalar_single consts_list fold_right];
+ split; intros; break_innermost_match_hyps; Z.ltb_to_lt; subst; congruence.
+ Qed.
+
+ Definition barrett_red
+ := Pipeline.BoundsPipeline
+ false (* subst01 *)
+ fancy_args (* fancy *)
+ possible_values
+ (reified_barrett_red_gen
+ @ GallinaReify.Reify machine_wordsize @ GallinaReify.Reify M @ GallinaReify.Reify muLow @ GallinaReify.Reify 2%nat @ GallinaReify.Reify 2%nat)
+ (bound, (bound, tt))
+ bound.
+
+ Definition sbarrett_red (prefix : string)
+ : string * (Pipeline.ErrorT (list string * ToString.C.ident_infos))
+ := Eval cbv beta in FromPipelineToString prefix "barrett_red" barrett_red.
+
+ (* TODO: Replace the following lemmas with a new-glue-style correctness lemma, like
+<<
+Lemma barrett_red_correct res
+ (Hres : barrett_red = Success res)
+ : barrett_red_correct (weight (Qnum limbwidth) (QDen limbwidth)) n m tight_bounds loose_bounds (Interp res).
+ Proof using curve_good. prove_correctness (). Qed.
+>> *)
+
+ Notation BoundsPipeline_correct in_bounds out_bounds op
+ := (fun rv (rop : Expr (reify_type_of op)) Hrop
+ => @Pipeline.BoundsPipeline_correct_trans
+ false (* subst01 *)
+ fancy_args
+ fancy_args_good
+ possible_values
+ _
+ rop
+ in_bounds
+ out_bounds
+ _
+ op
+ Hrop rv)
+ (only parsing).
+
+ Definition rbarrett_red_correct
+ := BoundsPipeline_correct
+ (bound, (bound, tt))
+ bound
+ (barrett_reduce machine_wordsize M muLow 2 2).
+
+ Notation type_of_strip_3arrow := ((fun (d : Prop) (_ : forall A B C, d) => d) _).
+ Definition rbarrett_red_correctT rv : Prop
+ := type_of_strip_3arrow (@rbarrett_red_correct rv).
+ End rbarrett_red.
+End BarrettReduction.
+
+(* TODO: After moving to new-glue-style, remove these tactics *)
+Ltac solve_rbarrett_red := solve_rop BarrettReduction.rbarrett_red_correct.
+Ltac solve_rbarrett_red_nocache := solve_rop_nocache BarrettReduction.rbarrett_red_correct.
+
+Module MontgomeryReduction.
+ Section MontRed'.
+ Context (N R N' R' : Z).
+ Context (HN_range : 0 <= N < R) (HN'_range : 0 <= N' < R) (HN_nz : N <> 0) (R_gt_1 : R > 1)
+ (N'_good : Z.equiv_modulo R (N*N') (-1)) (R'_good: Z.equiv_modulo N (R*R') 1).
+
+ Context (Zlog2R : Z) .
+ Let w : nat -> Z := weight Zlog2R 1.
+ Context (n:nat) (Hn_nz: n <> 0%nat) (n_good : Zlog2R mod Z.of_nat n = 0).
+ Context (R_big_enough : n <= Zlog2R)
+ (R_two_pow : 2^Zlog2R = R).
+ Let w_mul : nat -> Z := weight (Zlog2R / n) 1.
+ Context (nout : nat) (Hnout : nout = 2%nat).
+
+ Definition montred' (lo_hi : (Z * Z)) :=
+ dlet_nd y := nth_default 0 (BaseConversion.widemul_inlined Zlog2R n nout (fst lo_hi) N') 0 in
+ dlet_nd t1_t2 := (BaseConversion.widemul_inlined_reverse Zlog2R n nout N y) in
+ dlet_nd sum_carry := Rows.add (weight Zlog2R 1) 2 [fst lo_hi; snd lo_hi] t1_t2 in
+ dlet_nd y' := Z.zselect (snd sum_carry) 0 N in
+ dlet_nd lo''_carry := Z.sub_get_borrow_full R (nth_default 0 (fst sum_carry) 1) y' in
+ Z.add_modulo (fst lo''_carry) 0 N.
+
+ Local Lemma Hw : forall i, w i = R ^ Z.of_nat i.
+ Proof.
+ clear -R_big_enough R_two_pow; cbv [w weight]; intro.
+ autorewrite with zsimplify.
+ rewrite Z.pow_mul_r, R_two_pow by omega; reflexivity.
+ Qed.
+
+ Local Declare Equivalent Keys weight w.
+ Local Ltac change_weight := rewrite !Hw, ?Z.pow_0_r, ?Z.pow_1_r, ?Z.pow_2_r, ?Z.pow_1_l in *.
+ Local Ltac solve_range :=
+ repeat match goal with
+ | _ => progress change_weight
+ | |- context [?a mod ?b] => unique pose proof (Z.mod_pos_bound a b ltac:(omega))
+ | |- 0 <= _ => progress Z.zero_bounds
+ | |- 0 <= _ * _ < _ * _ =>
+ split; [ solve [Z.zero_bounds] | apply Z.mul_lt_mono_nonneg; omega ]
+ | _ => solve [auto]
+ | _ => omega
+ end.
+
+ Local Lemma eval2 x y : eval w 2 [x;y] = x + R * y.
+ Proof. cbn. change_weight. ring. Qed.
+
+ Hint Rewrite BaseConversion.widemul_inlined_reverse_correct BaseConversion.widemul_inlined_correct
+ using (autorewrite with widemul push_nth_default; solve [solve_range]) : widemul.
+
+ Lemma montred'_eq lo_hi T (HT_range: 0 <= T < R * N)
+ (Hlo: fst lo_hi = T mod R) (Hhi: snd lo_hi = T / R):
+ montred' lo_hi = reduce_via_partial N R N' T.
+ Proof.
+ rewrite <-reduce_via_partial_alt_eq by nia.
+ cbv [montred' partial_reduce_alt reduce_via_partial_alt prereduce Let_In].
+ rewrite Hlo, Hhi.
+ assert (0 <= (T mod R) * N' < w 2) by (solve_range).
+
+ autorewrite with widemul.
+ rewrite Rows.add_partitions, Rows.add_div by (distr_length; apply wprops; omega).
+ rewrite R_two_pow.
+ cbv [Partition.partition seq]. rewrite !eval2.
+ autorewrite with push_nth_default push_map.
+ autorewrite with to_div_mod. rewrite ?Z.zselect_correct, ?Z.add_modulo_correct.
+ change_weight.
+
+ (* pull out value before last modular reduction *)
+ match goal with |- (if (?n <=? ?x)%Z then ?x - ?n else ?x) = (if (?n <=? ?y) then ?y - ?n else ?y)%Z =>
+ let P := fresh "H" in assert (x = y) as P; [|rewrite P; reflexivity] end.
+
+ autorewrite with zsimplify.
+ rewrite (Z.mul_comm (((T mod R) * N') mod R) N) in *.
+ break_match; try reflexivity; Z.ltb_to_lt; rewrite Z.div_small_iff in * by omega;
+ repeat match goal with
+ | _ => progress autorewrite with zsimplify_fast
+ | |- context [?x mod (R * R)] =>
+ unique pose proof (Z.mod_pos_bound x (R * R));
+ try rewrite (Z.mod_small x (R * R)) in * by Z.rewrite_mod_small_solver
+ | _ => omega
+ | _ => progress Z.rewrite_mod_small
+ end.
+ Qed.
+
+ Lemma montred'_correct lo_hi T (HT_range: 0 <= T < R * N)
+ (Hlo: fst lo_hi = T mod R) (Hhi: snd lo_hi = T / R): montred' lo_hi = (T * R') mod N.
+ Proof.
+ erewrite montred'_eq by eauto.
+ apply Z.equiv_modulo_mod_small; auto using reduce_via_partial_correct.
+ replace 0 with (Z.min 0 (R-N)) by (apply Z.min_l; omega).
+ apply reduce_via_partial_in_range; omega.
+ Qed.
+ End MontRed'.
+
+ Derive reified_montred_gen
+ SuchThat (is_reification_of reified_montred_gen montred')
+ As reified_montred_gen_correct.
+ Proof. Time cache_reify (). Time Qed.
+ Module Export ReifyHints.
+ Hint Extern 1 (_ = _) => apply_cached_reification montred' (proj1 reified_montred_gen_correct) : reify_cache_gen.
+ Hint Immediate (proj2 reified_montred_gen_correct) : wf_gen_cache.
+ Hint Rewrite (proj1 reified_montred_gen_correct) : interp_gen_cache.
+ End ReifyHints.
+ Local Opaque reified_montred_gen. (* needed for making [autorewrite] not take a very long time *)
+
+ Section rmontred.
+ Context (N R N' : Z)
+ (machine_wordsize : Z).
+
+ Let value_range := r[0 ~> (2^machine_wordsize - 1)%Z]%zrange.
+ Let flag_range := r[0 ~> 1]%zrange.
+ Let bound := Some value_range.
+ Let consts_list := [N; N'].
+
+ Definition possible_values_of_machine_wordsize
+ := [1; machine_wordsize / 2; machine_wordsize; 2 * machine_wordsize]%Z.
+ Local Arguments possible_values_of_machine_wordsize / .
+
+ Let possible_values := possible_values_of_machine_wordsize.
+
+ Definition check_args {T} (res : Pipeline.ErrorT T)
+ : Pipeline.ErrorT T
+ := res. (* TODO: this should actually check stuff that corresponds with preconditions of montred'_correct *)
+
+ Let fancy_args
+ := (Some {| Pipeline.invert_low log2wordsize := invert_low log2wordsize consts_list;
+ Pipeline.invert_high log2wordsize := invert_high log2wordsize consts_list;
+ Pipeline.value_range := value_range;
+ Pipeline.flag_range := flag_range |}).
+
+ Lemma fancy_args_good
+ : match fancy_args with
+ | Some {| Pipeline.invert_low := il ; Pipeline.invert_high := ih |}
+ => (forall s v v' : Z, il s v = Some v' -> v = Z.land v' (2^(s/2)-1))
+ /\ (forall s v v' : Z, ih s v = Some v' -> v = Z.shiftr v' (s/2))
+ | None => True
+ end.
+ Proof.
+ cbv [fancy_args invert_low invert_high constant_to_scalar constant_to_scalar_single consts_list fold_right];
+ split; intros; break_innermost_match_hyps; Z.ltb_to_lt; subst; congruence.
+ Qed.
+
+ Print montred'.
+ Definition montred
+ := Pipeline.BoundsPipeline
+ false (* subst01 *)
+ fancy_args (* fancy *)
+ possible_values
+ (reified_montred_gen
+ @ GallinaReify.Reify N @ GallinaReify.Reify R @ GallinaReify.Reify N' @ GallinaReify.Reify (Z.log2 R) @ GallinaReify.Reify 2%nat @ GallinaReify.Reify 2%nat)
+ ((bound, bound), tt)
+ bound.
+
+ Definition smontred (prefix : string)
+ : string * (Pipeline.ErrorT (list string * ToString.C.ident_infos))
+ := Eval cbv beta in FromPipelineToString prefix "montred" montred.
+
+ (* TODO: Replace the following lemmas with a new-glue-style correctness lemma, like
+<<
+Lemma montred_correct res
+ (Hres : montred = Success res)
+ : montred_correct (weight (Qnum limbwidth) (QDen limbwidth)) n m tight_bounds loose_bounds (Interp res).
+ Proof using curve_good. prove_correctness (). Qed.
+>> *)
+
+ Notation BoundsPipeline_correct in_bounds out_bounds op
+ := (fun rv (rop : Expr (reify_type_of op)) Hrop
+ => @Pipeline.BoundsPipeline_correct_trans
+ false (* subst01 *)
+ fancy_args
+ fancy_args_good
+ possible_values
+ _
+ rop
+ in_bounds
+ out_bounds
+ _
+ op
+ Hrop rv)
+ (only parsing).
+
+ Definition rmontred_correct
+ := BoundsPipeline_correct
+ ((bound, bound), tt)
+ bound
+ (montred' N R N' (Z.log2 R) 2 2).
+
+ Notation type_of_strip_3arrow := ((fun (d : Prop) (_ : forall A B C, d) => d) _).
+ Definition rmontred_correctT rv : Prop
+ := type_of_strip_3arrow (@rmontred_correct rv).
+ End rmontred.
+End MontgomeryReduction.
+
+(* TODO: After moving to new-glue-style, remove these tactics *)
+Ltac solve_rmontred := solve_rop MontgomeryReduction.rmontred_correct.
+Ltac solve_rmontred_nocache := solve_rop_nocache MontgomeryReduction.rmontred_correct.
+
+
+Time Compute
+ (Pipeline.BoundsPipeline
+ true None [64; 128]
+ ltac:(let r := Reify (to_associational (weight 51 1) 5) in
+ exact r)
+ (Some (repeat (@None _) 5), tt)
+ ZRange.type.base.option.None).
+
+Time Compute
+ (Pipeline.BoundsPipeline
+ true None [64; 128]
+ ltac:(let r := Reify (scmul (weight 51 1) 5) in
+ exact r)
+ (None, (Some (repeat (@None _) 5), tt))
+ ZRange.type.base.option.None).
+
+Compute
+ (Pipeline.BoundsPipeline
+ true None [64; 128]
+ ltac:(let r := Reify (fun f => carry_mulmod 51 1 (2^255) [(1,19)] 5 (seq 0 5 ++ [0; 1])%list%nat f f) in
+ exact r)
+ (Some (repeat (@None _) 5), tt)
+ ZRange.type.base.option.None).
+
+Compute
+ (Pipeline.BoundsPipelineToString
+ true "fiat_" "fiat_mulx_u64" []
+ true None [64; 128]
+ ltac:(let r := Reify (Arithmetic.mulx 64) in
+ exact r)
+ (Some r[0~>2^64-1], (Some r[0~>2^64-1], tt))%zrange
+ (Some r[0~>2^64-1], Some r[0~>2^64-1])%zrange).
+
+Compute
+ (Pipeline.BoundsPipelineToString
+ true "fiat_" "fiat_addcarryx_u64" []
+ true None [1; 64; 128]
+ ltac:(let r := Reify (Arithmetic.addcarryx 64) in
+ exact r)
+ (Some r[0~>1], (Some r[0~>2^64-1], (Some r[0~>2^64-1], tt)))%zrange
+ (Some r[0~>2^64-1], Some r[0~>1])%zrange).
+
+Compute
+ (Pipeline.BoundsPipelineToString
+ true "fiat_" "fiat_addcarryx_u51" []
+ true None [1; 64; 128]
+ ltac:(let r := Reify (Arithmetic.addcarryx 51) in
+ exact r)
+ (Some r[0~>1], (Some r[0~>2^51-1], (Some r[0~>2^51-1], tt)))%zrange
+ (Some r[0~>2^51-1], Some r[0~>1])%zrange).
+
+Compute
+ (Pipeline.BoundsPipelineToString
+ true "fiat_" "fiat_subborrowx_u64" []
+ true None [1; 64; 128]
+ ltac:(let r := Reify (Arithmetic.subborrowx 64) in
+ exact r)
+ (Some r[0~>1], (Some r[0~>2^64-1], (Some r[0~>2^64-1], tt)))%zrange
+ (Some r[0~>2^64-1], Some r[0~>1])%zrange).
+Compute
+ (Pipeline.BoundsPipelineToString
+ true "fiat_" "fiat_subborrowx_u51" []
+ true None [1; 64; 128]
+ ltac:(let r := Reify (Arithmetic.subborrowx 51) in
+ exact r)
+ (Some r[0~>1], (Some r[0~>2^51-1], (Some r[0~>2^51-1], tt)))%zrange
+ (Some r[0~>2^51-1], Some r[0~>1])%zrange).
+
+Compute
+ (Pipeline.BoundsPipelineToString
+ true "fiat_" "fiat_cmovznz64" []
+ true None [1; 64; 128]
+ ltac:(let r := Reify (Arithmetic.cmovznz 64) in
+ exact r)
+ (Some r[0~>1], (Some r[0~>2^64-1], (Some r[0~>2^64-1], tt)))%zrange
+ (Some r[0~>2^64-1])%zrange).
diff --git a/src/Experiments/NewPipeline/PushButtonSynthesis/ReificationCache.v b/src/Experiments/NewPipeline/PushButtonSynthesis/ReificationCache.v
new file mode 100644
index 000000000..28202a6af
--- /dev/null
+++ b/src/Experiments/NewPipeline/PushButtonSynthesis/ReificationCache.v
@@ -0,0 +1,61 @@
+(** * Reification Cache *)
+(** This file defines the cache that holds reified versions of
+ operations, as well as the tactics that reify and apply things
+ from the cache. *)
+Require Import Coq.Relations.Relation_Definitions.
+Require Import Crypto.Util.Tactics.Head.
+Require Import Crypto.Util.Tactics.SubstEvars.
+Require Import Crypto.Experiments.NewPipeline.Language.
+Require Import Crypto.Experiments.NewPipeline.LanguageWf.
+
+Import
+ Language.Compilers
+ LanguageWf.Compilers.
+
+Import Compilers.defaults.
+
+Fixpoint pointwise_equal {t} : relation (type.interp base.interp t)
+ := match t with
+ | type.base t => Logic.eq
+ | type.arrow s d
+ => fun (f g : type.interp base.interp s -> type.interp base.interp d)
+ => forall x, pointwise_equal (f x) (g x)
+ end.
+
+Definition is_reification_of' {t} (e : Expr t) (v : type.interp base.interp t) : Prop
+ := pointwise_equal (Interp e) v /\ Wf e.
+
+Notation is_reification_of rop op
+ := (ltac:(let T := constr:(@is_reification_of' (reify_type_of op) rop op) in
+ let T := (eval cbv [pointwise_equal is_reification_of'] in T) in
+ let T := (eval cbn [type.interp base.interp base.base_interp] in T) in
+ exact T))
+ (only parsing).
+
+Ltac cache_reify _ :=
+ split;
+ [ intros;
+ etransitivity;
+ [
+ | repeat match goal with |- _ = ?f' ?x => is_var x; apply (f_equal (fun f => f _)) end;
+ Reify_rhs ();
+ reflexivity ];
+ subst_evars;
+ reflexivity
+ | prove_Wf () ].
+
+Ltac apply_cached_reification op lem :=
+ lazymatch goal with
+ | [ |- _ = ?RHS ]
+ => let f := head RHS in
+ constr_eq f op;
+ simple apply lem
+ end.
+
+Create HintDb reify_gen_cache discriminated.
+Create HintDb wf_gen_cache discriminated.
+
+Module Export Hints.
+ Hint Resolve conj : reify_gen_cache wf_gen_cache.
+ Hint Unfold Wf : wf_gen_cache.
+End Hints.
diff --git a/src/Experiments/NewPipeline/README.md b/src/Experiments/NewPipeline/README.md
index 72c5f3a89..17ccbdc64 100644
--- a/src/Experiments/NewPipeline/README.md
+++ b/src/Experiments/NewPipeline/README.md
@@ -1,8 +1,6 @@
The ordering of files (eliding `*Proofs.v` files) is:
```
- Arithmetic.v
- ↑
Language.v ←──────────────────────────────────────────────────┐
↗ ↖ │
↗ ↖ │
@@ -12,6 +10,9 @@ AbstractInterpretation.v Rewriter.v
↑ ↑ ┌────────────────────────────────────────────────────┘
CStringification.v │ │
↑ ┌───────────────────┴─┘
+BoundsPipeline.v Arithmetic.v
+ ↑ ↑
+ │ ┌────────────────────────────────────────┘
Toplevel1.v ←── Toplevel2.v ←───────────┐
↑ │
CLI.v SlowPrimeSynthesisExamples.v
@@ -76,6 +77,16 @@ The files contain:
- CompilersTestCases.v: Various test cases to ensure everything is working
+- BoundsPipeline.v: Assembly the various compiler passes together into
+ a composed pipeline. It is the final interface for the compiler.
+
+- COperationSpecifications.v: The specifications for the various
+ operations to be synthesized.
+
+- PushButtonSynthesis/ReificationCache.v: Defines the cache that holds
+ reified versions of operations, as well as the tactics that reify
+ and apply things from the cache.
+
- Toplevel1.v: Ring Goal (which SHOULD NOT depend on compilers) + pipeline + a couple of examples
pipeline + most of the stuff that uses compilers + arithmetic. This is the file that CLI.v depends on.
diff --git a/src/Experiments/NewPipeline/SlowPrimeSynthesisExamples.v b/src/Experiments/NewPipeline/SlowPrimeSynthesisExamples.v
index b2d76911c..7d4c82f6b 100644
--- a/src/Experiments/NewPipeline/SlowPrimeSynthesisExamples.v
+++ b/src/Experiments/NewPipeline/SlowPrimeSynthesisExamples.v
@@ -3,7 +3,7 @@ Require Import Coq.Strings.String.
Require Import Coq.derive.Derive.
Require Import Coq.Lists.List.
Require Import Crypto.Experiments.NewPipeline.Arithmetic.
-Require Import Crypto.Experiments.NewPipeline.Toplevel1.
+Require Import Crypto.Experiments.NewPipeline.PushButtonSynthesis.
Require Import Crypto.Experiments.NewPipeline.CStringification.
Require Import Crypto.Util.Notations.
@@ -11,6 +11,8 @@ Import ListNotations. Local Open Scope Z_scope.
Import UnsaturatedSolinas.
+(* TODO: Figure out what examples should go here *)
+(*
Module X25519_64.
Definition n := 5%nat.
Definition s := 2^255.
@@ -889,3 +891,4 @@ expr_let x3038 := (#(Z_cast2 (uint32, bool)%core)%expr @ (#(Z_add_with_get_carry
Finished transaction in 211.393 secs (210.924u,0.028s) (successful)
*)
End P256_32.
+*)
diff --git a/src/Experiments/NewPipeline/Toplevel1.v b/src/Experiments/NewPipeline/Toplevel1.v
deleted file mode 100644
index 0dae1e863..000000000
--- a/src/Experiments/NewPipeline/Toplevel1.v
+++ /dev/null
@@ -1,4200 +0,0 @@
-Require Import Coq.ZArith.ZArith Coq.micromega.Lia.
-Require Import Coq.derive.Derive.
-Require Import Coq.Bool.Bool.
-Require Import Coq.Strings.String.
-Require Import Coq.MSets.MSetPositive.
-Require Import Coq.Lists.List.
-Require Crypto.Util.Strings.String.
-Require Import Crypto.Util.Strings.Decimal.
-Require Import Crypto.Util.Strings.HexString.
-Require Import QArith.QArith_base QArith.Qround Crypto.Util.QUtil.
-Require Import Crypto.Algebra.Ring Crypto.Util.Decidable.Bool2Prop.
-Require Import Crypto.Algebra.Ring.
-Require Import Crypto.Algebra.SubsetoidRing.
-Require Import Crypto.Util.ZRange.
-Require Import Crypto.Util.ListUtil.FoldBool.
-Require Import Crypto.Util.LetIn.
-Require Import Crypto.Arithmetic.PrimeFieldTheorems.
-Require Import Crypto.Util.ZUtil.Tactics.LtbToLt.
-Require Import Crypto.Util.ZUtil.Tactics.PullPush.Modulo.
-Require Import Crypto.Util.Tactics.SplitInContext.
-Require Import Crypto.Util.Tactics.SubstEvars.
-Require Import Crypto.Util.Tactics.DestructHead.
-Require Import Crypto.Util.Tuple.
-Require Import Crypto.Util.ListUtil Coq.Lists.List.
-Require Import Crypto.Util.Equality.
-Require Import Crypto.Util.Tactics.GetGoal.
-Require Import Crypto.Arithmetic.BarrettReduction.Generalized.
-Require Import Crypto.Util.Tactics.UniquePose.
-Require Import Crypto.Util.ZUtil.Rshi.
-Require Import Crypto.Util.Option.
-Require Import Crypto.Util.Tactics.BreakMatch.
-Require Import Crypto.Util.Tactics.SpecializeBy.
-Require Import Crypto.Util.ZUtil.Log2.
-Require Import Crypto.Util.ZUtil.Zselect.
-Require Import Crypto.Util.ZUtil.AddModulo.
-Require Import Crypto.Util.ZUtil.CC.
-Require Import Crypto.Util.ZUtil.EquivModulo.
-Require Import Crypto.Util.ZUtil.Tactics.DivModToQuotRem.
-Require Import Crypto.Util.ZUtil.Tactics.RewriteModSmall.
-Require Import Crypto.Util.ZUtil.Tactics.ZeroBounds.
-Require Import Crypto.Util.ZUtil.Definitions.
-Require Import Crypto.Util.ZUtil.Div.
-Require Import Crypto.Util.ZUtil.Modulo.
-Require Import Crypto.Arithmetic.MontgomeryReduction.Definition.
-Require Import Crypto.Arithmetic.MontgomeryReduction.Proofs.
-Require Import Crypto.Util.ZUtil.ModInv.
-Require Import Crypto.Util.ErrorT.
-Require Import Crypto.Util.Strings.Show.
-Require Import Crypto.Util.ZRange.Show.
-Require Import Crypto.Util.Strings.Equality.
-Require Import Crypto.Experiments.NewPipeline.Arithmetic.
-Require Crypto.Experiments.NewPipeline.Language.
-Require Crypto.Experiments.NewPipeline.UnderLets.
-Require Crypto.Experiments.NewPipeline.AbstractInterpretation.
-Require Crypto.Experiments.NewPipeline.Rewriter.
-Require Crypto.Experiments.NewPipeline.MiscCompilerPasses.
-Require Crypto.Experiments.NewPipeline.CStringification.
-Require Crypto.Experiments.NewPipeline.LanguageWf.
-Require Crypto.Experiments.NewPipeline.UnderLetsProofs.
-Require Crypto.Experiments.NewPipeline.MiscCompilerPassesProofs.
-Require Crypto.Experiments.NewPipeline.RewriterProofs.
-Require Crypto.Experiments.NewPipeline.AbstractInterpretationWf.
-Require Crypto.Experiments.NewPipeline.AbstractInterpretationProofs.
-Require Import Crypto.Util.Notations.
-Import ListNotations. Local Open Scope Z_scope.
-
-(** NOTE: Module Ring SHOULD NOT depend on any compilers things *)
-Module Ring.
- Local Notation is_bounded_by0 r v
- := ((lower r <=? v) && (v <=? upper r)).
- Local Notation is_bounded_by0o r
- := (match r with Some r' => fun v' => is_bounded_by0 r' v' | None => fun _ => true end).
- Local Notation is_bounded_by bounds ls
- := (fold_andb_map (fun r v'' => is_bounded_by0o r v'') bounds ls).
- Local Notation is_bounded_by1 bounds ls
- := (andb (is_bounded_by bounds (@fst _ unit ls)) true).
- Local Notation is_bounded_by2 bounds ls
- := (andb (is_bounded_by bounds (fst ls)) (is_bounded_by1 bounds (snd ls))).
-
- Lemma length_is_bounded_by bounds ls
- : is_bounded_by bounds ls = true -> length ls = length bounds.
- Proof.
- intro H.
- apply fold_andb_map_length in H; congruence.
- Qed.
-
- Section ring_goal.
- Context (limbwidth_num limbwidth_den : Z)
- (n : nat)
- (s : Z)
- (c : list (Z * Z))
- (tight_bounds : list (option zrange))
- (length_tight_bounds : length tight_bounds = n)
- (loose_bounds : list (option zrange))
- (length_loose_bounds : length loose_bounds = n).
- Local Notation weight := (weight limbwidth_num limbwidth_den).
- Local Notation eval := (Positional.eval weight n).
- Let prime_bound : zrange
- := r[0~>(s - Associational.eval c - 1)]%zrange.
- Let m := Z.to_pos (s - Associational.eval c).
- Context (m_eq : Z.pos m = s - Associational.eval c)
- (sc_pos : 0 < s - Associational.eval c)
- (Interp_rrelaxv : list Z -> list Z)
- (HInterp_rrelaxv : forall arg,
- is_bounded_by1 tight_bounds arg = true
- -> is_bounded_by loose_bounds (Interp_rrelaxv (fst arg)) = true
- /\ Interp_rrelaxv (fst arg) = id (fst arg))
- (carry_mulmod : list Z -> list Z -> list Z)
- (Hcarry_mulmod
- : forall f g,
- length f = n -> length g = n ->
- (eval (carry_mulmod f g)) mod (s - Associational.eval c)
- = (eval f * eval g) mod (s - Associational.eval c))
- (Interp_rcarry_mulv : list Z -> list Z -> list Z)
- (HInterp_rcarry_mulv : forall arg,
- is_bounded_by2 loose_bounds arg = true
- -> is_bounded_by tight_bounds (Interp_rcarry_mulv (fst arg) (fst (snd arg))) = true
- /\ Interp_rcarry_mulv (fst arg) (fst (snd arg)) = carry_mulmod (fst arg) (fst (snd arg)))
- (carrymod : list Z -> list Z)
- (Hcarrymod
- : forall f,
- length f = n ->
- (eval (carrymod f)) mod (s - Associational.eval c)
- = (eval f) mod (s - Associational.eval c))
- (Interp_rcarryv : list Z -> list Z)
- (HInterp_rcarryv : forall arg,
- is_bounded_by1 loose_bounds arg = true
- -> is_bounded_by tight_bounds (Interp_rcarryv (fst arg)) = true
- /\ Interp_rcarryv (fst arg) = carrymod (fst arg))
- (addmod : list Z -> list Z -> list Z)
- (Haddmod
- : forall f g,
- length f = n -> length g = n ->
- (eval (addmod f g)) mod (s - Associational.eval c)
- = (eval f + eval g) mod (s - Associational.eval c))
- (Interp_raddv : list Z -> list Z -> list Z)
- (HInterp_raddv : forall arg,
- is_bounded_by2 tight_bounds arg = true
- -> is_bounded_by loose_bounds (Interp_raddv (fst arg) (fst (snd arg))) = true
- /\ Interp_raddv (fst arg) (fst (snd arg)) = addmod (fst arg) (fst (snd arg)))
- (submod : list Z -> list Z -> list Z)
- (Hsubmod
- : forall f g,
- length f = n -> length g = n ->
- (eval (submod f g)) mod (s - Associational.eval c)
- = (eval f - eval g) mod (s - Associational.eval c))
- (Interp_rsubv : list Z -> list Z -> list Z)
- (HInterp_rsubv : forall arg,
- is_bounded_by2 tight_bounds arg = true
- -> is_bounded_by loose_bounds (Interp_rsubv (fst arg) (fst (snd arg))) = true
- /\ Interp_rsubv (fst arg) (fst (snd arg)) = submod (fst arg) (fst (snd arg)))
- (oppmod : list Z -> list Z)
- (Hoppmod
- : forall f,
- length f = n ->
- (eval (oppmod f)) mod (s - Associational.eval c)
- = (- eval f) mod (s - Associational.eval c))
- (Interp_roppv : list Z -> list Z)
- (HInterp_roppv : forall arg,
- is_bounded_by1 tight_bounds arg = true
- -> is_bounded_by loose_bounds (Interp_roppv (fst arg)) = true
- /\ Interp_roppv (fst arg) = oppmod (fst arg))
- (zeromod : list Z)
- (Hzeromod
- : (eval zeromod) mod (s - Associational.eval c)
- = 0 mod (s - Associational.eval c))
- (Interp_rzerov : list Z)
- (HInterp_rzerov : is_bounded_by tight_bounds Interp_rzerov = true
- /\ Interp_rzerov = zeromod)
- (onemod : list Z)
- (Honemod
- : (eval onemod) mod (s - Associational.eval c)
- = 1 mod (s - Associational.eval c))
- (Interp_ronev : list Z)
- (HInterp_ronev : is_bounded_by tight_bounds Interp_ronev = true
- /\ Interp_ronev = onemod)
- (encodemod : Z -> list Z)
- (Hencodemod
- : forall f,
- (eval (encodemod f)) mod (s - Associational.eval c)
- = f mod (s - Associational.eval c))
- (Interp_rencodev : Z -> list Z)
- (HInterp_rencodev : forall arg,
- is_bounded_by0 prime_bound (@fst _ unit arg) && true = true
- -> is_bounded_by tight_bounds (Interp_rencodev (fst arg)) = true
- /\ Interp_rencodev (fst arg) = encodemod (fst arg)).
-
- Local Notation T := (list Z) (only parsing).
- Local Notation encoded_ok ls
- := (is_bounded_by tight_bounds ls = true) (only parsing).
- Local Notation encoded_okf := (fun ls => encoded_ok ls) (only parsing).
-
- Definition Fdecode (v : T) : F m
- := F.of_Z m (Positional.eval weight n v).
- Definition T_eq (x y : T)
- := Fdecode x = Fdecode y.
-
- Definition encodedT := sig encoded_okf.
-
- Definition ring_mul (x y : T) : T
- := Interp_rcarry_mulv (Interp_rrelaxv x) (Interp_rrelaxv y).
- Definition ring_add (x y : T) : T := Interp_rcarryv (Interp_raddv x y).
- Definition ring_sub (x y : T) : T := Interp_rcarryv (Interp_rsubv x y).
- Definition ring_opp (x : T) : T := Interp_rcarryv (Interp_roppv x).
- Definition ring_encode (x : F m) : T := Interp_rencodev (F.to_Z x).
-
- Definition GoodT : Prop
- := @subsetoid_ring
- (list Z) encoded_okf T_eq
- Interp_rzerov Interp_ronev ring_opp ring_add ring_sub ring_mul
- /\ @is_subsetoid_homomorphism
- (F m) (fun _ => True) eq 1%F F.add F.mul
- (list Z) encoded_okf T_eq Interp_ronev ring_add ring_mul ring_encode
- /\ @is_subsetoid_homomorphism
- (list Z) encoded_okf T_eq Interp_ronev ring_add ring_mul
- (F m) (fun _ => True) eq 1%F F.add F.mul
- Fdecode.
-
- Hint Rewrite ->@F.to_Z_add : push_FtoZ.
- Hint Rewrite ->@F.to_Z_mul : push_FtoZ.
- Hint Rewrite ->@F.to_Z_opp : push_FtoZ.
- Hint Rewrite ->@F.to_Z_of_Z : push_FtoZ.
-
- Lemma Fm_bounded_alt (x : F m)
- : (0 <=? F.to_Z x) && (F.to_Z x <=? Z.pos m - 1) = true.
- Proof using m_eq.
- clear -m_eq.
- destruct x as [x H]; cbn [F.to_Z proj1_sig].
- pose proof (Z.mod_pos_bound x (Z.pos m)).
- rewrite andb_true_iff; split; Z.ltb_to_lt; lia.
- Qed.
-
- Lemma Good : GoodT.
- Proof.
- split_and; simpl in *.
- repeat match goal with
- | [ H : context[andb _ true] |- _ ] => setoid_rewrite andb_true_r in H
- end.
- eapply subsetoid_ring_by_ring_isomorphism;
- cbv [ring_opp ring_add ring_sub ring_mul ring_encode F.sub] in *;
- repeat match goal with
- | [ H : forall arg : _ * unit, _ |- _ ] => specialize (fun arg => H (arg, tt))
- | [ H : forall arg : _ * (_ * unit), _ |- _ ] => specialize (fun a b => H (a, (b, tt)))
- | _ => progress cbn [fst snd] in *
- | _ => solve [ auto using andb_true_intro, conj with nocore ]
- | _ => progress intros
- | [ H : _ |- is_bounded_by _ _ = true ] => apply H
- | [ |- _ <-> _ ] => reflexivity
- | [ |- ?x = ?x ] => reflexivity
- | [ |- _ = _ :> Z ] => first [ reflexivity | rewrite <- m_eq; reflexivity ]
- | [ H : context[?x] |- Fdecode ?x = _ ] => rewrite H
- | [ H : context[?x _] |- Fdecode (?x _) = _ ] => rewrite H
- | [ H : context[?x _ _] |- Fdecode (?x _ _) = _ ] => rewrite H
- | _ => progress cbv [Fdecode]
- | [ |- _ = _ :> F _ ] => apply F.eq_to_Z_iff
- | _ => progress autorewrite with push_FtoZ
- | _ => rewrite m_eq
- | [ H : context[?x _ _] |- context[eval (?x _ _)] ] => rewrite H
- | [ H : context[?x _] |- context[eval (?x _)] ] => rewrite H
- | [ H : context[?x] |- context[eval ?x] ] => rewrite H
- | [ |- context[List.length ?x] ]
- => erewrite (length_is_bounded_by _ x)
- by eauto using andb_true_intro, conj with nocore
- | [ |- _ = _ :> Z ]
- => push_Zmod; reflexivity
- | _ => pull_Zmod; rewrite Z.add_opp_r
- | _ => rewrite expanding_id_id
- | [ |- context[F.to_Z _ mod (_ - _)] ]
- => rewrite <- m_eq, F.mod_to_Z
- | _ => rewrite <- m_eq; apply Fm_bounded_alt
- | [ |- context[andb _ true] ] => rewrite andb_true_r
- end.
- Qed.
- End ring_goal.
-End Ring.
-
-(** NOTE: Module MontgomeryStyleRing SHOULD NOT depend on any compilers things *)
-Module MontgomeryStyleRing.
- Local Notation is_bounded_by0 r v
- := ((lower r <=? v) && (v <=? upper r)).
- Local Notation is_bounded_by0o r
- := (match r with Some r' => fun v' => is_bounded_by0 r' v' | None => fun _ => true end).
- Local Notation is_bounded_by bounds ls
- := (fold_andb_map (fun r v'' => is_bounded_by0o r v'') bounds ls).
- Local Notation is_bounded_by1 bounds ls
- := (andb (is_bounded_by bounds (@fst _ unit ls)) true).
- Local Notation is_bounded_by2 bounds ls
- := (andb (is_bounded_by bounds (fst ls)) (is_bounded_by1 bounds (snd ls))).
- Local Notation is_eq1 arg1 arg2
- := (and ((@fst _ unit arg1) = (@fst _ unit arg2)) True).
- Local Notation is_eq2 arg1 arg2
- := (and (fst arg1 = fst arg2) (is_eq1 (snd arg1) (snd arg2))).
-
- Lemma length_is_bounded_by bounds ls
- : is_bounded_by bounds ls = true -> length ls = length bounds.
- Proof.
- intro H.
- apply fold_andb_map_length in H; congruence.
- Qed.
-
- Section ring_goal.
- Context (limbwidth_num limbwidth_den : Z)
- (n : nat)
- (s : Z)
- (c : list (Z * Z))
- (bounds : list (option zrange))
- (length_bounds : length bounds = n).
- Local Notation weight := (weight limbwidth_num limbwidth_den).
- Local Notation eval := (Positional.eval weight n).
- Let prime_bound : zrange
- := r[0~>(s - Associational.eval c - 1)]%zrange.
- Let m := Z.to_pos (s - Associational.eval c).
- Context (m_eq : Z.pos m = s - Associational.eval c)
- (sc_pos : 0 < s - Associational.eval c)
- (valid : list Z -> Prop)
- (from_montgomerymod : list Z -> list Z)
- (Hfrom_montgomerymod
- : forall v, valid v -> valid (from_montgomerymod v))
- (Interp_rfrom_montgomeryv : list Z -> list Z)
- (HInterp_rfrom_montgomeryv : forall arg1 arg2,
- is_eq1 arg1 arg2
- -> is_bounded_by1 bounds arg1 = true
- -> is_bounded_by bounds (Interp_rfrom_montgomeryv (fst arg1)) = true
- /\ Interp_rfrom_montgomeryv (fst arg1) = from_montgomerymod (fst arg2))
- (mulmod : list Z -> list Z -> list Z)
- (Hmulmod
- : (forall a (_ : valid a) b (_ : valid b), eval (from_montgomerymod (mulmod a b)) mod (s - Associational.eval c)
- = (eval (from_montgomerymod a) * eval (from_montgomerymod b)) mod (s - Associational.eval c))
- /\ (forall a (_ : valid a) b (_ : valid b), valid (mulmod a b)))
- (Interp_rmulv : list Z -> list Z -> list Z)
- (HInterp_rmulv : forall arg1 arg2,
- is_eq2 arg1 arg2
- -> is_bounded_by2 bounds arg1 = true
- -> is_bounded_by bounds (Interp_rmulv (fst arg1) (fst (snd arg1))) = true
- /\ Interp_rmulv (fst arg1) (fst (snd arg1)) = mulmod (fst arg2) (fst (snd arg2)))
- (addmod : list Z -> list Z -> list Z)
- (Haddmod
- : (forall a (_ : valid a) b (_ : valid b), eval (from_montgomerymod (addmod a b)) mod (s - Associational.eval c)
- = (eval (from_montgomerymod a) + eval (from_montgomerymod b)) mod (s - Associational.eval c))
- /\ (forall a (_ : valid a) b (_ : valid b), valid (addmod a b)))
- (Interp_raddv : list Z -> list Z -> list Z)
- (HInterp_raddv : forall arg1 arg2,
- is_eq2 arg1 arg2
- -> is_bounded_by2 bounds arg1 = true
- -> is_bounded_by bounds (Interp_raddv (fst arg1) (fst (snd arg1))) = true
- /\ Interp_raddv (fst arg1) (fst (snd arg1)) = addmod (fst arg2) (fst (snd arg2)))
- (submod : list Z -> list Z -> list Z)
- (Hsubmod
- : (forall a (_ : valid a) b (_ : valid b), eval (from_montgomerymod (submod a b)) mod (s - Associational.eval c)
- = (eval (from_montgomerymod a) - eval (from_montgomerymod b)) mod (s - Associational.eval c))
- /\ (forall a (_ : valid a) b (_ : valid b), valid (submod a b)))
- (Interp_rsubv : list Z -> list Z -> list Z)
- (HInterp_rsubv : forall arg1 arg2,
- is_eq2 arg1 arg2
- -> is_bounded_by2 bounds arg1 = true
- -> is_bounded_by bounds (Interp_rsubv (fst arg1) (fst (snd arg1))) = true
- /\ Interp_rsubv (fst arg1) (fst (snd arg1)) = submod (fst arg2) (fst (snd arg2)))
- (oppmod : list Z -> list Z)
- (Hoppmod
- : (forall a (_ : valid a), eval (from_montgomerymod (oppmod a)) mod (s - Associational.eval c)
- = (-eval (from_montgomerymod a)) mod (s - Associational.eval c))
- /\ (forall a (_ : valid a), valid (oppmod a)))
- (Interp_roppv : list Z -> list Z)
- (HInterp_roppv : forall arg1 arg2,
- is_eq1 arg1 arg2
- -> is_bounded_by1 bounds arg1 = true
- -> is_bounded_by bounds (Interp_roppv (fst arg1)) = true
- /\ Interp_roppv (fst arg1) = oppmod (fst arg2))
- (zeromod : list Z)
- (Hzeromod
- : (eval (from_montgomerymod zeromod)) mod (s - Associational.eval c)
- = 0 mod (s - Associational.eval c)
- /\ valid zeromod)
- (Interp_rzerov : list Z)
- (HInterp_rzerov : is_bounded_by bounds Interp_rzerov = true
- /\ Interp_rzerov = zeromod)
- (onemod : list Z)
- (Honemod
- : (eval (from_montgomerymod onemod)) mod (s - Associational.eval c)
- = 1 mod (s - Associational.eval c)
- /\ valid onemod)
- (Interp_ronev : list Z)
- (HInterp_ronev : is_bounded_by bounds Interp_ronev = true
- /\ Interp_ronev = onemod)
- (encodemod : Z -> list Z)
- (Hencodemod
- : (forall v, 0 <= v < s - Associational.eval c -> eval (from_montgomerymod (encodemod v)) mod (s - Associational.eval c) = v mod (s - Associational.eval c))
- /\ (forall v, 0 <= v < s - Associational.eval c -> valid (encodemod v)))
- (Interp_rencodev : Z -> list Z)
- (HInterp_rencodev : forall arg1 arg2,
- is_eq1 arg1 arg2
- -> is_bounded_by0 prime_bound (@fst _ unit arg1) && true = true
- -> is_bounded_by bounds (Interp_rencodev (fst arg1)) = true
- /\ Interp_rencodev (fst arg1) = encodemod (fst arg2)).
-
- Local Notation T := (list Z) (only parsing).
- Local Notation encoded_ok ls
- := (is_bounded_by bounds ls = true /\ valid ls) (only parsing).
- Local Notation encoded_okf := (fun ls => encoded_ok ls) (only parsing).
- Definition Fdecode (v : T) : F m
- := F.of_Z m (Positional.eval weight n (Interp_rfrom_montgomeryv v)).
- Definition T_eq (x y : T)
- := Fdecode x = Fdecode y.
- Definition encodedT := sig encoded_okf.
- Definition ring_mul (x y : T) : T
- := Interp_rmulv x y.
- Definition ring_add (x y : T) : T := Interp_raddv x y.
- Definition ring_sub (x y : T) : T := Interp_rsubv x y.
- Definition ring_opp (x : T) : T := Interp_roppv x.
- Definition ring_encode (x : F m) : T := Interp_rencodev (F.to_Z x).
- Definition GoodT : Prop
- := @subsetoid_ring
- (list Z) encoded_okf T_eq
- Interp_rzerov Interp_ronev ring_opp ring_add ring_sub ring_mul
- /\ @is_subsetoid_homomorphism
- (F m) (fun _ => True) eq 1%F F.add F.mul
- (list Z) encoded_okf T_eq Interp_ronev ring_add ring_mul ring_encode
- /\ @is_subsetoid_homomorphism
- (list Z) encoded_okf T_eq Interp_ronev ring_add ring_mul
- (F m) (fun _ => True) eq 1%F F.add F.mul
- Fdecode.
- Hint Rewrite ->@F.to_Z_add : push_FtoZ.
- Hint Rewrite ->@F.to_Z_mul : push_FtoZ.
- Hint Rewrite ->@F.to_Z_opp : push_FtoZ.
- Hint Rewrite ->@F.to_Z_of_Z : push_FtoZ.
- Lemma Fm_bounded_alt (x : F m)
- : (0 <=? F.to_Z x) && (F.to_Z x <=? Z.pos m - 1) = true.
- Proof using m_eq.
- clear -m_eq.
- destruct x as [x H]; cbn [F.to_Z proj1_sig].
- pose proof (Z.mod_pos_bound x (Z.pos m)).
- rewrite andb_true_iff; split; Z.ltb_to_lt; lia.
- Qed.
- Lemma Fm_bounded_alt' (x : F m)
- : 0 <= F.to_Z x < Z.pos m.
- Proof using m_eq.
- clear -m_eq.
- destruct x as [x H]; cbn [F.to_Z proj1_sig].
- pose proof (Z.mod_pos_bound x (Z.pos m)).
- split; Z.ltb_to_lt; lia.
- Qed.
- Lemma Good : GoodT.
- Proof.
- split_and; simpl in *.
- repeat match goal with
- | [ H : context[andb _ true] |- _ ] => setoid_rewrite andb_true_r in H
- end.
- eapply subsetoid_ring_by_ring_isomorphism;
- cbv [ring_opp ring_add ring_sub ring_mul ring_encode F.sub] in *;
- repeat match goal with
- | [ H : forall arg1 arg2 : _ * unit, _ |- _ ] => specialize (fun arg => H (arg, tt) (arg, tt) ltac:(tauto))
- | [ H : forall arg arg2 : _ * (_ * unit), _ |- _ ] => specialize (fun a b => H (a, (b, tt)) (a, (b, tt)) ltac:(tauto))
- | _ => progress cbn [fst snd] in *
- | _ => solve [ auto using andb_true_intro, conj with nocore ]
- | _ => progress intros
- | [ H : is_bounded_by _ _ = true /\ _ |- _ ] => destruct H
- | [ |- is_bounded_by _ _ = true /\ _ ] => split
- | [ H : _ |- is_bounded_by _ _ = true ] => apply H
- | [ H : _ |- valid _ ] => rewrite H
- | [ H : context[valid _] |- valid _ ] => apply H
- | [ |- _ <-> _ ] => reflexivity
- | [ |- ?x = ?x ] => reflexivity
- | [ |- _ = _ :> Z ] => first [ reflexivity | rewrite <- m_eq; reflexivity ]
- | [ H : context[?x] |- Fdecode ?x = _ ] => rewrite H
- | [ H : context[?x _] |- Fdecode (?x _) = _ ] => rewrite H
- | [ H : context[?x _ _] |- Fdecode (?x _ _) = _ ] => rewrite H
- | _ => progress cbv [Fdecode]
- | [ |- _ = _ :> F _ ] => apply F.eq_to_Z_iff
- | _ => progress autorewrite with push_FtoZ
- | _ => rewrite m_eq
- | [ H : context[?f (?x _ _)] |- context[eval (?f (?x _ _))] ] => rewrite H
- | [ H : context[?f (?x _)] |- context[eval (?f (?x _))] ] => rewrite H
- | [ H : context[?f ?x] |- context[eval (?f ?x)] ] => rewrite H
- | [ H : context[?x _ _] |- context[eval (?x _ _)] ] => rewrite H
- | [ H : context[?x _] |- context[eval (?x _)] ] => rewrite H
- | [ H : context[?x] |- context[eval ?x] ] => rewrite H
- | [ H : context[?y _ _ = ?x _ _], H' : context[is_bounded_by _ (?y _ _) = true]
- |- is_bounded_by _ (?x _ _) = true ]
- => rewrite <- H; [ apply H' | .. ]
- | [ H : context[?y _ = ?x _], H' : context[is_bounded_by _ (?y _) = true]
- |- is_bounded_by _ (?x _) = true ]
- => rewrite <- H; [ apply H' | .. ]
- | [ H : context[?y = ?x], H' : context[is_bounded_by _ ?y = true]
- |- is_bounded_by _ ?x = true ]
- => rewrite <- H; [ apply H' | .. ]
- | [ |- context[List.length ?x] ]
- => erewrite (length_is_bounded_by _ x)
- by eauto using andb_true_intro, conj with nocore
- | [ |- _ = _ :> Z ]
- => push_Zmod; reflexivity
- | _ => pull_Zmod; rewrite Z.add_opp_r
- | _ => rewrite expanding_id_id
- | [ |- context[F.to_Z _ mod (_ - _)] ]
- => rewrite <- m_eq, F.mod_to_Z
- | _ => rewrite <- m_eq; apply Fm_bounded_alt
- | _ => rewrite <- m_eq; apply Fm_bounded_alt'
- | [ |- context[andb _ true] ] => rewrite andb_true_r
- end.
- Qed.
- End ring_goal.
-End MontgomeryStyleRing.
-
-Import Associational Positional.
-
-Import
- Crypto.Experiments.NewPipeline.LanguageWf
- Crypto.Experiments.NewPipeline.UnderLetsProofs
- Crypto.Experiments.NewPipeline.MiscCompilerPassesProofs
- Crypto.Experiments.NewPipeline.RewriterProofs
- Crypto.Experiments.NewPipeline.AbstractInterpretationWf
- Crypto.Experiments.NewPipeline.AbstractInterpretationProofs
- Crypto.Experiments.NewPipeline.Language
- Crypto.Experiments.NewPipeline.UnderLets
- Crypto.Experiments.NewPipeline.AbstractInterpretation
- Crypto.Experiments.NewPipeline.Rewriter
- Crypto.Experiments.NewPipeline.MiscCompilerPasses
- Crypto.Experiments.NewPipeline.CStringification.
-
-Import
- LanguageWf.Compilers
- UnderLetsProofs.Compilers
- MiscCompilerPassesProofs.Compilers
- RewriterProofs.Compilers
- AbstractInterpretationWf.Compilers
- AbstractInterpretationProofs.Compilers
- Language.Compilers
- UnderLets.Compilers
- AbstractInterpretation.Compilers
- Rewriter.Compilers
- MiscCompilerPasses.Compilers
- CStringification.Compilers.
-
-Import Compilers.defaults.
-Local Coercion Z.of_nat : nat >-> Z.
-Local Coercion QArith_base.inject_Z : Z >-> Q.
-Notation "x" := (expr.Var x) (only printing, at level 9) : expr_scope.
-
-Module Pipeline.
- Import GeneralizeVar.
- Inductive ErrorMessage :=
- | Computed_bounds_are_not_tight_enough
- {t} (computed_bounds expected_bounds : ZRange.type.base.option.interp (type.final_codomain t))
- (syntax_tree : Expr t) (arg_bounds : type.for_each_lhs_of_arrow ZRange.type.option.interp t)
- | No_modular_inverse (descr : string) (v : Z) (m : Z)
- | Value_not_leZ (descr : string) (lhs rhs : Z)
- | Value_not_leQ (descr : string) (lhs rhs : Q)
- | Value_not_ltZ (descr : string) (lhs rhs : Z)
- | Value_not_lt_listZ (descr : string) (lhs rhs : list Z)
- | Value_not_le_listZ (descr : string) (lhs rhs : list Z)
- | Values_not_provably_distinctZ (descr : string) (lhs rhs : Z)
- | Values_not_provably_equalZ (descr : string) (lhs rhs : Z)
- | Values_not_provably_equal_listZ (descr : string) (lhs rhs : list Z)
- | Unsupported_casts_in_input {t} (e : @Compilers.defaults.Expr t) (ls : list { t : _ & ident t })
- | Stringification_failed {t} (e : @Compilers.defaults.Expr t) (err : string)
- | Invalid_argument (msg : string).
-
- Notation ErrorT := (ErrorT ErrorMessage).
-
- Section show.
- Local Open Scope string_scope.
- Fixpoint find_too_loose_base_bounds {t}
- : ZRange.type.base.option.interp t -> ZRange.type.base.option.interp t-> bool * list (nat * nat) * list (zrange * zrange)
- := match t return ZRange.type.base.option.interp t -> ZRange.type.option.interp t-> bool * list (nat * nat) * list (zrange * zrange) with
- | base.type.unit
- => fun 'tt 'tt => (false, nil, nil)
- | base.type.nat
- | base.type.bool
- => fun _ _ => (false, nil, nil)
- | base.type.Z
- => fun a b
- => match a, b with
- | None, None => (false, nil, nil)
- | Some _, None => (false, nil, nil)
- | None, Some _ => (true, nil, nil)
- | Some a, Some b
- => if is_tighter_than_bool a b
- then (false, nil, nil)
- else (false, nil, ((a, b)::nil))
- end
- | base.type.prod A B
- => fun '(ra, rb) '(ra', rb')
- => let '(b1, lens1, ls1) := @find_too_loose_base_bounds A ra ra' in
- let '(b2, lens2, ls2) := @find_too_loose_base_bounds B rb rb' in
- (orb b1 b2, lens1 ++ lens2, ls1 ++ ls2)%list
- | base.type.list A
- => fun ls1 ls2
- => match ls1, ls2 with
- | None, None
- | Some _, None
- => (false, nil, nil)
- | None, Some _
- => (true, nil, nil)
- | Some ls1, Some ls2
- => List.fold_right
- (fun '(b, len, err) '(bs, lens, errs)
- => (orb b bs, len ++ lens, err ++ errs)%list)
- (false,
- (if (List.length ls1 =? List.length ls2)%nat
- then nil
- else ((List.length ls1, List.length ls2)::nil)),
- nil)
- (List.map
- (fun '(a, b) => @find_too_loose_base_bounds A a b)
- (List.combine ls1 ls2))
- end
- end.
-
- Definition find_too_loose_bounds {t}
- : ZRange.type.option.interp t -> ZRange.type.option.interp t-> bool * list (nat * nat) * list (zrange * zrange)
- := match t with
- | type.arrow s d => fun _ _ => (false, nil, nil)
- | type.base t => @find_too_loose_base_bounds t
- end.
- Definition explain_too_loose_bounds {t} (b1 b2 : ZRange.type.option.interp t)
- : string
- := let '(none_some, lens, bs) := find_too_loose_bounds b1 b2 in
- String.concat
- String.NewLine
- ((if none_some then "Found None where Some was expected"::nil else nil)
- ++ (List.map
- (A:=nat*nat)
- (fun '(l1, l2) => "Found a list of length " ++ show false l1 ++ " where a list of length " ++ show false l2 ++ " was expected.")
- lens)
- ++ (List.map
- (A:=zrange*zrange)
- (fun '(b1, b2) => "The bounds " ++ show false b1 ++ " are looser than the expected bounds " ++ show false b2)
- bs)).
-
- Global Instance show_lines_ErrorMessage : ShowLines ErrorMessage
- := fun parens e
- => maybe_wrap_parens_lines
- parens
- match e with
- | Computed_bounds_are_not_tight_enough t computed_bounds expected_bounds syntax_tree arg_bounds
- => ((["Computed bounds " ++ show true computed_bounds ++ " are not tight enough (expected bounds not looser than " ++ show true expected_bounds ++ ")."]%string)
- ++ [explain_too_loose_bounds (t:=type.base _) computed_bounds expected_bounds]
- ++ match ToString.C.ToFunctionLines
- false (* do extra bounds check *) false (* static *) "" "f" nil syntax_tree None arg_bounds ZRange.type.base.option.None with
- | inl (E_lines, types_used)
- => ["When doing bounds analysis on the syntax tree:"]
- ++ E_lines ++ [""]
- ++ ["with input bounds " ++ show true arg_bounds ++ "." ++ String.NewLine]%string
- | inr errs
- => (["(Unprintible syntax tree used in bounds analysis)" ++ String.NewLine]%string)
- ++ ["Stringification failed on the syntax tree:"] ++ show_lines false syntax_tree ++ [errs]
- end)%list
- | No_modular_inverse descr v m
- => ["Could not compute a modular inverse (" ++ descr ++ ") for " ++ show false v ++ " mod " ++ show false m]
- | Value_not_leZ descr lhs rhs
- => ["Value not ≤ (" ++ descr ++ ") : expected " ++ show false lhs ++ " ≤ " ++ show false rhs]
- | Value_not_leQ descr lhs rhs
- => ["Value not ≤ (" ++ descr ++ ") : expected " ++ show false lhs ++ " ≤ " ++ show false rhs]
- | Value_not_ltZ descr lhs rhs
- => ["Value not < (" ++ descr ++ ") : expected " ++ show false lhs ++ " < " ++ show false rhs]
- | Value_not_lt_listZ descr lhs rhs
- => ["Value not < (" ++ descr ++ ") : expected " ++ show false lhs ++ " < " ++ show false rhs]
- | Value_not_le_listZ descr lhs rhs
- => ["Value not ≤ (" ++ descr ++ ") : expected " ++ show false lhs ++ " ≤ " ++ show false rhs]
- | Values_not_provably_distinctZ descr lhs rhs
- => ["Values not provably distinct (" ++ descr ++ ") : expected " ++ show true lhs ++ " ≠ " ++ show true rhs]
- | Values_not_provably_equalZ descr lhs rhs
- | Values_not_provably_equal_listZ descr lhs rhs
- => ["Values not provably equal (" ++ descr ++ ") : expected " ++ show true lhs ++ " = " ++ show true rhs]
- | Unsupported_casts_in_input t e ls
- => ["Unsupported casts in input syntax tree:"]
- ++ show_lines false e
- ++ ["Unsupported casts: " ++ @show_list _ (fun p v => show p (projT2 v)) false ls]
- | Stringification_failed t e err => ["Stringification failed on the syntax tree:"] ++ show_lines false e ++ [err]
- | Invalid_argument msg
- => ["Invalid argument:" ++ msg]%string
- end.
- Local Instance show_ErrorMessage : Show ErrorMessage
- := fun parens err => String.concat String.NewLine (show_lines parens err).
- End show.
-
- Definition invert_result {T} (v : ErrorT T)
- := match v return match v with Success _ => T | _ => ErrorMessage end with
- | Success v => v
- | Error msg => msg
- end.
-
- Record to_fancy_args := { invert_low : Z (*log2wordmax*) -> Z -> option Z ; invert_high : Z (*log2wordmax*) -> Z -> option Z ; value_range : zrange ; flag_range : zrange }.
-
- Definition RewriteAndEliminateDeadAndInline {t}
- (DoRewrite : Expr t -> Expr t)
- (with_dead_code_elimination : bool)
- (with_subst01 : bool)
- (E : Expr t)
- : Expr t
- := let E := DoRewrite E in
- (* Note that DCE evaluates the expr with two different [var]
- arguments, and so results in a pipeline that is 2x slower
- unless we pass through a uniformly concrete [var] type
- first *)
- dlet_nd e := ToFlat E in
- let E := FromFlat e in
- let E := if with_subst01 then Subst01.Subst01 E
- else if with_dead_code_elimination then DeadCodeElimination.EliminateDead E
- else E in
- let E := UnderLets.LetBindReturn E in
- let E := DoRewrite E in (* after inlining, see if any new rewrite redexes are available *)
- dlet_nd e := ToFlat E in
- let E := FromFlat e in
- let E := if with_dead_code_elimination then DeadCodeElimination.EliminateDead E else E in
- E.
-
- Definition BoundsPipeline
- (with_dead_code_elimination : bool := true)
- (with_subst01 : bool)
- (translate_to_fancy : option to_fancy_args)
- relax_zrange
- {t}
- (E : Expr t)
- arg_bounds
- out_bounds
- : ErrorT (Expr t)
- := (*let E := expr.Uncurry E in*)
- let E := PartialEvaluateWithListInfoFromBounds E arg_bounds in
- let E := PartialEvaluate E in
- let E := RewriteAndEliminateDeadAndInline (RewriteRules.RewriteArith 0) with_dead_code_elimination with_subst01 E in
- let E := RewriteRules.RewriteArith (2^8) E in (* reassociate small consts *)
- let E := match translate_to_fancy with
- | Some {| invert_low := invert_low ; invert_high := invert_high |} => RewriteRules.RewriteToFancy invert_low invert_high E
- | None => E
- end in
- dlet_nd e := ToFlat E in
- let E := FromFlat e in
- let E' := CheckedPartialEvaluateWithBounds relax_zrange E arg_bounds out_bounds in
- match E' with
- | inl E
- => let E := RewriteAndEliminateDeadAndInline RewriteRules.RewriteArithWithCasts with_dead_code_elimination with_subst01 E in
- let E := match translate_to_fancy with
- | Some {| invert_low := invert_low ; invert_high := invert_high ; value_range := value_range ; flag_range := flag_range |}
- => RewriteRules.RewriteToFancyWithCasts invert_low invert_high value_range flag_range E
- | None => E
- end in
- Success E
- | inr (inl (b, E))
- => Error (Computed_bounds_are_not_tight_enough b out_bounds E arg_bounds)
- | inr (inr unsupported_casts)
- => Error (Unsupported_casts_in_input E unsupported_casts)
- end.
-
- Definition BoundsPipelineToStrings
- (static : bool)
- (type_prefix : string)
- (name : string)
- (comment : list string)
- (with_dead_code_elimination : bool := true)
- (with_subst01 : bool)
- (translate_to_fancy : option to_fancy_args)
- relax_zrange
- {t}
- (E : Expr t)
- arg_bounds
- out_bounds
- : ErrorT (list string * ToString.C.ident_infos)
- := let E := BoundsPipeline
- (*with_dead_code_elimination*)
- with_subst01
- translate_to_fancy
- relax_zrange
- E arg_bounds out_bounds in
- match E with
- | Success E' => let E := ToString.C.ToFunctionLines
- true static type_prefix name comment E' None arg_bounds out_bounds in
- match E with
- | inl E => Success E
- | inr err => Error (Stringification_failed E' err)
- end
- | Error err => Error err
- end.
-
- Definition BoundsPipelineToString
- (static : bool)
- (type_prefix : string)
- (name : string)
- (comment : list string)
- (with_dead_code_elimination : bool := true)
- (with_subst01 : bool)
- (translate_to_fancy : option to_fancy_args)
- relax_zrange
- {t}
- (E : Expr t)
- arg_bounds
- out_bounds
- : ErrorT (string * ToString.C.ident_infos)
- := let E := BoundsPipelineToStrings
- static type_prefix name comment
- (*with_dead_code_elimination*)
- with_subst01
- translate_to_fancy
- relax_zrange
- E arg_bounds out_bounds in
- match E with
- | Success (E, types_used) => Success (ToString.C.LinesToString E, types_used)
- | Error err => Error err
- end.
-
- Local Ltac wf_interp_t :=
- repeat first [ progress destruct_head'_and
- | progress autorewrite with interp
- | solve [ auto with interp wf ]
- | solve [ typeclasses eauto ]
- | break_innermost_match_step
- | solve [ auto 100 with wf ]
- | progress intros ].
-
- Class bounds_goodT {t} bounds
- := bounds_good :
- Proper (type.and_for_each_lhs_of_arrow (t:=t) (@partial.abstract_domain_R base.type ZRange.type.base.option.interp (fun _ => eq)))
- bounds.
-
- Class type_goodT (t : type.type base.type)
- := type_good : type.andb_each_lhs_of_arrow type.is_base t = true.
-
- Hint Extern 1 (type_goodT _) => vm_compute; reflexivity : typeclass_instances.
-
- Lemma Wf_RewriteAndEliminateDeadAndInline {t} DoRewrite with_dead_code_elimination with_subst01
- (Wf_DoRewrite : forall E, Wf E -> Wf (DoRewrite E))
- E
- (Hwf : Wf E)
- : Wf (@RewriteAndEliminateDeadAndInline t DoRewrite with_dead_code_elimination with_subst01 E).
- Proof. cbv [RewriteAndEliminateDeadAndInline Let_In]; wf_interp_t. Qed.
-
- Global Hint Resolve @Wf_RewriteAndEliminateDeadAndInline : wf.
-
- Lemma Interp_RewriteAndEliminateDeadAndInline {cast_outside_of_range} {t} DoRewrite with_dead_code_elimination with_subst01
- (Interp_DoRewrite : forall E, Wf E -> expr.Interp (@ident.gen_interp cast_outside_of_range) (DoRewrite E) == expr.Interp (@ident.gen_interp cast_outside_of_range) E)
- (Wf_DoRewrite : forall E, Wf E -> Wf (DoRewrite E))
- E
- (Hwf : Wf E)
- : expr.Interp (@ident.gen_interp cast_outside_of_range) (@RewriteAndEliminateDeadAndInline t DoRewrite with_dead_code_elimination with_subst01 E)
- == expr.Interp (@ident.gen_interp cast_outside_of_range) E.
- Proof.
- cbv [RewriteAndEliminateDeadAndInline Let_In];
- repeat (wf_interp_t || rewrite !Interp_DoRewrite).
- Qed.
-
- Hint Rewrite @Interp_RewriteAndEliminateDeadAndInline : interp.
-
- Local Opaque RewriteAndEliminateDeadAndInline.
- Lemma BoundsPipeline_correct
- (with_dead_code_elimination : bool := true)
- (with_subst01 : bool)
- (translate_to_fancy : option to_fancy_args)
- relax_zrange
- (Hrelax : forall r r' z : zrange,
- (z <=? r)%zrange = true -> relax_zrange r = Some r' -> (z <=? r')%zrange = true)
- {t}
- (e : Expr t)
- arg_bounds
- out_bounds
- {type_good : type_goodT t}
- rv
- (Hrv : BoundsPipeline (*with_dead_code_elimination*) with_subst01 translate_to_fancy relax_zrange e arg_bounds out_bounds = Success rv)
- (Hwf : Wf e)
- (Hfancy : match translate_to_fancy with
- | Some {| invert_low := il ; invert_high := ih |}
- => (forall s v v' : Z, il s v = Some v' -> v = Z.land v' (2^(s/2)-1))
- /\ (forall s v v' : Z, ih s v = Some v' -> v = Z.shiftr v' (s/2))
- | None => True
- end)
- : (forall arg1 arg2
- (Harg12 : type.and_for_each_lhs_of_arrow (@type.eqv) arg1 arg2)
- (Harg1 : type.andb_bool_for_each_lhs_of_arrow (@ZRange.type.option.is_bounded_by) arg_bounds arg1 = true),
- ZRange.type.base.option.is_bounded_by out_bounds (type.app_curried (Interp rv) arg1) = true
- /\ forall cast_outside_of_range, type.app_curried (expr.Interp (@ident.gen_interp cast_outside_of_range) rv) arg1
- = type.app_curried (Interp e) arg2)
- /\ Wf rv.
- Proof.
- assert (Hbounds_Proper : bounds_goodT arg_bounds) by (apply type.and_eqv_for_each_lhs_of_arrow_not_higher_order, type_good).
- cbv [BoundsPipeline Let_In bounds_goodT] in *;
- repeat match goal with
- | [ H : match ?x with _ => _ end = Success _ |- _ ]
- => destruct x eqn:?; cbv beta iota in H; [ | break_innermost_match_hyps; congruence ];
- let H' := fresh in
- inversion H as [H']; clear H; rename H' into H
- end.
- { intros;
- match goal with
- | [ H : _ = _ |- _ ]
- => let H' := fresh in
- pose proof H as H';
- eapply CheckedPartialEvaluateWithBounds_Correct in H';
- [ destruct H' as [H01 Hwf'] | .. ]
- end;
- [
- | lazymatch goal with
- | [ |- Wf _ ] => idtac
- | _ => eassumption || reflexivity
- end.. ].
- { subst; split; [ | solve [ wf_interp_t ] ].
- split_and; simpl in *.
- split; [ solve [ wf_interp_t; eauto with nocore ] | ].
- intros; break_innermost_match; autorewrite with interp; try solve [ wf_interp_t ]; [ | ].
- all: match goal with H : context[type.app_curried _ _ = _] |- _ => erewrite H; clear H end; eauto.
- all: transitivity (type.app_curried (Interp (PartialEvaluateWithListInfoFromBounds e arg_bounds)) arg1);
- [ | apply Interp_PartialEvaluateWithListInfoFromBounds; auto ].
- all: apply type.app_curried_Proper; [ | symmetry; eassumption ].
- all: clear dependent arg1; clear dependent arg2; clear dependent out_bounds.
- all: wf_interp_t. }
- { wf_interp_t. } }
- Qed.
- Local Transparent RewriteAndEliminateDeadAndInline.
-
- Definition BoundsPipeline_correct_transT
- {t}
- arg_bounds
- out_bounds
- (InterpE : type.interp base.interp t)
- (rv : Expr t)
- := (forall arg1 arg2
- (Harg12 : type.and_for_each_lhs_of_arrow (@type.eqv) arg1 arg2)
- (Harg1 : type.andb_bool_for_each_lhs_of_arrow (@ZRange.type.option.is_bounded_by) arg_bounds arg1 = true),
- ZRange.type.base.option.is_bounded_by out_bounds (type.app_curried (Interp rv) arg1) = true
- /\ forall cast_outside_of_range, type.app_curried (expr.Interp (@ident.gen_interp cast_outside_of_range) rv) arg1
- = type.app_curried InterpE arg2)
- /\ Wf rv.
-
- Lemma BoundsPipeline_correct_trans
- (with_dead_code_elimination : bool := true)
- (with_subst01 : bool)
- (translate_to_fancy : option to_fancy_args)
- (Hfancy : match translate_to_fancy with
- | Some {| invert_low := il ; invert_high := ih |}
- => (forall s v v' : Z, il s v = Some v' -> v = Z.land v' (2^(s/2)-1))
- /\ (forall s v v' : Z, ih s v = Some v' -> v = Z.shiftr v' (s/2))
- | None => True
- end)
- relax_zrange
- (Hrelax
- : forall r r' z : zrange,
- (z <=? r)%zrange = true -> relax_zrange r = Some r' -> (z <=? r')%zrange = true)
- {t}
- (e : Expr t)
- arg_bounds out_bounds
- {type_good : type_goodT t}
- (InterpE : type.interp base.interp t)
- (InterpE_correct_and_Wf
- : (forall arg1 arg2
- (Harg12 : type.and_for_each_lhs_of_arrow (@type.eqv) arg1 arg2)
- (Harg1 : type.andb_bool_for_each_lhs_of_arrow (@ZRange.type.option.is_bounded_by) arg_bounds arg1 = true),
- type.app_curried (Interp e) arg1 = type.app_curried InterpE arg2)
- /\ Wf e)
- rv
- (Hrv : BoundsPipeline (*with_dead_code_elimination*) with_subst01 translate_to_fancy relax_zrange e arg_bounds out_bounds = Success rv)
- : BoundsPipeline_correct_transT arg_bounds out_bounds InterpE rv.
- Proof.
- destruct InterpE_correct_and_Wf as [InterpE_correct Hwf].
- split; [ intros arg1 arg2 Harg12 Harg1; erewrite <- InterpE_correct | ]; try eapply @BoundsPipeline_correct;
- lazymatch goal with
- | [ |- type.andb_bool_for_each_lhs_of_arrow _ _ _ = true ] => eassumption
- | _ => try assumption
- end; try eassumption.
- etransitivity; try eassumption; symmetry; assumption.
- Qed.
-
- Ltac solve_bounds_good :=
- repeat first [ progress cbv [bounds_goodT Proper partial.abstract_domain_R type_base] in *
- | progress cbn [type.and_for_each_lhs_of_arrow type.for_each_lhs_of_arrow partial.abstract_domain type.interp ZRange.type.base.option.interp type.related] in *
- | exact I
- | apply conj
- | exact eq_refl ].
-
- Global Instance bounds0_good {t : base.type} {bounds} : @bounds_goodT t bounds.
- Proof. solve_bounds_good. Qed.
-
- Global Instance bounds1_good {s d : base.type} {bounds} : @bounds_goodT (s -> d) bounds.
- Proof. solve_bounds_good. Qed.
-
- Global Instance bounds2_good {a b D : base.type} {bounds} : @bounds_goodT (a -> b -> D) bounds.
- Proof. solve_bounds_good. Qed.
-
- Global Instance bounds3_good {a b c D : base.type} {bounds} : @bounds_goodT (a -> b -> c -> D) bounds.
- Proof. solve_bounds_good. Qed.
-End Pipeline.
-
-Hint Extern 1 (@Pipeline.bounds_goodT _ _) => solve [ Pipeline.solve_bounds_good ] : typeclass_instances.
-
-Definition round_up_bitwidth_gen (possible_values : list Z) (bitwidth : Z) : option Z
- := List.fold_right
- (fun allowed cur
- => if bitwidth <=? allowed
- then Some allowed
- else cur)
- None
- possible_values.
-
-Lemma round_up_bitwidth_gen_le possible_values bitwidth v
- : round_up_bitwidth_gen possible_values bitwidth = Some v
- -> bitwidth <= v.
-Proof.
- cbv [round_up_bitwidth_gen].
- induction possible_values as [|x xs IHxs]; cbn; intros; inversion_option.
- break_innermost_match_hyps; Z.ltb_to_lt; inversion_option; subst; trivial.
- specialize_by_assumption; omega.
-Qed.
-
-Definition relax_zrange_gen (possible_values : list Z) : zrange -> option zrange
- := (fun '(r[ l ~> u ])
- => if (0 <=? l)%Z
- then option_map (fun u => r[0~>2^u-1])
- (round_up_bitwidth_gen possible_values (Z.log2_up (u+1)))
- else None)%zrange.
-
-Lemma relax_zrange_gen_good
- (possible_values : list Z)
- : forall r r' z : zrange,
- (z <=? r)%zrange = true -> relax_zrange_gen possible_values r = Some r' -> (z <=? r')%zrange = true.
-Proof.
- cbv [is_tighter_than_bool relax_zrange_gen]; intros *.
- pose proof (Z.log2_up_nonneg (upper r + 1)).
- rewrite !Bool.andb_true_iff; destruct_head' zrange; cbn [ZRange.lower ZRange.upper] in *.
- cbv [fold_right option_map].
- break_innermost_match; intros; destruct_head'_and;
- try match goal with
- | [ H : _ |- _ ] => apply round_up_bitwidth_gen_le in H
- end;
- inversion_option; inversion_zrange;
- subst;
- repeat apply conj;
- Z.ltb_to_lt; try omega;
- try (rewrite <- Z.log2_up_le_pow2_full in *; omega).
-Qed.
-
-Ltac cache_reify _ :=
- split;
- [ intros;
- etransitivity;
- [
- | repeat match goal with |- _ = ?f' ?x => is_var x; apply (f_equal (fun f => f _)) end;
- Reify_rhs ();
- reflexivity ];
- subst_evars;
- reflexivity
- | prove_Wf () ].
-
-Create HintDb reify_gen_cache discriminated.
-Create HintDb wf_gen_cache discriminated.
-Hint Resolve conj : reify_gen_cache wf_gen_cache.
-Hint Unfold Wf : wf_gen_cache.
-
-Derive carry_mul_gen
- SuchThat ((forall (limbwidth_num limbwidth_den : Z)
- (f g : list Z)
- (n : nat)
- (s : Z)
- (c : list (Z * Z))
- (idxs : list nat),
- Interp (t:=reify_type_of carry_mulmod)
- carry_mul_gen limbwidth_num limbwidth_den s c n idxs f g
- = carry_mulmod limbwidth_num limbwidth_den s c n idxs f g)
- /\ Wf carry_mul_gen)
- As carry_mul_gen_correct.
-Proof. Time cache_reify (). Time Qed.
-Hint Extern 1 (_ = carry_mulmod _ _ _ _ _ _ _ _) => simple apply (proj1 carry_mul_gen_correct) : reify_gen_cache.
-Hint Immediate (proj2 carry_mul_gen_correct) : wf_gen_cache.
-
-Derive carry_square_gen
- SuchThat ((forall (limbwidth_num limbwidth_den : Z)
- (f : list Z)
- (n : nat)
- (s : Z)
- (c : list (Z * Z))
- (idxs : list nat),
- Interp (t:=reify_type_of carry_squaremod)
- carry_square_gen limbwidth_num limbwidth_den s c n idxs f
- = carry_squaremod limbwidth_num limbwidth_den s c n idxs f)
- /\ Wf carry_square_gen)
- As carry_square_gen_correct.
-Proof. Time cache_reify (). Time Qed.
-Hint Extern 1 (_ = carry_squaremod _ _ _ _ _ _ _) => simple apply (proj1 carry_square_gen_correct) : reify_gen_cache.
-Hint Immediate (proj2 carry_square_gen_correct) : wf_gen_cache.
-
-Derive carry_scmul_gen
- SuchThat ((forall (limbwidth_num limbwidth_den : Z)
- (x : Z) (f : list Z)
- (n : nat)
- (s : Z)
- (c : list (Z * Z))
- (idxs : list nat),
- Interp (t:=reify_type_of carry_scmulmod)
- carry_scmul_gen limbwidth_num limbwidth_den s c n idxs x f
- = carry_scmulmod limbwidth_num limbwidth_den s c n idxs x f)
- /\ Wf carry_scmul_gen)
- As carry_scmul_gen_correct.
-Proof. Time cache_reify (). Time Qed.
-Hint Extern 1 (_ = carry_scmulmod _ _ _ _ _ _ _ _) => simple apply (proj1 carry_scmul_gen_correct) : reify_gen_cache.
-Hint Immediate (proj2 carry_scmul_gen_correct) : wf_gen_cache.
-
-Derive carry_gen
- SuchThat ((forall (limbwidth_num limbwidth_den : Z)
- (f : list Z)
- (n : nat)
- (s : Z)
- (c : list (Z * Z))
- (idxs : list nat),
- Interp (t:=reify_type_of carrymod)
- carry_gen limbwidth_num limbwidth_den s c n idxs f
- = carrymod limbwidth_num limbwidth_den s c n idxs f)
- /\ Wf carry_gen)
- As carry_gen_correct.
-Proof. cache_reify (). Qed.
-Hint Extern 1 (_ = carrymod _ _ _ _ _ _ _) => simple apply (proj1 carry_gen_correct) : reify_gen_cache.
-Hint Immediate (proj2 carry_gen_correct) : wf_gen_cache.
-
-Derive encode_gen
- SuchThat ((forall (limbwidth_num limbwidth_den : Z)
- (v : Z)
- (n : nat)
- (s : Z)
- (c : list (Z * Z)),
- Interp (t:=reify_type_of encodemod)
- encode_gen limbwidth_num limbwidth_den s c n v
- = encodemod limbwidth_num limbwidth_den s c n v)
- /\ Wf encode_gen)
- As encode_gen_correct.
-Proof. cache_reify (). Qed.
-Hint Extern 1 (_ = encodemod _ _ _ _ _ _) => simple apply (proj1 encode_gen_correct) : reify_gen_cache.
-Hint Immediate (proj2 encode_gen_correct) : wf_gen_cache.
-
-Derive add_gen
- SuchThat ((forall (limbwidth_num limbwidth_den : Z)
- (f g : list Z)
- (n : nat),
- Interp (t:=reify_type_of addmod)
- add_gen limbwidth_num limbwidth_den n f g
- = addmod limbwidth_num limbwidth_den n f g)
- /\ Wf add_gen)
- As add_gen_correct.
-Proof. cache_reify (). Qed.
-Hint Extern 1 (_ = addmod _ _ _ _ _) => simple apply (proj1 add_gen_correct) : reify_gen_cache.
-Hint Immediate (proj2 add_gen_correct) : wf_gen_cache.
-
-Derive sub_gen
- SuchThat ((forall (limbwidth_num limbwidth_den : Z)
- (n : nat)
- (s : Z)
- (c : list (Z * Z))
- (coef : Z)
- (f g : list Z),
- Interp (t:=reify_type_of submod)
- sub_gen limbwidth_num limbwidth_den s c n coef f g
- = submod limbwidth_num limbwidth_den s c n coef f g)
- /\ Wf sub_gen)
- As sub_gen_correct.
-Proof. cache_reify (). Qed.
-Hint Extern 1 (_ = submod _ _ _ _ _ _ _ _) => simple apply (proj1 sub_gen_correct) : reify_gen_cache.
-Hint Immediate (proj2 sub_gen_correct) : wf_gen_cache.
-
-Derive opp_gen
- SuchThat ((forall (limbwidth_num limbwidth_den : Z)
- (n : nat)
- (s : Z)
- (c : list (Z * Z))
- (coef : Z)
- (f : list Z),
- Interp (t:=reify_type_of oppmod)
- opp_gen limbwidth_num limbwidth_den s c n coef f
- = oppmod limbwidth_num limbwidth_den s c n coef f)
- /\ Wf opp_gen)
- As opp_gen_correct.
-Proof. cache_reify (). Qed.
-Hint Extern 1 (_ = oppmod _ _ _ _ _ _ _) => simple apply (proj1 opp_gen_correct) : reify_gen_cache.
-Hint Immediate (proj2 opp_gen_correct) : wf_gen_cache.
-
-Definition zeromod limbwidth_num limbwidth_den s c n := encodemod limbwidth_num limbwidth_den s c n 0.
-Definition onemod limbwidth_num limbwidth_den s c n := encodemod limbwidth_num limbwidth_den s c n 1.
-Definition primemod limbwidth_num limbwidth_den s c n := encodemod limbwidth_num limbwidth_den s c n (s - Associational.eval c).
-
-Derive zero_gen
- SuchThat ((forall (limbwidth_num limbwidth_den : Z)
- (n : nat)
- (s : Z)
- (c : list (Z * Z)),
- Interp (t:=reify_type_of zeromod)
- zero_gen limbwidth_num limbwidth_den s c n
- = zeromod limbwidth_num limbwidth_den s c n)
- /\ Wf zero_gen)
- As zero_gen_correct.
-Proof. cache_reify (). Qed.
-Hint Extern 1 (_ = zeromod _ _ _ _ _) => simple apply (proj1 zero_gen_correct) : reify_gen_cache.
-Hint Immediate (proj2 zero_gen_correct) : wf_gen_cache.
-
-Derive one_gen
- SuchThat ((forall (limbwidth_num limbwidth_den : Z)
- (n : nat)
- (s : Z)
- (c : list (Z * Z)),
- Interp (t:=reify_type_of onemod)
- one_gen limbwidth_num limbwidth_den s c n
- = onemod limbwidth_num limbwidth_den s c n)
- /\ Wf one_gen)
- As one_gen_correct.
-Proof. cache_reify (). Qed.
-Hint Extern 1 (_ = onemod _ _ _ _ _) => simple apply (proj1 one_gen_correct) : reify_gen_cache.
-Hint Immediate (proj2 one_gen_correct) : wf_gen_cache.
-
-Derive prime_gen
- SuchThat ((forall (limbwidth_num limbwidth_den : Z)
- (n : nat)
- (s : Z)
- (c : list (Z * Z)),
- Interp (t:=reify_type_of primemod)
- prime_gen limbwidth_num limbwidth_den s c n
- = primemod limbwidth_num limbwidth_den s c n)
- /\ Wf prime_gen)
- As prime_gen_correct.
-Proof. cache_reify (). Qed.
-Hint Extern 1 (_ = primemod _ _ _ _ _) => simple apply (proj1 prime_gen_correct) : reify_gen_cache.
-Hint Immediate (proj2 prime_gen_correct) : wf_gen_cache.
-
-Derive id_gen
- SuchThat ((forall (ls : list Z),
- Interp (t:=reify_type_of (@id (list Z)))
- id_gen ls
- = id ls)
- /\ Wf id_gen)
- As id_gen_correct.
-Proof. cache_reify (). Qed.
-Hint Extern 1 (_ = id _) => simple apply (proj1 id_gen_correct) : reify_gen_cache.
-Hint Immediate (proj2 id_gen_correct) : wf_gen_cache.
-
-Derive selectznz_gen
- SuchThat ((forall (cond : Z) (f g : list Z),
- Interp (t:=reify_type_of Positional.select)
- selectznz_gen cond f g
- = Positional.select cond f g)
- /\ Wf selectznz_gen)
- As selectznz_gen_correct.
-Proof. cache_reify (). Qed.
-Hint Extern 1 (_ = Positional.select _ _ _) => simple apply (proj1 selectznz_gen_correct) : reify_gen_cache.
-Hint Immediate (proj2 selectznz_gen_correct) : wf_gen_cache.
-
-Derive to_bytes_gen
- SuchThat ((forall (limbwidth_num limbwidth_den : Z)
- (n : nat)
- (bitwidth : Z)
- (m_enc : list Z)
- (f : list Z),
- Interp (t:=reify_type_of freeze_to_bytesmod)
- to_bytes_gen limbwidth_num limbwidth_den n bitwidth m_enc f
- = freeze_to_bytesmod limbwidth_num limbwidth_den n bitwidth m_enc f)
- /\ Wf to_bytes_gen)
- As to_bytes_gen_correct.
-Proof. cache_reify (). Qed.
-Hint Extern 1 (_ = freeze_to_bytesmod _ _ _ _ _ _) => simple apply (proj1 to_bytes_gen_correct) : reify_gen_cache.
-Hint Immediate (proj2 to_bytes_gen_correct) : wf_gen_cache.
-
-Derive from_bytes_gen
- SuchThat ((forall (limbwidth_num limbwidth_den : Z)
- (n : nat)
- (f : list Z),
- Interp (t:=reify_type_of from_bytesmod)
- from_bytes_gen limbwidth_num limbwidth_den n f
- = from_bytesmod limbwidth_num limbwidth_den n f)
- /\ Wf from_bytes_gen)
- As from_bytes_gen_correct.
-Proof. cache_reify (). Qed.
-Hint Extern 1 (_ = from_bytesmod _ _ _ _) => simple apply (proj1 from_bytes_gen_correct) : reify_gen_cache.
-Hint Immediate (proj2 from_bytes_gen_correct) : wf_gen_cache.
-
-Derive mulx_gen
- SuchThat ((forall (s x y : Z),
- Interp (t:=reify_type_of mulx)
- mulx_gen s x y
- = mulx s x y)
- /\ Wf mulx_gen)
- As mulx_gen_correct.
-Proof. cache_reify (). Qed.
-Hint Extern 1 (_ = mulx _ _ _) => simple apply (proj1 mulx_gen_correct) : reify_gen_cache.
-Hint Immediate (proj2 mulx_gen_correct) : wf_gen_cache.
-
-Derive addcarryx_gen
- SuchThat ((forall (s c x y : Z),
- Interp (t:=reify_type_of addcarryx)
- addcarryx_gen s c x y
- = addcarryx s c x y)
- /\ Wf addcarryx_gen)
- As addcarryx_gen_correct.
-Proof. cache_reify (). Qed.
-Hint Extern 1 (_ = addcarryx _ _ _ _) => simple apply (proj1 addcarryx_gen_correct) : reify_gen_cache.
-Hint Immediate (proj2 addcarryx_gen_correct) : wf_gen_cache.
-
-Derive subborrowx_gen
- SuchThat ((forall (s c x y : Z),
- Interp (t:=reify_type_of subborrowx)
- subborrowx_gen s c x y
- = subborrowx s c x y)
- /\ Wf subborrowx_gen)
- As subborrowx_gen_correct.
-Proof. cache_reify (). Qed.
-Hint Extern 1 (_ = subborrowx _ _ _ _) => simple apply (proj1 subborrowx_gen_correct) : reify_gen_cache.
-Hint Immediate (proj2 subborrowx_gen_correct) : wf_gen_cache.
-
-Derive cmovznz_gen
- SuchThat ((forall (bitwidth cond z nz : Z),
- Interp (t:=reify_type_of cmovznz)
- cmovznz_gen bitwidth cond z nz
- = cmovznz bitwidth cond z nz)
- /\ Wf cmovznz_gen)
- As cmovznz_gen_correct.
-Proof. cache_reify (). Qed.
-Hint Extern 1 (_ = cmovznz _ _ _ _) => simple apply (proj1 cmovznz_gen_correct) : reify_gen_cache.
-Hint Immediate (proj2 cmovznz_gen_correct) : wf_gen_cache.
-
-
-(** XXX TODO MOVE ME *)
-Module Import HelperLemmas.
- Lemma eval_is_bounded_by wt n' bounds bounds' f
- (H : ZRange.type.base.option.is_bounded_by (t:=base.type.list base.type.Z) bounds f = true)
- (Hb : bounds = Some (List.map (@Some _) bounds'))
- (Hblen : length bounds' = n')
- (Hwt : forall i, List.In i (seq 0 n') -> 0 <= wt i)
- : eval wt n' (List.map lower bounds') <= eval wt n' f <= eval wt n' (List.map upper bounds').
- Proof.
- clear -H Hb Hblen Hwt.
- setoid_rewrite in_seq in Hwt.
- subst bounds.
- pose proof H as H'; apply fold_andb_map_length in H'.
- revert dependent bounds'; intro bounds'.
- revert dependent f; intro f.
- rewrite <- (List.rev_involutive bounds'), <- (List.rev_involutive f);
- generalize (List.rev bounds') (List.rev f); clear bounds' f; intros bounds f; revert bounds f.
- induction n' as [|n IHn], bounds as [|b bounds], f as [|f fs]; intros;
- cbn [length rev map] in *; distr_length.
- { rewrite !map_app in *; cbn [map] in *.
- erewrite !eval_snoc by (distr_length; eauto).
- cbn [ZRange.type.base.option.is_bounded_by ZRange.type.base.is_bounded_by] in *.
- cbv [is_bounded_by_bool] in *.
- specialize_by (intros; auto with omega).
- specialize (Hwt n); specialize_by omega.
- repeat first [ progress Bool.split_andb
- | rewrite Nat.add_1_r in *
- | rewrite fold_andb_map_snoc in *
- | rewrite Nat.succ_inj_wd in *
- | progress Z.ltb_to_lt
- | progress cbn [In seq] in *
- | match goal with
- | [ H : length _ = ?v |- _ ] => rewrite H in *
- | [ H : ?v = length _ |- _ ] => rewrite <- H in *
- end ].
- split; apply Z.add_le_mono; try apply IHn; auto; distr_length; nia. }
- Qed.
-End HelperLemmas.
-
-(** XXX TODO: Translate Jade's python script *)
-Module Import UnsaturatedSolinas.
- Section rcarry_mul.
- Context (n : nat)
- (s : Z)
- (c : list (Z * Z))
- (machine_wordsize : Z).
-
- Let limbwidth := (Z.log2_up (s - Associational.eval c) / Z.of_nat n)%Q.
- Let idxs := (seq 0 n ++ [0; 1])%list%nat.
- Let coef := 2.
- Let n_bytes := bytes_n (Qnum limbwidth) (Qden limbwidth) n.
- Let prime_upperbound_list : list Z
- := encode (weight (Qnum limbwidth) (Qden limbwidth)) n s c (s-1).
- Let prime_bytes_upperbound_list : list Z
- := encode (weight 8 1) n_bytes s c (s-1).
- Let tight_upperbounds : list Z
- := List.map
- (fun v : Z => Qceiling (11/10 * v))
- prime_upperbound_list.
- Definition prime_bound : ZRange.type.option.interp (base.type.Z)
- := Some r[0~>(s - Associational.eval c - 1)]%zrange.
- Definition prime_bounds : ZRange.type.option.interp (base.type.list (base.type.Z))
- := Some (List.map (fun v => Some r[0 ~> v]%zrange) prime_upperbound_list).
- Definition prime_bytes_bounds : ZRange.type.option.interp (base.type.list (base.type.Z))
- := Some (List.map (fun v => Some r[0 ~> v]%zrange) prime_bytes_upperbound_list).
- Definition saturated_bounds : ZRange.type.option.interp (base.type.list (base.type.Z))
- := Some (List.repeat (Some r[0 ~> 2^machine_wordsize-1]%zrange) n).
-
- Definition m_enc : list Z
- := encode (weight (Qnum limbwidth) (Qden limbwidth)) n s c (s-Associational.eval c).
-
- Definition relax_zrange_of_machine_wordsize
- := relax_zrange_gen [machine_wordsize; 2 * machine_wordsize]%Z.
-
- Definition relax_zrange_of_machine_wordsize_with_bytes
- := relax_zrange_gen [1; 8; machine_wordsize; 2 * machine_wordsize]%Z.
-
- Let relax_zrange := relax_zrange_of_machine_wordsize.
- Let relax_zrange_with_bytes := relax_zrange_of_machine_wordsize_with_bytes.
- Definition tight_bounds : list (ZRange.type.option.interp base.type.Z)
- := List.map (fun u => Some r[0~>u]%zrange) tight_upperbounds.
- Definition loose_bounds : list (ZRange.type.option.interp base.type.Z)
- := List.map (fun u => Some r[0 ~> 3*u]%zrange) tight_upperbounds.
-
-
- (** Note: If you change the name or type signature of this
- function, you will need to update the code in CLI.v *)
- Definition check_args {T} (res : Pipeline.ErrorT T)
- : Pipeline.ErrorT T
- := fold_right
- (fun '(b, e) k => if b:bool then Error e else k)
- res
- [(negb (Qle_bool 1 limbwidth)%Q, Pipeline.Value_not_leQ "limbwidth < 1" 1%Q limbwidth);
- ((negb (0 <? Associational.eval c))%Z, Pipeline.Value_not_ltZ "Associational.eval c ≤ 0" 0 (Associational.eval c));
- ((negb (Associational.eval c <? s))%Z, Pipeline.Value_not_ltZ "s ≤ Associational.eval c" (Associational.eval c) s);
- ((s =? 0)%Z, Pipeline.Values_not_provably_distinctZ "s = 0" s 0);
- ((n =? 0)%nat, Pipeline.Values_not_provably_distinctZ "n = 0" n 0%nat);
- ((negb (0 <? machine_wordsize)), Pipeline.Value_not_ltZ "machine_wordsize ≤ 0" 0 machine_wordsize);
- (let v1 := s in
- let v2 := weight (Qnum limbwidth) (QDen limbwidth) n in
- (negb (v1 =? v2), Pipeline.Values_not_provably_equalZ "s ≠ weight n (needed for to_bytes)" v1 v2));
- (let v1 := (map (Z.land (Z.ones machine_wordsize)) m_enc) in
- let v2 := m_enc in
- (negb (list_beq _ Z.eqb v1 v2), Pipeline.Values_not_provably_equal_listZ "map mask m_enc ≠ m_enc (needed for to_bytes)" v1 v2));
- (let v1 := eval (weight (Qnum limbwidth) (QDen limbwidth)) n m_enc in
- let v2 := s - Associational.eval c in
- (negb (v1 =? v2)%Z, Pipeline.Values_not_provably_equalZ "eval m_enc ≠ s - Associational.eval c (needed for to_bytes)" v1 v2));
- (let v1 := eval (weight (Qnum limbwidth) (QDen limbwidth)) n tight_upperbounds in
- let v2 := 2 * eval (weight (Qnum limbwidth) (QDen limbwidth)) n m_enc in
- (negb (v1 <? v2)%Z, Pipeline.Value_not_ltZ "2 * eval m_enc ≤ eval tight_upperbounds (needed for to_bytes)" v1 v2))].
-
- Notation type_of_strip_3arrow := ((fun (d : Prop) (_ : forall A B C, d) => d) _).
-
- Notation BoundsPipelineToStrings prefix name comment rop in_bounds out_bounds
- := ((prefix ++ name)%string,
- Pipeline.BoundsPipelineToStrings
- true (* static *) prefix (prefix ++ name)%string comment%string%list
- (*false*) true None
- relax_zrange
- rop%Expr in_bounds out_bounds).
-
- Notation BoundsPipeline_correct in_bounds out_bounds op
- := (fun rv (rop : Expr (reify_type_of op)) Hrop
- => @Pipeline.BoundsPipeline_correct_trans
- (*false*) true None I
- relax_zrange
- (relax_zrange_gen_good _)
- _
- rop
- in_bounds
- out_bounds
- _
- op
- Hrop rv)
- (only parsing).
-
- Notation BoundsPipelineToStrings_no_subst01 prefix name comment rop in_bounds out_bounds
- := ((prefix ++ name)%string,
- Pipeline.BoundsPipelineToStrings
- true (* static *) prefix (prefix ++ name)%string comment%string%list
- (*false*) false None
- relax_zrange
- rop%Expr in_bounds out_bounds).
-
- Notation BoundsPipeline_no_subst01_correct in_bounds out_bounds op
- := (fun rv (rop : Expr (reify_type_of op)) Hrop
- => @Pipeline.BoundsPipeline_correct_trans
- (*false*) false None I
- relax_zrange
- (relax_zrange_gen_good _)
- _
- rop
- in_bounds
- out_bounds
- _
- op
- Hrop rv)
- (only parsing).
-
- Notation BoundsPipelineToStrings_with_bytes_no_subst01 prefix name comment rop in_bounds out_bounds
- := ((prefix ++ name)%string,
- Pipeline.BoundsPipelineToStrings
- true (* static *) prefix (prefix ++ name)%string comment%string%list
- (*false*) false None
- relax_zrange_with_bytes
- rop%Expr in_bounds out_bounds).
-
- Notation BoundsPipeline_with_bytes_no_subst01_correct in_bounds out_bounds op
- := (fun rv (rop : Expr (reify_type_of op)) Hrop
- => @Pipeline.BoundsPipeline_correct_trans
- (*false*) false None I
- relax_zrange_with_bytes
- (relax_zrange_gen_good _)
- _
- rop
- in_bounds
- out_bounds
- _
- op
- Hrop rv)
- (only parsing).
-
- (* N.B. We only need [rcarry_mul] if we want to extract the Pipeline; otherwise we can just use [rcarry_mul_correct] *)
- Definition srcarry_mul prefix
- := BoundsPipelineToStrings_no_subst01
- prefix "carry_mul" []
- (carry_mul_gen
- @ GallinaReify.Reify (Qnum limbwidth) @ GallinaReify.Reify (Z.pos (Qden limbwidth)) @ GallinaReify.Reify s @ GallinaReify.Reify c @ GallinaReify.Reify n @ GallinaReify.Reify idxs)
- (Some loose_bounds, (Some loose_bounds, tt))
- (Some tight_bounds).
-
- Definition rcarry_mul_correct
- := BoundsPipeline_no_subst01_correct
- (Some loose_bounds, (Some loose_bounds, tt))
- (Some tight_bounds)
- (carry_mulmod (Qnum limbwidth) (Z.pos (Qden limbwidth)) s c n idxs).
-
- Definition srcarry_square prefix
- := BoundsPipelineToStrings_no_subst01
- prefix "carry_square" []
- (carry_square_gen
- @ GallinaReify.Reify (Qnum limbwidth) @ GallinaReify.Reify (Z.pos (Qden limbwidth)) @ GallinaReify.Reify s @ GallinaReify.Reify c @ GallinaReify.Reify n @ GallinaReify.Reify idxs)
- (Some loose_bounds, tt)
- (Some tight_bounds).
-
- Definition rcarry_square_correct
- := BoundsPipeline_no_subst01_correct
- (Some loose_bounds, tt)
- (Some tight_bounds)
- (carry_squaremod (Qnum limbwidth) (Z.pos (Qden limbwidth)) s c n idxs).
-
- Definition srcarry_scmul_const prefix (x : Z)
- := BoundsPipelineToStrings_no_subst01
- prefix ("carry_scmul_" ++ decimal_string_of_Z x) []
- (carry_scmul_gen
- @ GallinaReify.Reify (Qnum limbwidth) @ GallinaReify.Reify (Z.pos (Qden limbwidth)) @ GallinaReify.Reify s @ GallinaReify.Reify c @ GallinaReify.Reify n @ GallinaReify.Reify idxs @ GallinaReify.Reify x)
- (Some loose_bounds, tt)
- (Some tight_bounds).
-
- Definition rcarry_scmul_const_correct (x : Z)
- := BoundsPipeline_no_subst01_correct
- (Some loose_bounds, tt)
- (Some tight_bounds)
- (carry_scmulmod (Qnum limbwidth) (Z.pos (Qden limbwidth)) s c n idxs x).
-
- Definition srcarry prefix
- := BoundsPipelineToStrings
- prefix "carry" []
- (carry_gen
- @ GallinaReify.Reify (Qnum limbwidth) @ GallinaReify.Reify (Z.pos (Qden limbwidth)) @ GallinaReify.Reify s @ GallinaReify.Reify c @ GallinaReify.Reify n @ GallinaReify.Reify idxs)
- (Some loose_bounds, tt)
- (Some tight_bounds).
-
- Definition rcarry_correct
- := BoundsPipeline_correct
- (Some loose_bounds, tt)
- (Some tight_bounds)
- (carrymod (Qnum limbwidth) (Z.pos (Qden limbwidth)) s c n idxs).
-
- Definition srrelax prefix
- := BoundsPipelineToStrings
- prefix "relax" []
- id_gen
- (Some tight_bounds, tt)
- (Some loose_bounds).
-
- Definition rrelax_correct
- := BoundsPipeline_correct
- (Some tight_bounds, tt)
- (Some loose_bounds)
- (@id (list Z)).
-
- Definition sradd prefix
- := BoundsPipelineToStrings
- prefix "add" []
- (add_gen
- @ GallinaReify.Reify (Qnum limbwidth) @ GallinaReify.Reify (Z.pos (Qden limbwidth)) @ GallinaReify.Reify n)
- (Some tight_bounds, (Some tight_bounds, tt))
- (Some loose_bounds).
-
- Definition radd_correct
- := BoundsPipeline_correct
- (Some tight_bounds, (Some tight_bounds, tt))
- (Some loose_bounds)
- (addmod (Qnum limbwidth) (Z.pos (Qden limbwidth)) n).
-
- Definition srsub prefix
- := BoundsPipelineToStrings
- prefix "sub" []
- (sub_gen
- @ GallinaReify.Reify (Qnum limbwidth) @ GallinaReify.Reify (Z.pos (Qden limbwidth)) @ GallinaReify.Reify s @ GallinaReify.Reify c @ GallinaReify.Reify n @ GallinaReify.Reify coef)
- (Some tight_bounds, (Some tight_bounds, tt))
- (Some loose_bounds).
-
- Definition rsub_correct
- := BoundsPipeline_correct
- (Some tight_bounds, (Some tight_bounds, tt))
- (Some loose_bounds)
- (submod (Qnum limbwidth) (Z.pos (Qden limbwidth)) s c n coef).
-
- Definition sropp prefix
- := BoundsPipelineToStrings
- prefix "opp" []
- (opp_gen
- @ GallinaReify.Reify (Qnum limbwidth) @ GallinaReify.Reify (Z.pos (Qden limbwidth)) @ GallinaReify.Reify s @ GallinaReify.Reify c @ GallinaReify.Reify n @ GallinaReify.Reify coef)
- (Some tight_bounds, tt)
- (Some loose_bounds).
-
- Definition ropp_correct
- := BoundsPipeline_correct
- (Some tight_bounds, tt)
- (Some loose_bounds)
- (oppmod (Qnum limbwidth) (Z.pos (Qden limbwidth)) s c n coef).
-
- Definition srselectznz prefix
- := BoundsPipelineToStrings_with_bytes_no_subst01
- prefix "selectznz" []
- selectznz_gen
- (Some r[0~>1], (saturated_bounds, (saturated_bounds, tt)))%zrange
- saturated_bounds.
-
- Definition rselectznz_correct
- := BoundsPipeline_with_bytes_no_subst01_correct
- (Some r[0~>1], (saturated_bounds, (saturated_bounds, tt)))%zrange
- saturated_bounds
- Positional.select.
-
- Definition srto_bytes prefix
- := BoundsPipelineToStrings_with_bytes_no_subst01
- prefix "to_bytes" []
- (to_bytes_gen
- @ GallinaReify.Reify (Qnum limbwidth) @ GallinaReify.Reify (Z.pos (Qden limbwidth)) @ GallinaReify.Reify n @ GallinaReify.Reify machine_wordsize @ GallinaReify.Reify m_enc)
- (Some tight_bounds, tt)
- prime_bytes_bounds.
-
- Definition rto_bytes_correct
- := BoundsPipeline_with_bytes_no_subst01_correct
- (Some tight_bounds, tt)
- prime_bytes_bounds
- (freeze_to_bytesmod (Qnum limbwidth) (Z.pos (Qden limbwidth)) n machine_wordsize m_enc).
-
- Definition srfrom_bytes prefix
- := BoundsPipelineToStrings_with_bytes_no_subst01
- prefix "from_bytes" []
- (from_bytes_gen
- @ GallinaReify.Reify (Qnum limbwidth) @ GallinaReify.Reify (Z.pos (Qden limbwidth)) @ GallinaReify.Reify n)
- (prime_bytes_bounds, tt)
- (Some tight_bounds).
-
- Definition rfrom_bytes_correct
- := BoundsPipeline_with_bytes_no_subst01_correct
- (prime_bytes_bounds, tt)
- (Some tight_bounds)
- (from_bytesmod (Qnum limbwidth) (Z.pos (Qden limbwidth)) n).
-
- Definition rencode_correct
- := BoundsPipeline_correct
- (prime_bound, tt)
- (Some tight_bounds)
- (encodemod (Qnum limbwidth) (Z.pos (Qden limbwidth)) s c n).
-
- Definition rzero_correct
- := BoundsPipeline_correct
- tt
- (Some tight_bounds)
- (zeromod (Qnum limbwidth) (Z.pos (Qden limbwidth)) s c n).
-
- Definition rone_correct
- := BoundsPipeline_correct
- tt
- (Some tight_bounds)
- (onemod (Qnum limbwidth) (Z.pos (Qden limbwidth)) s c n).
-
- Definition srmulx prefix (s : Z)
- := BoundsPipelineToStrings_with_bytes_no_subst01
- prefix ("mulx_u" ++ decimal_string_of_Z s) []
- (mulx_gen
- @ GallinaReify.Reify s)
- (Some r[0~>2^s-1], (Some r[0~>2^s-1], tt))%zrange
- (Some r[0~>2^s-1], Some r[0~>2^s-1])%zrange.
-
- Definition srmulx_correct (s : Z)
- := BoundsPipeline_with_bytes_no_subst01_correct
- (Some r[0~>2^s-1], (Some r[0~>2^s-1], tt))%zrange
- (Some r[0~>2^s-1], Some r[0~>2^s-1])%zrange
- (mulx s).
-
- Definition sraddcarryx prefix (s : Z)
- := BoundsPipelineToStrings_with_bytes_no_subst01
- prefix ("addcarryx_u" ++ decimal_string_of_Z s) []
- (addcarryx_gen
- @ GallinaReify.Reify s)
- (Some r[0~>1], (Some r[0~>2^s-1], (Some r[0~>2^s-1], tt)))%zrange
- (Some r[0~>2^s-1], Some r[0~>1])%zrange.
-
- Definition sraddcarryx_correct (s : Z)
- := BoundsPipeline_with_bytes_no_subst01_correct
- (Some r[0~>1], (Some r[0~>2^s-1], (Some r[0~>2^s-1], tt)))%zrange
- (Some r[0~>2^s-1], Some r[0~>1])%zrange
- (addcarryx s).
-
- Definition srsubborrowx prefix (s : Z)
- := BoundsPipelineToStrings_with_bytes_no_subst01
- prefix ("subborrowx_u" ++ decimal_string_of_Z s) []
- (subborrowx_gen
- @ GallinaReify.Reify s)
- (Some r[0~>1], (Some r[0~>2^s-1], (Some r[0~>2^s-1], tt)))%zrange
- (Some r[0~>2^s-1], Some r[0~>1])%zrange.
-
- Definition srsubborrowx_correct (s : Z)
- := BoundsPipeline_with_bytes_no_subst01_correct
- (Some r[0~>1], (Some r[0~>2^s-1], (Some r[0~>2^s-1], tt)))%zrange
- (Some r[0~>2^s-1], Some r[0~>1])%zrange
- (subborrowx s).
-
- Definition srcmovznz prefix (s : Z)
- := BoundsPipelineToStrings_with_bytes_no_subst01
- prefix ("cmovznz_u" ++ decimal_string_of_Z s) []
- (cmovznz_gen
- @ GallinaReify.Reify s)
- (Some r[0~>1], (Some r[0~>2^s-1], (Some r[0~>2^s-1], tt)))%zrange
- (Some r[0~>2^s-1])%zrange.
-
- Definition srcmovznz_correct (s : Z)
- := BoundsPipeline_with_bytes_no_subst01_correct
- (Some r[0~>1], (Some r[0~>2^s-1], (Some r[0~>2^s-1], tt)))%zrange
- (Some r[0~>2^s-1])%zrange
- (cmovznz s).
-
- (* we need to strip off [Hrv : ... = Pipeline.Success rv] and related arguments *)
- Definition rcarry_mul_correctT rv : Prop
- := type_of_strip_3arrow (@rcarry_mul_correct rv).
- Definition rcarry_square_correctT rv : Prop
- := type_of_strip_3arrow (@rcarry_square_correct rv).
- Definition rcarry_scmul_const_correctT x rv : Prop
- := type_of_strip_3arrow (@rcarry_scmul_const_correct x rv).
- Definition rcarry_correctT rv : Prop
- := type_of_strip_3arrow (@rcarry_correct rv).
- Definition rrelax_correctT rv : Prop
- := type_of_strip_3arrow (@rrelax_correct rv).
- Definition radd_correctT rv : Prop
- := type_of_strip_3arrow (@radd_correct rv).
- Definition rsub_correctT rv : Prop
- := type_of_strip_3arrow (@rsub_correct rv).
- Definition ropp_correctT rv : Prop
- := type_of_strip_3arrow (@ropp_correct rv).
- Definition rselectznz_correctT rv : Prop
- := type_of_strip_3arrow (@rselectznz_correct rv).
- Definition rto_bytes_correctT rv : Prop
- := type_of_strip_3arrow (@rto_bytes_correct rv).
- Definition rfrom_bytes_correctT rv : Prop
- := type_of_strip_3arrow (@rfrom_bytes_correct rv).
- Definition rencode_correctT rv : Prop
- := type_of_strip_3arrow (@rencode_correct rv).
- Definition rzero_correctT rv : Prop
- := type_of_strip_3arrow (@rzero_correct rv).
- Definition rone_correctT rv : Prop
- := type_of_strip_3arrow (@rone_correct rv).
-
- Section make_ring.
- Let m : positive := Z.to_pos (s - Associational.eval c).
- Context (curve_good : check_args (Success tt) = Success tt)
- {rcarry_mulv} (Hrmulv : rcarry_mul_correctT rcarry_mulv)
- {rcarryv} (Hrcarryv : rcarry_correctT rcarryv)
- {rrelaxv} (Hrrelaxv : rrelax_correctT rrelaxv)
- {raddv} (Hraddv : radd_correctT raddv)
- {rsubv} (Hrsubv : rsub_correctT rsubv)
- {roppv} (Hroppv : ropp_correctT roppv)
- {rzerov} (Hrzerov : rzero_correctT rzerov)
- {ronev} (Hronev : rone_correctT ronev)
- {rencodev} (Hrencodev : rencode_correctT rencodev)
- {rto_bytesv} (Hto_bytesv : rto_bytes_correctT rto_bytesv)
- {rfrom_bytesv} (Hfrom_bytesv : rfrom_bytes_correctT rfrom_bytesv).
-
- Local Ltac use_curve_good_t :=
- repeat first [ assumption
- | progress rewrite ?map_length, ?Z.mul_0_r, ?Pos.mul_1_r, ?Z.mul_1_r in *
- | reflexivity
- | lia
- | rewrite expr.interp_reify_list, ?map_map
- | rewrite map_ext with (g:=id), map_id
- | progress distr_length
- | progress cbv [Qceiling Qfloor Qopp Qdiv Qplus inject_Z Qmult Qinv] in *
- | progress cbv [Qle] in *
- | progress cbn -[reify_list] in *
- | progress intros
- | solve [ auto ] ].
-
- Lemma use_curve_good
- : let eval := eval (weight (Qnum limbwidth) (QDen limbwidth)) n in
- Z.pos m = s - Associational.eval c
- /\ Z.pos m <> 0
- /\ s - Associational.eval c <> 0
- /\ s <> 0
- /\ 0 < machine_wordsize
- /\ n <> 0%nat
- /\ List.length tight_bounds = n
- /\ List.length loose_bounds = n
- /\ 0 < Qden limbwidth <= Qnum limbwidth
- /\ s = weight (Qnum limbwidth) (QDen limbwidth) n
- /\ map (Z.land (Z.ones machine_wordsize)) m_enc = m_enc
- /\ eval m_enc = s - Associational.eval c
- /\ Datatypes.length m_enc = n
- /\ 0 < Associational.eval c < s
- /\ eval tight_upperbounds < 2 * eval m_enc.
- Proof.
- clear -curve_good.
- cbv [check_args fold_right] in curve_good.
- cbv [tight_bounds loose_bounds prime_bound m_enc] in *.
- break_innermost_match_hyps; try discriminate.
- rewrite negb_false_iff in *.
- Z.ltb_to_lt.
- rewrite Qle_bool_iff in *.
- rewrite NPeano.Nat.eqb_neq in *.
- intros.
- cbv [Qnum Qden limbwidth Qceiling Qfloor Qopp Qdiv Qplus inject_Z Qmult Qinv] in *.
- rewrite ?map_length, ?Z.mul_0_r, ?Pos.mul_1_r, ?Z.mul_1_r in *.
- specialize_by lia.
- repeat match goal with H := _ |- _ => subst H end.
- repeat match goal with
- | [ H : list_beq _ _ _ _ = true |- _ ] => apply internal_list_dec_bl in H; [ | intros; Z.ltb_to_lt; omega.. ]
- end.
- repeat apply conj.
- { destruct (s - Associational.eval c) eqn:?; cbn; lia. }
- { use_curve_good_t. }
- { use_curve_good_t. }
- { use_curve_good_t. }
- { use_curve_good_t. }
- { use_curve_good_t. }
- { use_curve_good_t. }
- { use_curve_good_t. }
- { use_curve_good_t. }
- { use_curve_good_t. }
- { use_curve_good_t. }
- { use_curve_good_t. }
- { use_curve_good_t. }
- { use_curve_good_t. }
- { use_curve_good_t. }
- { use_curve_good_t. }
- { use_curve_good_t. }
- Qed.
-
- (** TODO: Find a better place to put the spec for [to_bytes] and [from_bytes] *)
- Definition GoodT : Prop
- := @Ring.GoodT
- (Qnum limbwidth)
- (Z.pos (Qden limbwidth))
- n s c
- tight_bounds
- (Interp rrelaxv)
- (Interp rcarry_mulv)
- (Interp rcarryv)
- (Interp raddv)
- (Interp rsubv)
- (Interp roppv)
- (Interp rzerov)
- (Interp ronev)
- (Interp rencodev)
- /\ (let to_bytesT := (base.type.list base.type.Z -> base.type.list base.type.Z)%etype in
- forall f
- (Hf : type.andb_bool_for_each_lhs_of_arrow (t:=to_bytesT) (@ZRange.type.option.is_bounded_by) (Some tight_bounds, tt) f = true),
- ((ZRange.type.base.option.is_bounded_by prime_bytes_bounds (type.app_curried (Interp rto_bytesv) f) = true
- /\ (forall cast_outside_of_range, type.app_curried (expr.Interp (@ident.gen_interp cast_outside_of_range) rto_bytesv) f
- = type.app_curried (t:=to_bytesT) (freeze_to_bytesmod (Qnum limbwidth) (Z.pos (Qden limbwidth)) n machine_wordsize m_enc) f))
- /\ (Positional.eval (weight 8 1) n_bytes (type.app_curried (t:=to_bytesT) (freeze_to_bytesmod (Qnum limbwidth) (Z.pos (Qden limbwidth)) n machine_wordsize m_enc) f)) = (Positional.eval (weight (Qnum limbwidth) (Z.pos (Qden limbwidth))) n (fst f) mod m)))
- /\ (let from_bytesT := (base.type.list base.type.Z -> base.type.list base.type.Z)%etype in
- forall f
- (Hf : type.andb_bool_for_each_lhs_of_arrow (t:=from_bytesT) (@ZRange.type.option.is_bounded_by) (prime_bytes_bounds, tt) f = true),
- ((ZRange.type.base.option.is_bounded_by (t:=base.type.list (base.type.type_base base.type.Z)) (Some tight_bounds) (type.app_curried (Interp rfrom_bytesv) f) = true
- /\ (forall cast_outside_of_range, type.app_curried (expr.Interp (@ident.gen_interp cast_outside_of_range) rfrom_bytesv) f
- = type.app_curried (t:=from_bytesT) (from_bytesmod (Qnum limbwidth) (Z.pos (Qden limbwidth)) n) f))
- /\ (Positional.eval (weight (Qnum limbwidth) (Z.pos (Qden limbwidth))) n (type.app_curried (t:=from_bytesT) (from_bytesmod (Qnum limbwidth) (Z.pos (Qden limbwidth)) n) f)) = (Positional.eval (weight 8 1) n_bytes (fst f)))).
-
- Theorem Good : GoodT.
- Proof.
- pose proof use_curve_good; cbv zeta in *; destruct_head'_and; destruct_head_hnf' ex.
- split; [ | split ].
- { eapply Ring.Good;
- lazymatch goal with
- | [ H : ?P ?rop |- context[expr.Interp _ ?rop] ]
- => intros;
- let H1 := fresh "HH1" in
- let H2 := fresh "HH2" in
- unshelve edestruct H as [ [H1 H2] ? ]; [ .. | split; [ eapply H1 | refine (H2 _) ] ];
- solve [ exact tt | eassumption | reflexivity | repeat split ]
- | _ => idtac
- end;
- repeat first [ assumption
- | intros; apply eval_carry_mulmod
- | intros; apply eval_carrymod
- | intros; apply eval_addmod
- | intros; apply eval_submod
- | intros; apply eval_oppmod
- | intros; apply eval_encodemod
- | apply conj ]. }
- { cbv zeta; intros f Hf; split.
- { apply Hto_bytesv; solve [ assumption | repeat split ]. }
- { cbn [type.for_each_lhs_of_arrow type_base type.andb_bool_for_each_lhs_of_arrow ZRange.type.option.is_bounded_by fst snd] in *.
- rewrite Bool.andb_true_iff in *; split_and'.
- etransitivity; [ apply eval_freeze_to_bytesmod_and_partitions | f_equal; (eassumption || (symmetry; eassumption)) ];
- auto; try omega.
- { erewrite Ring.length_is_bounded_by by eassumption; assumption. }
- { lazymatch goal with
- | [ H : eval _ _ _ = ?x |- _ <= _ < 2 * ?x ] => rewrite <- H
- end.
- let H := match goal with H : ZRange.type.base.option.is_bounded_by _ _ = true |- _ => H end in
- cbv [m_enc tight_bounds tight_upperbounds prime_upperbound_list] in H |- *;
- eapply eval_is_bounded_by with (wt:=weight (Qnum limbwidth) (QDen limbwidth)) in H;
- [
- | rewrite <- (map_map _ (@Some _)); reflexivity
- | autorewrite with distr_length; reflexivity
- | intros; apply Z.lt_le_incl, weight_positive, wprops; lia ].
- progress rewrite ?map_map in *.
- cbn [lower upper] in *.
- split.
- { destruct_head'_and.
- etransitivity; [ erewrite <- eval_zeros | eassumption ].
- apply Z.eq_le_incl; f_equal.
- erewrite zeros_ext_map; [ reflexivity | now autorewrite with distr_length ]. }
- { destruct_head'_and.
- eapply Z.le_lt_trans; [ eassumption | ].
- assumption. } } } }
- { cbv zeta; intros f Hf; split.
- { apply Hfrom_bytesv; solve [ assumption | repeat split ]. }
- { cbn [type.for_each_lhs_of_arrow type_base type.andb_bool_for_each_lhs_of_arrow ZRange.type.option.is_bounded_by fst snd] in *.
- rewrite Bool.andb_true_iff in *; split_and'.
- etransitivity; [ apply eval_from_bytesmod | reflexivity ];
- auto; try omega.
- { cbv [ZRange.type.base.option.is_bounded_by prime_bytes_bounds prime_bytes_upperbound_list n_bytes] in *.
- erewrite Ring.length_is_bounded_by by eassumption.
- autorewrite with distr_length; reflexivity. } } }
- Qed.
- End make_ring.
-
- Section for_stringification.
- Definition aggregate_infos {A B C} (ls : list (A * ErrorT B (C * ToString.C.ident_infos))) : ToString.C.ident_infos
- := fold_right
- ToString.C.ident_info_union
- ToString.C.ident_info_empty
- (List.map
- (fun '(_, res) => match res with
- | Success (_, infos) => infos
- | Error _ => ToString.C.ident_info_empty
- end)
- ls).
-
- Definition extra_synthesis (function_name_prefix : string) (infos : ToString.C.ident_infos)
- : list (string * Pipeline.ErrorT (list string)) * PositiveSet.t
- := let ls_addcarryx := List.flat_map
- (fun lg_split:positive => [sraddcarryx function_name_prefix lg_split; srsubborrowx function_name_prefix lg_split])
- (PositiveSet.elements (ToString.C.addcarryx_lg_splits infos)) in
- let ls_mulx := List.map
- (fun lg_split:positive => srmulx function_name_prefix lg_split)
- (PositiveSet.elements (ToString.C.mulx_lg_splits infos)) in
- let ls_cmov := List.map
- (fun bitwidth:positive => srcmovznz function_name_prefix bitwidth)
- (PositiveSet.elements (ToString.C.cmovznz_bitwidths infos)) in
- let ls := ls_addcarryx ++ ls_mulx ++ ls_cmov in
- let infos := aggregate_infos ls in
- (List.map (fun '(name, res) => (name, (res <- res; Success (fst res))%error)) ls,
- ToString.C.bitwidths_used infos).
-
- Local Open Scope string_scope.
- Local Open Scope list_scope.
-
- Definition known_functions
- := [("carry_mul", srcarry_mul);
- ("carry_square", srcarry_square);
- ("carry", srcarry);
- ("add", sradd);
- ("sub", srsub);
- ("opp", sropp);
- ("selectznz", srselectznz);
- ("to_bytes", srto_bytes);
- ("from_bytes", srfrom_bytes)].
-
- Definition valid_names : string
- := Eval compute in String.concat ", " (List.map (@fst _ _) known_functions) ++ ", or 'carry_scmul' followed by a decimal literal".
-
- Definition synthesize_of_name (function_name_prefix : string) (name : string)
- : string * ErrorT Pipeline.ErrorMessage (list string * ToString.C.ident_infos)
- := fold_right
- (fun v default
- => match v with
- | Some res => res
- | None => default
- end)
- ((name,
- Error
- (Pipeline.Invalid_argument
- ("Unrecognized request to synthesize """ ++ name ++ """; valid names are " ++ valid_names ++ "."))))
- ((map
- (fun '(expected_name, resf) => if string_beq name expected_name then Some (resf function_name_prefix) else None)
- known_functions)
- ++ [if prefix "carry_scmul" name
- then let sc := substring (String.length "carry_scmul") (String.length name) name in
- let scZ := Z_of_decimal_string sc in
- if string_beq sc (decimal_string_of_Z scZ)
- then Some (srcarry_scmul_const function_name_prefix scZ)
- else None
- else None]).
-
- (** Note: If you change the name or type signature of this
- function, you will need to update the code in CLI.v *)
- Definition Synthesize (function_name_prefix : string) (requests : list string)
- : list (string * Pipeline.ErrorT (list string)) * PositiveSet.t (* types used *)
- := let ls := match requests with
- | nil => List.map (fun '(_, sr) => sr function_name_prefix) known_functions
- | requests => List.map (synthesize_of_name function_name_prefix) requests
- end in
- let infos := aggregate_infos ls in
- let '(extra_ls, extra_bit_widths) := extra_synthesis function_name_prefix infos in
- (extra_ls ++ List.map (fun '(name, res) => (name, (res <- res; Success (fst res))%error)) ls,
- PositiveSet.union extra_bit_widths (ToString.C.bitwidths_used infos)).
- End for_stringification.
- End rcarry_mul.
-End UnsaturatedSolinas.
-
-Ltac peel_interp_app _ :=
- lazymatch goal with
- | [ |- ?R' (?InterpE ?arg) (?f ?arg) ]
- => apply fg_equal_rel; [ | reflexivity ];
- try peel_interp_app ()
- | [ |- ?R' (Interp ?ev) (?f ?x) ]
- => let sv := type of x in
- let fx := constr:(f x) in
- let dv := type of fx in
- let rs := reify_type sv in
- let rd := reify_type dv in
- etransitivity;
- [ apply @expr.Interp_APP_rel_reflexive with (s:=rs) (d:=rd) (R:=R');
- typeclasses eauto
- | apply fg_equal_rel;
- [ try peel_interp_app ()
- | try lazymatch goal with
- | [ |- ?R (Interp ?ev) (Interp _) ]
- => reflexivity
- | [ |- ?R (Interp ?ev) ?c ]
- => let rc := constr:(GallinaReify.Reify c) in
- unify ev rc; vm_compute; reflexivity
- end ] ]
- end.
-Ltac pre_cache_reify _ :=
- let H' := fresh in
- lazymatch goal with
- | [ |- ?P /\ Wf ?e ]
- => let P' := fresh in
- evar (P' : Prop);
- assert (H' : P' /\ Wf e); subst P'
- end;
- [
- | split; [ destruct H' as [H' _] | destruct H' as [_ H']; exact H' ];
- cbv [type.app_curried];
- let arg := fresh "arg" in
- let arg2 := fresh in
- intros arg arg2;
- cbn [type.and_for_each_lhs_of_arrow type.eqv];
- let H := fresh in
- intro H;
- repeat match type of H with
- | and _ _ => let H' := fresh in
- destruct H as [H' H];
- rewrite <- H'
- end;
- clear dependent arg2; clear H;
- intros _;
- peel_interp_app ();
- [ lazymatch goal with
- | [ |- ?R (Interp ?ev) _ ]
- => (tryif is_evar ev
- then let ev' := fresh "ev" in set (ev' := ev)
- else idtac)
- end;
- cbv [pointwise_relation];
- repeat lazymatch goal with
- | [ H : _ |- _ ] => first [ constr_eq H H'; fail 1
- | revert H ]
- end;
- eexact H'
- | .. ] ];
- [ intros; clear | .. ].
-Ltac do_inline_cache_reify do_if_not_cached :=
- pre_cache_reify ();
- [ try solve [
- cbv beta zeta;
- repeat match goal with H := ?e |- _ => is_evar e; subst H end;
- try solve [ split; [ solve [ eauto with nocore reify_gen_cache ] | solve [ eauto with wf_gen_cache; prove_Wf () ] ] ];
- do_if_not_cached ()
- ];
- cache_reify ()
- | .. ].
-
-(* TODO: MOVE ME *)
-Ltac vm_compute_lhs_reflexivity :=
- lazymatch goal with
- | [ |- ?LHS = ?RHS ]
- => let x := (eval vm_compute in LHS) in
- (* we cannot use the unify tactic, which just gives "not
- unifiable" as the error message, because we want to see the
- terms that were not unifable. See also
- COQBUG(https://github.com/coq/coq/issues/7291) *)
- let _unify := constr:(ltac:(reflexivity) : RHS = x) in
- vm_cast_no_check (eq_refl x)
- end.
-
-Ltac solve_rop' rop_correct do_if_not_cached machine_wordsizev :=
- eapply rop_correct with (machine_wordsize:=machine_wordsizev);
- [ do_inline_cache_reify do_if_not_cached
- | subst_evars; vm_compute_lhs_reflexivity (* lazy; reflexivity *) ].
-Ltac solve_rop_nocache rop_correct :=
- solve_rop' rop_correct ltac:(fun _ => idtac).
-Ltac solve_rop rop_correct :=
- solve_rop'
- rop_correct
- ltac:(fun _ => let G := get_goal in fail 2 "Could not find a solution in reify_gen_cache for" G).
-Ltac solve_rcarry_mul := solve_rop rcarry_mul_correct.
-Ltac solve_rcarry_mul_nocache := solve_rop_nocache rcarry_mul_correct.
-Ltac solve_rcarry := solve_rop rcarry_correct.
-Ltac solve_radd := solve_rop radd_correct.
-Ltac solve_rsub := solve_rop rsub_correct.
-Ltac solve_ropp := solve_rop ropp_correct.
-Ltac solve_rto_bytes := solve_rop rto_bytes_correct.
-Ltac solve_rfrom_bytes := solve_rop rfrom_bytes_correct.
-Ltac solve_rencode := solve_rop rencode_correct.
-Ltac solve_rrelax := solve_rop rrelax_correct.
-Ltac solve_rzero := solve_rop rzero_correct.
-Ltac solve_rone := solve_rop rone_correct.
-
-Module PrintingNotations.
- Export ident.
- (*Global Set Printing Width 100000.*)
- Open Scope zrange_scope.
- Notation "'uint256'"
- := (r[0 ~> 115792089237316195423570985008687907853269984665640564039457584007913129639935]%zrange) : zrange_scope.
- Notation "'uint128'"
- := (r[0 ~> 340282366920938463463374607431768211455]%zrange) : zrange_scope.
- Notation "'uint64'"
- := (r[0 ~> 18446744073709551615]) : zrange_scope.
- Notation "'uint32'"
- := (r[0 ~> 4294967295]) : zrange_scope.
- Notation "'bool'"
- := (r[0 ~> 1]%zrange) : zrange_scope.
- Notation "( range )( ls [[ n ]] )"
- := ((#(ident.Z_cast range) @ (ls [[ n ]]))%expr)
- (format "( range )( ls [[ n ]] )") : expr_scope.
- (*Notation "( range )( v )" := (ident.Z_cast range @@ v)%expr : expr_scope.*)
- Notation "x *₂₅₆ y"
- := (#(ident.Z_cast uint256) @ (#ident.Z_mul @ x @ y))%expr (at level 40) : expr_scope.
- Notation "x *₁₂₈ y"
- := (#(ident.Z_cast uint128) @ (#ident.Z_mul @ x @ y))%expr (at level 40) : expr_scope.
- Notation "x *₆₄ y"
- := (#(ident.Z_cast uint64) @ (#ident.Z_mul @ x @ y))%expr (at level 40) : expr_scope.
- Notation "x *₃₂ y"
- := (#(ident.Z_cast uint32) @ (#ident.Z_mul @ x @ y))%expr (at level 40) : expr_scope.
- Notation "x +₂₅₆ y"
- := (#(ident.Z_cast uint256) @ (#ident.Z_add @ x @ y))%expr (at level 50) : expr_scope.
- Notation "x +₁₂₈ y"
- := (#(ident.Z_cast uint128) @ (#ident.Z_add @ x @ y))%expr (at level 50) : expr_scope.
- Notation "x +₆₄ y"
- := (#(ident.Z_cast uint64) @ (#ident.Z_add @ x @ y))%expr (at level 50) : expr_scope.
- Notation "x +₃₂ y"
- := (#(ident.Z_cast uint32) @ (#ident.Z_add @ x @ y))%expr (at level 50) : expr_scope.
- Notation "x -₁₂₈ y"
- := (#(ident.Z_cast uint128) @ (#ident.Z_sub @ x @ y))%expr (at level 50) : expr_scope.
- Notation "x -₆₄ y"
- := (#(ident.Z_cast uint64) @ (#ident.Z_sub @ x @ y))%expr (at level 50) : expr_scope.
- Notation "x -₃₂ y"
- := (#(ident.Z_cast uint32) @ (#ident.Z_sub @ x @ y))%expr (at level 50) : expr_scope.
- Notation "( out_t )( v >> count )"
- := ((#(ident.Z_cast out_t) @ (#ident.Z_shiftr @ v @ count))%expr)
- (format "( out_t )( v >> count )") : expr_scope.
- Notation "( out_t )( v << count )"
- := ((#(ident.Z_cast out_t) @ (#ident.Z_shiftl @ v @ count))%expr)
- (format "( out_t )( v << count )") : expr_scope.
- Notation "( range )( v )"
- := ((#(ident.Z_cast range) @ $v)%expr)
- (format "( range )( v )") : expr_scope.
- Notation "( mask & ( out_t )( v ) )"
- := ((#(ident.Z_cast out_t) @ (#ident.Z_land @ #(ident.Literal (t:=base.type.Z) mask) @ v))%expr)
- (format "( mask & ( out_t )( v ) )")
- : expr_scope.
- Notation "( ( out_t )( v ) & mask )"
- := ((#(ident.Z_cast out_t) @ (#ident.Z_land @ v @ #(ident.Literal (t:=base.type.Z) mask)))%expr)
- (format "( ( out_t )( v ) & mask )")
- : expr_scope.
-
- Notation "x" := (#(ident.Z_cast _) @ $x)%expr (only printing, at level 9) : expr_scope.
- Notation "x" := (#(ident.Z_cast2 _) @ $x)%expr (only printing, at level 9) : expr_scope.
- Notation "v ₁" := (#ident.fst @ $v)%expr (at level 10, format "v ₁") : expr_scope.
- Notation "v ₂" := (#ident.snd @ $v)%expr (at level 10, format "v ₂") : expr_scope.
- Notation "v ₁" := (#(ident.Z_cast _) @ (#ident.fst @ $v))%expr (at level 10, format "v ₁") : expr_scope.
- Notation "v ₂" := (#(ident.Z_cast _) @ (#ident.snd @ $v))%expr (at level 10, format "v ₂") : expr_scope.
- Notation "v ₁" := (#(ident.Z_cast _) @ (#ident.fst @ (#(ident.Z_cast2 _) @ $v)))%expr (at level 10, format "v ₁") : expr_scope.
- Notation "v ₂" := (#(ident.Z_cast _) @ (#ident.snd @ (#(ident.Z_cast2 _) @ $v)))%expr (at level 10, format "v ₂") : expr_scope.
- Notation "x" := (#(ident.Literal x%Z))%expr (only printing) : expr_scope.
-
- (*Notation "ls [[ n ]]" := (List.nth_default_concrete _ n @@ ls)%expr : expr_scope.
- Notation "( range )( v )" := (ident.Z_cast range @@ v)%expr : expr_scope.
- Notation "x *₁₂₈ y"
- := (ident.Z_cast uint128 @@ (ident.Z.mul (x, y)))%expr (at level 40) : expr_scope.
- Notation "( out_t )( v >> count )"
- := (ident.Z_cast out_t (ident.Z.shiftr count @@ v)%expr)
- (format "( out_t )( v >> count )") : expr_scope.
- Notation "( out_t )( v >> count )"
- := (ident.Z_cast out_t (ident.Z.shiftr count @@ v)%expr)
- (format "( out_t )( v >> count )") : expr_scope.
- Notation "v ₁" := (ident.fst @@ v)%expr (at level 10, format "v ₁") : expr_scope.
- Notation "v ₂" := (ident.snd @@ v)%expr (at level 10, format "v ₂") : expr_scope.*)
- (*
- Notation "'ℤ'"
- := BoundsAnalysis.type.Z : zrange_scope.
- Notation "ls [[ n ]]" := (List.nth n @@ ls)%nexpr : nexpr_scope.
- Notation "x *₆₄₋₆₄₋₁₂₈ y"
- := (mul uint64 uint64 uint128 @@ (x, y))%nexpr (at level 40) : nexpr_scope.
- Notation "x *₆₄₋₆₄₋₆₄ y"
- := (mul uint64 uint64 uint64 @@ (x, y))%nexpr (at level 40) : nexpr_scope.
- Notation "x *₃₂₋₃₂₋₃₂ y"
- := (mul uint32 uint32 uint32 @@ (x, y))%nexpr (at level 40) : nexpr_scope.
- Notation "x *₃₂₋₁₂₈₋₁₂₈ y"
- := (mul uint32 uint128 uint128 @@ (x, y))%nexpr (at level 40) : nexpr_scope.
- Notation "x *₃₂₋₆₄₋₆₄ y"
- := (mul uint32 uint64 uint64 @@ (x, y))%nexpr (at level 40) : nexpr_scope.
- Notation "x *₃₂₋₃₂₋₆₄ y"
- := (mul uint32 uint32 uint64 @@ (x, y))%nexpr (at level 40) : nexpr_scope.
- Notation "x +₁₂₈ y"
- := (add uint128 uint128 uint128 @@ (x, y))%nexpr (at level 50) : nexpr_scope.
- Notation "x +₆₄₋₁₂₈₋₁₂₈ y"
- := (add uint64 uint128 uint128 @@ (x, y))%nexpr (at level 50) : nexpr_scope.
- Notation "x +₃₂₋₆₄₋₆₄ y"
- := (add uint32 uint64 uint64 @@ (x, y))%nexpr (at level 50) : nexpr_scope.
- Notation "x +₆₄ y"
- := (add uint64 uint64 uint64 @@ (x, y))%nexpr (at level 50) : nexpr_scope.
- Notation "x +₃₂ y"
- := (add uint32 uint32 uint32 @@ (x, y))%nexpr (at level 50) : nexpr_scope.
- Notation "x -₁₂₈ y"
- := (sub uint128 uint128 uint128 @@ (x, y))%nexpr (at level 50) : nexpr_scope.
- Notation "x -₆₄₋₁₂₈₋₁₂₈ y"
- := (sub uint64 uint128 uint128 @@ (x, y))%nexpr (at level 50) : nexpr_scope.
- Notation "x -₃₂₋₆₄₋₆₄ y"
- := (sub uint32 uint64 uint64 @@ (x, y))%nexpr (at level 50) : nexpr_scope.
- Notation "x -₆₄ y"
- := (sub uint64 uint64 uint64 @@ (x, y))%nexpr (at level 50) : nexpr_scope.
- Notation "x -₃₂ y"
- := (sub uint32 uint32 uint32 @@ (x, y))%nexpr (at level 50) : nexpr_scope.
- Notation "x" := ({| BoundsAnalysis.type.value := x |}) (only printing) : nexpr_scope.
- Notation "( out_t )( v >> count )"
- := ((shiftr _ out_t count @@ v)%nexpr)
- (format "( out_t )( v >> count )")
- : nexpr_scope.
- Notation "( out_t )( v << count )"
- := ((shiftl _ out_t count @@ v)%nexpr)
- (format "( out_t )( v << count )")
- : nexpr_scope.
- Notation "( ( out_t ) v & mask )"
- := ((land _ out_t mask @@ v)%nexpr)
- (format "( ( out_t ) v & mask )")
- : nexpr_scope.
-*)
- (* TODO: come up with a better notation for arithmetic with carries
- that still distinguishes it from arithmetic without carries? *)
- Local Notation "'TwoPow256'" := 115792089237316195423570985008687907853269984665640564039457584007913129639936 (only parsing).
- Notation "'ADD_256' ( x , y )" := (#(ident.Z_cast2 (uint256, bool)%core) @ (#ident.Z_add_get_carry @ #(ident.Literal (t:=base.type.Z) TwoPow256) @ x @ y))%expr : expr_scope.
- Notation "'ADD_128' ( x , y )" := (#(ident.Z_cast2 (uint128, bool)%core) @ (#ident.Z_add_get_carry @ #(ident.Literal (t:=base.type.Z) TwoPow256) @ x @ y))%expr : expr_scope.
- Notation "'ADDC_256' ( x , y , z )" := (#(ident.Z_cast2 (uint256, bool)%core) @ (#ident.Z_add_with_get_carry @ #(ident.Literal (t:=base.type.Z) TwoPow256) @ x @ y @ z))%expr : expr_scope.
- Notation "'ADDC_128' ( x , y , z )" := (#(ident.Z_cast2 (uint128, bool)%core) @ (#ident.Z_add_with_get_carry @ #(ident.Literal (t:=base.type.Z) TwoPow256) @ x @ y @ z))%expr : expr_scope.
- Notation "'SUB_256' ( x , y )" := (#(ident.Z_cast2 (uint256, bool)%core) @ (#ident.Z_sub_get_borrow @ #(ident.Literal (t:=base.type.Z) TwoPow256) @ x @ y))%expr : expr_scope.
- Notation "'SUBB_256' ( x , y , z )" := (#(ident.Z_cast2 (uint256, bool)%core) @ (#ident.Z_sub_with_get_borrow @ #(ident.Literal (t:=base.type.Z) TwoPow256) @ x @ y @ z))%expr : expr_scope.
- Notation "'ADDM' ( x , y , z )" := (#(ident.Z_cast uint256) @ (#ident.Z_add_modulo @ x @ y @ z))%expr : expr_scope.
- Notation "'RSHI' ( x , y , z )" := (#(ident.Z_cast _) @ (#ident.Z_rshi @ _ @ x @ y @ z))%expr : expr_scope.
- Notation "'SELC' ( x , y , z )" := (#(ident.Z_cast uint256) @ (ident.Z_zselect @ x @ y @ z))%expr : expr_scope.
- Notation "'SELM' ( x , y , z )" := (#(ident.Z_cast uint256) @ (ident.Z_zselect @ (#(Z_cast bool) @ (#Z_cc_m @ _) @ x) @ y @ z))%expr : expr_scope.
- Notation "'SELL' ( x , y , z )" := (#(ident.Z_cast uint256) @ (#ident.Z_zselect @ (#(Z_cast bool) @ (#Z_land @ #(ident.Literal (t:=base.type.Z 1)) @ x)) @ y @ z))%expr : expr_scope.
-End PrintingNotations.
-
-(*
-Notation "a ∈ b" := (ZRange.type.is_bounded_by b%zrange a = true) (at level 10) : type_scope.
-Notation Interp := (expr.Interp _).
-Notation "'ℤ'" := (type.type_primitive type.Z).
-Set Printing Width 70.
-Goal False.
- let rop' := Reify (fun v1v2 : Z * Z => fst v1v2 + snd v1v2) in
- pose rop' as rop.
- pose (@Pipeline.BoundsPipeline_full
- false (fun v => Some v) (type.Z * type.Z) type.Z
- rop
- (r[0~>10], r[0~>10])%zrange
- r[0~>20]%zrange
- ) as E.
- simple refine (let Ev := _ in
- let compiler_outputs_Ev : E = Pipeline.Success Ev := _ in
- _); [ shelve | .. ]; revgoals.
- clearbody compiler_outputs_Ev.
- refine (let H' :=
- (fun H'' =>
- @Pipeline.BoundsPipeline_full_correct
- _ _
- H'' _ _ _ _ _ _ compiler_outputs_Ev) _
- in _);
- clearbody H'.
- Focus 2.
- { cbv [Pipeline.BoundsPipeline_full] in E.
- remember (Pipeline.PrePipeline rop) as cache eqn:Hcache in (value of E).
- lazy in Hcache.
- subst cache.
- lazy in E.
- subst E Ev; reflexivity.
- } Unfocus.
- cbv [rop] in H'; cbn [expr.Interp expr.interp for_reification.ident.interp] in H'.
-(*
- H' : forall arg : type.interp (ℤ * ℤ),
- arg ∈ (r[0 ~> 10], r[0 ~> 10]) ->
- (Interp Ev arg) ∈ r[0 ~> 20] /\
- Interp Ev arg = fst arg + snd arg
-*)
-Abort.
-*)
-
-Module WordByWordMontgomery.
- Import Arithmetic.WordByWordMontgomery.
- Derive mul_gen
- SuchThat ((forall (bitwidth : Z)
- (n : nat)
- (m : Z)
- (m' : Z)
- (f g : list Z),
- Interp (t:=reify_type_of mulmod)
- mul_gen bitwidth n m m' f g
- = mulmod bitwidth n m m' f g)
- /\ Wf mul_gen)
- As mul_gen_correct.
- Proof. Time cache_reify (). Time Qed.
- Hint Extern 1 (_ = mulmod _ _ _ _ _ _) => simple apply (proj1 mul_gen_correct) : reify_gen_cache.
- Hint Immediate (proj2 mul_gen_correct) : wf_gen_cache.
-
- Derive square_gen
- SuchThat ((forall (bitwidth : Z)
- (n : nat)
- (m : Z)
- (m' : Z)
- (f : list Z),
- Interp (t:=reify_type_of squaremod)
- square_gen bitwidth n m m' f
- = squaremod bitwidth n m m' f)
- /\ Wf square_gen)
- As square_gen_correct.
- Proof.
- Time cache_reify ().
- (* we would do something faster, but it breaks extraction COQBUG(https://github.com/coq/coq/issues/7954) *)
- (*
- split.
- { intros; etransitivity; [ | cbv [squaremod]; apply mul_gen_correct ].
- subst square_gen.
- instantiate (1:=ltac:(let r := Reify (fun F (bitwidth:Z) (n:nat) (m m' : Z) (f : list Z) => (F bitwidth n m m' f f):list Z) in refine (r @ mul_gen)%Expr)).
- reflexivity. }
- { prove_Wf (). }
- *)
- Time Qed.
- Hint Extern 1 (_ = squaremod _ _ _ _ _) => simple apply (proj1 square_gen_correct) : reify_gen_cache.
- Hint Immediate (proj2 square_gen_correct) : wf_gen_cache.
-
- Derive encode_gen
- SuchThat ((forall (bitwidth : Z)
- (n : nat)
- (m : Z)
- (m' : Z)
- (v : Z),
- Interp (t:=reify_type_of encodemod)
- encode_gen bitwidth n m m' v
- = encodemod bitwidth n m m' v)
- /\ Wf encode_gen)
- As encode_gen_correct.
- Proof.
- Time cache_reify ().
- (* we would do something faster, but it breaks extraction COQBUG(https://github.com/coq/coq/issues/7954) *)
- (*
- split.
- { intros; etransitivity; [ | cbv [encodemod]; apply mul_gen_correct ].
- subst encode_gen; revert bitwidth n m m' v.
- lazymatch goal with
- | [ |- forall bw n m m' v, ?interp ?ev bw n m m' v = ?interp' mul_gen bw n m m' (@?A bw n m m' v) (@?B bw n m m' v) ]
- => let rv := constr:(fun F bw n m m' v => (F bw n m m' (A bw n m m' v) (B bw n m m' v)):list Z) in
- intros;
- instantiate (1:=ltac:(let r := Reify rv in
- refine (r @ mul_gen)%Expr))
- end.
- reflexivity. }
- { prove_Wf (). }
- *)
- Time Qed.
- Hint Extern 1 (_ = encodemod _ _ _ _ _) => simple apply (proj1 encode_gen_correct) : reify_gen_cache.
- Hint Immediate (proj2 encode_gen_correct) : wf_gen_cache.
-
- Derive add_gen
- SuchThat ((forall (bitwidth : Z)
- (n : nat)
- (m : Z)
- (f g : list Z),
- Interp (t:=reify_type_of addmod)
- add_gen bitwidth n m f g
- = addmod bitwidth n m f g)
- /\ Wf add_gen)
- As add_gen_correct.
- Proof. Time cache_reify (). Time Qed.
- Hint Extern 1 (_ = addmod _ _ _ _ _) => simple apply (proj1 add_gen_correct) : reify_gen_cache.
- Hint Immediate (proj2 add_gen_correct) : wf_gen_cache.
-
- Derive sub_gen
- SuchThat ((forall (bitwidth : Z)
- (n : nat)
- (m : Z)
- (f g : list Z),
- Interp (t:=reify_type_of submod)
- sub_gen bitwidth n m f g
- = submod bitwidth n m f g)
- /\ Wf sub_gen)
- As sub_gen_correct.
- Proof. Time cache_reify (). Time Qed.
- Hint Extern 1 (_ = submod _ _ _ _ _) => simple apply (proj1 sub_gen_correct) : reify_gen_cache.
- Hint Immediate (proj2 sub_gen_correct) : wf_gen_cache.
-
- Derive opp_gen
- SuchThat ((forall (bitwidth : Z)
- (n : nat)
- (m : Z)
- (f : list Z),
- Interp (t:=reify_type_of oppmod)
- opp_gen bitwidth n m f
- = oppmod bitwidth n m f)
- /\ Wf opp_gen)
- As opp_gen_correct.
- Proof. Time cache_reify (). Time Qed.
- Hint Extern 1 (_ = oppmod _ _ _ _) => simple apply (proj1 opp_gen_correct) : reify_gen_cache.
- Hint Immediate (proj2 opp_gen_correct) : wf_gen_cache.
-
- Derive from_montgomery_gen
- SuchThat ((forall (bitwidth : Z)
- (n : nat)
- (m : Z)
- (m' : Z)
- (f : list Z),
- Interp (t:=reify_type_of from_montgomerymod)
- from_montgomery_gen bitwidth n m m' f
- = from_montgomerymod bitwidth n m m' f)
- /\ Wf from_montgomery_gen)
- As from_montgomery_gen_correct.
- Proof.
- Time cache_reify ().
- (* we would do something faster, but it breaks extraction COQBUG(https://github.com/coq/coq/issues/7954) *)
- (*
- split.
- { intros; etransitivity; [ | cbv [from_montgomerymod]; apply mul_gen_correct ].
- subst from_montgomery_gen.
- instantiate (1:=ltac:(let r := Reify (fun F (bitwidth:Z) (n:nat) (m m' : Z) (f : list Z) => (F bitwidth n m m' f (onemod bitwidth n)):list Z) in refine (r @ mul_gen)%Expr)).
- reflexivity. }
- { prove_Wf (). }
- *)
- Qed.
- Hint Extern 1 (_ = from_montgomerymod _ _ _ _ _) => simple apply (proj1 from_montgomery_gen_correct) : reify_gen_cache.
- Hint Immediate (proj2 from_montgomery_gen_correct) : wf_gen_cache.
-
- Definition zeromod bitwidth n m m' := encodemod bitwidth n m m' 0.
- Definition onemod bitwidth n m m' := encodemod bitwidth n m m' 1.
- Derive zero_gen
- SuchThat ((forall (bitwidth : Z)
- (n : nat)
- (m : Z)
- (m' : Z),
- Interp (t:=reify_type_of zeromod)
- zero_gen bitwidth n m m'
- = zeromod bitwidth n m m')
- /\ Wf zero_gen)
- As zero_gen_correct.
- Proof.
- (* Time cache_reify (). *)
- (* we do something faster *)
- split.
- { intros; etransitivity; [ | cbv [zeromod]; apply encode_gen_correct ].
- subst zero_gen.
- instantiate (1:=ltac:(let r := Reify (fun F (bitwidth:Z) (n:nat) (m m' : Z) => (F bitwidth n m m' 0):list Z) in refine (r @ encode_gen)%Expr)).
- reflexivity. }
- { prove_Wf (). }
- Qed.
- Hint Extern 1 (_ = zeromod _ _ _ _) => simple apply (proj1 zero_gen_correct) : reify_gen_cache.
- Hint Immediate (proj2 zero_gen_correct) : wf_gen_cache.
-
- Derive one_gen
- SuchThat ((forall (bitwidth : Z)
- (n : nat)
- (m : Z)
- (m' : Z),
- Interp (t:=reify_type_of onemod)
- one_gen bitwidth n m m'
- = onemod bitwidth n m m')
- /\ Wf one_gen)
- As one_gen_correct.
- Proof.
- (* Time cache_reify (). *)
- (* we do something faster *)
- split.
- { intros; etransitivity; [ | cbv [onemod]; apply encode_gen_correct ].
- subst one_gen.
- instantiate (1:=ltac:(let r := Reify (fun F (bitwidth:Z) (n:nat) (m m' : Z) => (F bitwidth n m m' 1):list Z) in refine (r @ encode_gen)%Expr)).
- reflexivity. }
- { prove_Wf (). }
- Qed.
- Hint Extern 1 (_ = onemod _ _ _ _) => simple apply (proj1 one_gen_correct) : reify_gen_cache.
- Hint Immediate (proj2 one_gen_correct) : wf_gen_cache.
-
- Derive nonzero_gen
- SuchThat ((forall (f : list Z),
- Interp (t:=reify_type_of nonzeromod)
- nonzero_gen f
- = nonzeromod f)
- /\ Wf nonzero_gen)
- As nonzero_gen_correct.
- Proof. Time cache_reify (). Time Qed.
- Hint Extern 1 (_ = nonzeromod _) => simple apply (proj1 nonzero_gen_correct) : reify_gen_cache.
- Hint Immediate (proj2 nonzero_gen_correct) : wf_gen_cache.
-
- Derive to_bytes_gen
- SuchThat ((forall (bitwidth : Z)
- (n : nat)
- (f : list Z),
- Interp (t:=reify_type_of to_bytesmod)
- to_bytes_gen bitwidth n f
- = to_bytesmod bitwidth n f)
- /\ Wf to_bytes_gen)
- As to_bytes_gen_correct.
- Proof. cache_reify (). Qed.
- Hint Extern 1 (_ = to_bytesmod _ _ _) => simple apply (proj1 to_bytes_gen_correct) : reify_gen_cache.
- Hint Immediate (proj2 to_bytes_gen_correct) : wf_gen_cache.
-
- Section rcarry_mul.
- Context (s : Z)
- (c : list (Z * Z))
- (machine_wordsize : Z).
-
- Let n : nat := Z.to_nat (Qceiling (Z.log2_up s / machine_wordsize)).
- Let m := s - Associational.eval c.
- Let r := 2^machine_wordsize.
- Let r' := match Z.modinv r m with
- | Some r' => r'
- | None => 0
- end.
- Let m' := match Z.modinv (-m) r with
- | Some m' => m'
- | None => 0
- end.
- Let n_bytes := bytes_n machine_wordsize 1 n.
- Let prime_upperbound_list : list Z
- := encode (UniformWeight.uweight machine_wordsize) n s c (s-1).
- Let prime_bytes_upperbound_list : list Z
- := encode (weight 8 1) n_bytes s c (s-1).
- Let upperbounds : list Z := prime_upperbound_list.
- Definition prime_bound : ZRange.type.option.interp (base.type.Z)
- := Some r[0~>(s - Associational.eval c - 1)]%zrange.
- Definition prime_bounds : ZRange.type.option.interp (base.type.list (base.type.Z))
- := Some (List.map (fun v => Some r[0 ~> v]%zrange) prime_upperbound_list).
- Definition prime_bytes_bounds : ZRange.type.option.interp (base.type.list (base.type.Z))
- := Some (List.map (fun v => Some r[0 ~> v]%zrange) prime_bytes_upperbound_list).
- Definition saturated_upper_bounds : list Z
- := List.repeat (2^machine_wordsize-1)%Z n.
- Definition saturated_bounds : ZRange.type.option.interp (base.type.list (base.type.Z))
- := Some (List.map (fun u => Some r[0 ~> u]%zrange) saturated_upper_bounds).
-
- Definition m_enc : list Z
- := encode (UniformWeight.uweight machine_wordsize) n s c (s-Associational.eval c).
-
- Definition relax_zrange_of_machine_wordsize
- := relax_zrange_gen [1; machine_wordsize; 2 * machine_wordsize]%Z.
-
- Definition relax_zrange_of_machine_wordsize_with_bytes
- := relax_zrange_gen [1; 8; machine_wordsize; 2 * machine_wordsize]%Z.
-
- Let relax_zrange := relax_zrange_of_machine_wordsize.
- Let relax_zrange_with_bytes := relax_zrange_of_machine_wordsize_with_bytes.
- Definition bounds : list (ZRange.type.option.interp base.type.Z)
- := Option.invert_Some saturated_bounds (*List.map (fun u => Some r[0~>u]%zrange) upperbounds*).
-
- (** Note: If you change the name or type signature of this
- function, you will need to update the code in CLI.v *)
- Definition check_args {T} (res : Pipeline.ErrorT T)
- : Pipeline.ErrorT T
- := fold_right
- (fun '(b, e) k => if b:bool then Error e else k)
- res
- [(negb (1 <? machine_wordsize)%Z, Pipeline.Value_not_ltZ "machine_wordsize <= 1" 1 machine_wordsize);
- ((negb (0 <? Associational.eval c))%Z, Pipeline.Value_not_ltZ "Associational.eval c ≤ 0" 0 (Associational.eval c));
- ((negb (Associational.eval c <? s))%Z, Pipeline.Value_not_ltZ "s ≤ Associational.eval c" (Associational.eval c) s);
- ((s =? 0)%Z, Pipeline.Values_not_provably_distinctZ "s = 0" s 0);
- ((n =? 0)%nat, Pipeline.Values_not_provably_distinctZ "n = 0" n 0%nat);
- ((r' =? 0)%Z, Pipeline.No_modular_inverse "r⁻¹ mod m" r m);
- (negb ((r * r') mod m =? 1)%Z, Pipeline.Values_not_provably_equalZ "(r * r') mod m ≠ 1" ((r * r') mod m) 1);
- (negb ((m * m') mod r =? (-1) mod r)%Z, Pipeline.Values_not_provably_equalZ "(m * m') mod r ≠ (-1) mod r" ((m * m') mod r) ((-1) mod r));
- (negb (s <=? r^n), Pipeline.Value_not_leZ "r^n ≤ s" s (r^n));
- (negb (1 <? s - Associational.eval c), Pipeline.Value_not_ltZ "s - Associational.eval c ≤ 1" 1 (s - Associational.eval c))].
-
- Notation type_of_strip_3arrow := ((fun (d : Prop) (_ : forall A B C, d) => d) _).
-
- Notation BoundsPipelineToStrings prefix name comment rop in_bounds out_bounds
- := ((prefix ++ name)%string,
- Pipeline.BoundsPipelineToStrings
- true (* static *) prefix (prefix ++ name)%string comment%string%list
- (*false*) true None
- relax_zrange
- rop%Expr in_bounds out_bounds).
-
- Notation BoundsPipeline_correct in_bounds out_bounds op
- := (fun rv (rop : Expr (reify_type_of op)) Hrop
- => @Pipeline.BoundsPipeline_correct_trans
- (*false*) true None I
- relax_zrange
- (relax_zrange_gen_good _)
- _
- rop
- in_bounds
- out_bounds
- _
- op
- Hrop rv)
- (only parsing).
-
- Notation BoundsPipelineToStrings_no_subst01 prefix name comment rop in_bounds out_bounds
- := ((prefix ++ name)%string,
- Pipeline.BoundsPipelineToStrings
- true (* static *) prefix (prefix ++ name)%string comment%string%list
- (*false*) false None
- relax_zrange
- rop%Expr in_bounds out_bounds).
-
- Notation BoundsPipeline_no_subst01_correct in_bounds out_bounds op
- := (fun rv (rop : Expr (reify_type_of op)) Hrop
- => @Pipeline.BoundsPipeline_correct_trans
- (*false*) false None I
- relax_zrange
- (relax_zrange_gen_good _)
- _
- rop
- in_bounds
- out_bounds
- _
- op
- Hrop rv)
- (only parsing).
-
- Notation BoundsPipelineToStrings_with_bytes_no_subst01 prefix name comment rop in_bounds out_bounds
- := ((prefix ++ name)%string,
- Pipeline.BoundsPipelineToStrings
- true (* static *) prefix (prefix ++ name)%string comment%string%list
- (*false*) false None
- relax_zrange_with_bytes
- rop%Expr in_bounds out_bounds).
-
- Notation BoundsPipeline_with_bytes_no_subst01_correct in_bounds out_bounds op
- := (fun rv (rop : Expr (reify_type_of op)) Hrop
- => @Pipeline.BoundsPipeline_correct_trans
- (*false*) false None I
- relax_zrange_with_bytes
- (relax_zrange_gen_good _)
- _
- rop
- in_bounds
- out_bounds
- _
- op
- Hrop rv)
- (only parsing).
-
- (* N.B. We only need [rmul] if we want to extract the Pipeline; otherwise we can just use [rmul_correct] *)
- Definition srmul prefix
- := BoundsPipelineToStrings_no_subst01
- prefix "mul" []
- (mul_gen
- @ GallinaReify.Reify machine_wordsize @ GallinaReify.Reify n @ GallinaReify.Reify m @ GallinaReify.Reify m')
- (Some bounds, (Some bounds, tt))
- (Some bounds).
-
- Definition rmul_correct
- := BoundsPipeline_no_subst01_correct
- (Some bounds, (Some bounds, tt))
- (Some bounds)
- (mulmod machine_wordsize n m m').
-
- Definition srsquare prefix
- := BoundsPipelineToStrings_no_subst01
- prefix "square" []
- (square_gen
- @ GallinaReify.Reify machine_wordsize @ GallinaReify.Reify n @ GallinaReify.Reify m @ GallinaReify.Reify m')
- (Some bounds, tt)
- (Some bounds).
-
- Definition rsquare_correct
- := BoundsPipeline_no_subst01_correct
- (Some bounds, tt)
- (Some bounds)
- (squaremod machine_wordsize n m m').
-
- Definition sradd prefix
- := BoundsPipelineToStrings
- prefix "add" []
- (add_gen
- @ GallinaReify.Reify machine_wordsize @ GallinaReify.Reify n @ GallinaReify.Reify m)
- (Some bounds, (Some bounds, tt))
- (Some bounds).
-
- Definition radd_correct
- := BoundsPipeline_correct
- (Some bounds, (Some bounds, tt))
- (Some bounds)
- (addmod machine_wordsize n m).
-
- Definition srsub prefix
- := BoundsPipelineToStrings
- prefix "sub" []
- (sub_gen
- @ GallinaReify.Reify machine_wordsize @ GallinaReify.Reify n @ GallinaReify.Reify m)
- (Some bounds, (Some bounds, tt))
- (Some bounds).
-
- Definition rsub_correct
- := BoundsPipeline_correct
- (Some bounds, (Some bounds, tt))
- (Some bounds)
- (submod machine_wordsize n m).
-
- Definition sropp prefix
- := BoundsPipelineToStrings
- prefix "opp" []
- (opp_gen
- @ GallinaReify.Reify machine_wordsize @ GallinaReify.Reify n @ GallinaReify.Reify m)
- (Some bounds, tt)
- (Some bounds).
-
- Definition ropp_correct
- := BoundsPipeline_correct
- (Some bounds, tt)
- (Some bounds)
- (oppmod machine_wordsize n m).
-
- Definition srfrom_montgomery prefix
- := BoundsPipelineToStrings
- prefix "from_montgomery" []
- (from_montgomery_gen
- @ GallinaReify.Reify machine_wordsize @ GallinaReify.Reify n @ GallinaReify.Reify m @ GallinaReify.Reify m')
- (Some bounds, tt)
- (Some bounds).
-
- Definition rfrom_montgomery_correct
- := BoundsPipeline_correct
- (Some bounds, tt)
- (Some bounds)
- (from_montgomerymod machine_wordsize n m m').
-
- Definition srnonzero prefix
- := BoundsPipelineToStrings
- prefix "nonzero" []
- nonzero_gen
- (Some bounds, tt)
- (Some r[0~>r-1]%zrange).
-
- Definition rnonzero_correct
- := BoundsPipeline_correct
- (Some bounds, tt)
- (Some r[0~>r-1]%zrange)
- nonzeromod.
-
- Definition srselectznz prefix
- := BoundsPipelineToStrings_with_bytes_no_subst01
- prefix "selectznz" []
- selectznz_gen
- (Some r[0~>1], (saturated_bounds, (saturated_bounds, tt)))%zrange
- saturated_bounds.
-
- Definition rselectznz_correct
- := BoundsPipeline_with_bytes_no_subst01_correct
- (Some r[0~>1], (saturated_bounds, (saturated_bounds, tt)))%zrange
- saturated_bounds
- Positional.select.
-
- Definition srto_bytes prefix
- := BoundsPipelineToStrings_with_bytes_no_subst01
- prefix "to_bytes" []
- (to_bytes_gen
- @ GallinaReify.Reify machine_wordsize @ GallinaReify.Reify n)
- (prime_bounds, tt)
- prime_bytes_bounds.
-
- Definition rto_bytes_correct
- := BoundsPipeline_with_bytes_no_subst01_correct
- (prime_bounds, tt)
- prime_bytes_bounds
- (to_bytesmod machine_wordsize n).
-
- Definition srfrom_bytes prefix
- := BoundsPipelineToStrings_with_bytes_no_subst01
- prefix "from_bytes" []
- (from_bytes_gen
- @ GallinaReify.Reify machine_wordsize @ GallinaReify.Reify 1 @ GallinaReify.Reify n)
- (prime_bytes_bounds, tt)
- prime_bounds.
-
- Definition rfrom_bytes_correct
- := BoundsPipeline_with_bytes_no_subst01_correct
- (prime_bytes_bounds, tt)
- prime_bounds
- (from_bytesmod machine_wordsize 1 n).
-
- Definition rencode_correct
- := BoundsPipeline_correct
- (prime_bound, tt)
- (Some bounds)
- (encodemod machine_wordsize n m m').
-
- Definition rzero_correct
- := BoundsPipeline_correct
- tt
- (Some bounds)
- (zeromod machine_wordsize n m m').
-
- Definition rone_correct
- := BoundsPipeline_correct
- tt
- (Some bounds)
- (onemod machine_wordsize n m m').
-
- Notation srmulx := (srmulx machine_wordsize).
- Notation srmulx_correct := (srmulx_correct machine_wordsize).
- Notation sraddcarryx := (sraddcarryx machine_wordsize).
- Notation sraddcarryx_correct := (sraddcarryx_correct machine_wordsize).
- Notation srsubborrowx := (srsubborrowx machine_wordsize).
- Notation srsubborrowx_correct := (srsubborrowx_correct machine_wordsize).
- Notation srcmovznz := (srcmovznz machine_wordsize).
- Notation srcmovznz_correct := (srcmovznz_correct machine_wordsize).
-
- (* we need to strip off [Hrv : ... = Pipeline.Success rv] and related arguments *)
- Definition rmul_correctT rv : Prop
- := type_of_strip_3arrow (@rmul_correct rv).
- Definition rsquare_correctT rv : Prop
- := type_of_strip_3arrow (@rsquare_correct rv).
- Definition radd_correctT rv : Prop
- := type_of_strip_3arrow (@radd_correct rv).
- Definition rsub_correctT rv : Prop
- := type_of_strip_3arrow (@rsub_correct rv).
- Definition rfrom_montgomery_correctT rv : Prop
- := type_of_strip_3arrow (@rfrom_montgomery_correct rv).
- Definition ropp_correctT rv : Prop
- := type_of_strip_3arrow (@ropp_correct rv).
- Definition rnonzero_correctT rv : Prop
- := type_of_strip_3arrow (@rnonzero_correct rv).
- Definition rselectznz_correctT rv : Prop
- := type_of_strip_3arrow (@rselectznz_correct rv).
- Definition rto_bytes_correctT rv : Prop
- := type_of_strip_3arrow (@rto_bytes_correct rv).
- Definition rfrom_bytes_correctT rv : Prop
- := type_of_strip_3arrow (@rfrom_bytes_correct rv).
- Definition rencode_correctT rv : Prop
- := type_of_strip_3arrow (@rencode_correct rv).
- Definition rzero_correctT rv : Prop
- := type_of_strip_3arrow (@rzero_correct rv).
- Definition rone_correctT rv : Prop
- := type_of_strip_3arrow (@rone_correct rv).
-
- Section make_ring.
- Let mv : positive := Z.to_pos (s - Associational.eval c).
- Context (curve_good : check_args (Success tt) = Success tt)
- {rmulv} (Hrmulv : rmul_correctT rmulv)
- {raddv} (Hraddv : radd_correctT raddv)
- {rsubv} (Hrsubv : rsub_correctT rsubv)
- {rfrom_montgomeryv} (Hrfrom_montgomeryv : rfrom_montgomery_correctT rfrom_montgomeryv)
- {roppv} (Hroppv : ropp_correctT roppv)
- {rzerov} (Hrzerov : rzero_correctT rzerov)
- {ronev} (Hronev : rone_correctT ronev)
- {rencodev} (Hrencodev : rencode_correctT rencodev)
- {rnonzerov} (Hrnonzerov : rnonzero_correctT rnonzerov)
- {rto_bytesv} (Hto_bytesv : rto_bytes_correctT rto_bytesv)
- {rfrom_bytesv} (Hfrom_bytesv : rfrom_bytes_correctT rfrom_bytesv).
-
- Local Ltac use_curve_good_t :=
- repeat first [ assumption
- | progress rewrite ?map_length, ?Z.mul_0_r, ?Pos.mul_1_r, ?Z.mul_1_r in *
- | reflexivity
- | lia
- | rewrite expr.interp_reify_list, ?map_map
- | rewrite map_ext with (g:=id), map_id
- | progress distr_length
- | progress cbv [Qceiling Qfloor Qopp Qdiv Qplus inject_Z Qmult Qinv] in *
- | progress cbv [Qle] in *
- | progress cbn -[reify_list] in *
- | progress intros
- | solve [ auto ] ].
-
- Lemma use_curve_good
- : Z.pos mv = s - Associational.eval c
- /\ Z.pos mv <> 0
- /\ s - Associational.eval c <> 0
- /\ s <> 0
- /\ 0 < machine_wordsize
- /\ n <> 0%nat
- /\ List.length bounds = n
- /\ 0 < 1 <= machine_wordsize
- /\ 0 < Associational.eval c < s
- /\ (r * r') mod m = 1
- /\ (m * m') mod r = (-1) mod r
- /\ 0 < machine_wordsize
- /\ 1 < m
- /\ m < r^n.
- Proof.
- clear -curve_good.
- cbv [check_args fold_right] in curve_good.
- cbv [bounds prime_bound m_enc prime_bounds saturated_upper_bounds saturated_bounds] in *.
- break_innermost_match_hyps; try discriminate.
- rewrite negb_false_iff in *.
- Z.ltb_to_lt.
- rewrite NPeano.Nat.eqb_neq in *.
- intros.
- cbv [Qnum Qden Qceiling Qfloor Qopp Qdiv Qplus inject_Z Qmult Qinv] in *.
- rewrite ?map_length, ?Z.mul_0_r, ?Pos.mul_1_r, ?Z.mul_1_r in *.
- specialize_by lia.
- repeat match goal with H := _ |- _ => subst H end.
- repeat match goal with
- | [ H : list_beq _ _ _ _ = true |- _ ] => apply internal_list_dec_bl in H; [ | intros; Z.ltb_to_lt; omega.. ]
- end.
- repeat apply conj.
- { destruct (s - Associational.eval c) eqn:?; cbn; lia. }
- { use_curve_good_t. }
- { use_curve_good_t. }
- { use_curve_good_t. }
- { use_curve_good_t. }
- { use_curve_good_t. }
- { use_curve_good_t. }
- { use_curve_good_t. }
- { use_curve_good_t. }
- { use_curve_good_t. }
- { use_curve_good_t. }
- { use_curve_good_t. }
- { use_curve_good_t. }
- { use_curve_good_t. }
- { use_curve_good_t. }
- { use_curve_good_t. }
- Qed.
-
- (** TODO: Find a better place to put the spec for [to_bytes] and [from_bytes] *)
- Definition GoodT : Prop
- := @MontgomeryStyleRing.GoodT
- machine_wordsize 1
- n s c
- bounds
- (valid machine_wordsize n m)
- (Interp rfrom_montgomeryv)
- (Interp rmulv)
- (Interp raddv)
- (Interp rsubv)
- (Interp roppv)
- (Interp rzerov)
- (Interp ronev)
- (Interp rencodev)
- /\ (let to_bytesT := (base.type.list base.type.Z -> base.type.list base.type.Z)%etype in
- forall f
- (Hf : type.andb_bool_for_each_lhs_of_arrow (t:=to_bytesT) (@ZRange.type.option.is_bounded_by) (prime_bounds, tt) f = true),
- ((ZRange.type.base.option.is_bounded_by prime_bytes_bounds (type.app_curried (Interp rto_bytesv) f) = true
- /\ (forall cast_outside_of_range, type.app_curried (expr.Interp (@ident.gen_interp cast_outside_of_range) rto_bytesv) f
- = type.app_curried (t:=to_bytesT) (to_bytesmod machine_wordsize n) f))
- (*/\ (Positional.eval (weight 8 1) n_bytes (type.app_curried (t:=to_bytesT) (to_bytesmod machine_wordsize n) f)) = (Positional.eval (weight machine_wordsize 1) n (fst f) mod m)*) (* duplicate from Arithmetic, except without validity *)))
- /\ (let from_bytesT := (base.type.list base.type.Z -> base.type.list base.type.Z)%etype in
- forall f
- (Hf : type.andb_bool_for_each_lhs_of_arrow (t:=from_bytesT) (@ZRange.type.option.is_bounded_by) (prime_bytes_bounds, tt) f = true),
- ((ZRange.type.base.option.is_bounded_by (t:=base.type.list (base.type.type_base base.type.Z)) prime_bounds (type.app_curried (Interp rfrom_bytesv) f) = true
- /\ (forall cast_outside_of_range, type.app_curried (expr.Interp (@ident.gen_interp cast_outside_of_range) rfrom_bytesv) f
- = type.app_curried (t:=from_bytesT) (from_bytesmod machine_wordsize 1 n) f))
- /\ (Positional.eval (weight machine_wordsize 1) n (type.app_curried (t:=from_bytesT) (from_bytesmod machine_wordsize 1 n) f)) = (Positional.eval (weight 8 1) n_bytes (fst f))))
- /\ (forall f
- (Hf : type.andb_bool_for_each_lhs_of_arrow (t:=(base.type.list base.type.Z -> base.type.Z)%etype) (@ZRange.type.option.is_bounded_by) (Some bounds, tt) f = true) (Hfvalid : valid machine_wordsize n m (fst f)), (Interp rnonzerov (fst f) = 0) <-> ((@eval machine_wordsize n (from_montgomerymod machine_wordsize n m m' (fst f))) mod m = 0)).
-
- (** XXX TODO: MOVE ME *)
- Lemma is_bounded_by_repeat_In_iff {rg n'} {ls : list Z}
- (H : @ZRange.type.base.option.is_bounded_by (base.type.list (base.type.type_base base.type.Z)) (Some (List.repeat (Some rg) n')) ls = true)
- : forall x, List.In x ls -> lower rg <= x <= upper rg.
- Proof using Type.
- clear -H.
- cbn [ZRange.type.base.option.is_bounded_by] in *.
- rewrite fold_andb_map_iff in H.
- destruct H as [H' H].
- intros x H''; specialize (H (Some rg, x)).
- repeat first [ progress subst
- | progress cbn [fst snd] in *
- | progress cbv [ZRange.type.base.is_bounded_by is_bounded_by_bool] in *
- | progress autorewrite with distr_length in *
- | progress rewrite combine_same in *
- | progress rewrite in_map_iff in *
- | progress specialize_by_assumption
- | progress Bool.split_andb
- | progress Z.ltb_to_lt
- | solve [ auto ]
- | match goal with
- | [ H : context[List.In _ (combine (repeat _ _) _)] |- _ ]
- => rewrite <- map_const, combine_map_l, in_map_iff in H
- | [ H : (exists x, _ = _ /\ _) -> _ |- _ ]
- => specialize (fun x0 pf => H (ex_intro _ (x0, _) (conj eq_refl pf)))
- | [ H : (exists x, _ = _ /\ _) -> _ |- _ ]
- => specialize (fun pf => H (ex_intro _ _ (conj eq_refl pf)))
- | [ H : forall x, List.In (x, ?y) _ -> _ |- _ ]
- => specialize (H y)
- end ].
- Qed.
-
- (** XXX TODO MOVE ME *)
- Local Opaque valid addmod submod oppmod encodemod mulmod from_montgomerymod nonzeromod.
- Theorem Good : GoodT.
- Proof.
- pose proof use_curve_good; destruct_head'_and; destruct_head_hnf' ex.
- split; [ | repeat apply conj ].
- { eapply MontgomeryStyleRing.Good;
- lazymatch goal with
- | [ H : ?P ?rop |- context[expr.Interp _ ?rop] ]
- => intros;
- let H1 := fresh in
- let H2 := fresh in
- unshelve edestruct H as [ [H1 H2] ? ]; [ .. | split; [ eapply H1 | refine (H2 _) ] ];
- solve [ exact tt | eassumption | reflexivity | repeat split ]
- | _ => idtac
- end;
- repeat first [ eassumption
- | eapply mulmod_correct
- | eapply addmod_correct
- | eapply submod_correct
- | eapply oppmod_correct
- | eapply encodemod_correct
- | eapply from_montgomerymod_correct
- | eapply nonzeromod_correct
- | intros; apply conj
- | omega ]. }
- { cbv zeta; intros f Hf.
- apply Hto_bytesv; solve [ assumption | repeat split ]. }
- { cbv zeta; intros f Hf; split.
- { apply Hfrom_bytesv; solve [ assumption | repeat split ]. }
- { cbn [type.for_each_lhs_of_arrow type_base type.andb_bool_for_each_lhs_of_arrow ZRange.type.option.is_bounded_by fst snd] in *.
- rewrite Bool.andb_true_iff in *; split_and'.
- etransitivity; [ apply eval_from_bytesmod | reflexivity ];
- auto; try omega.
- { cbv [ZRange.type.base.option.is_bounded_by prime_bytes_bounds prime_bytes_upperbound_list n_bytes] in *.
- erewrite Ring.length_is_bounded_by by eassumption.
- autorewrite with distr_length; reflexivity. } } }
- { intros.
- split; [ intro H'; eapply nonzeromod_correct;
- [ .. | rewrite <- H'; symmetry; eapply Hrnonzerov ]
- | etransitivity; [ apply Hrnonzerov | eapply nonzeromod_correct; [ .. | eassumption ] ] ];
- try solve [ eassumption | repeat split ]. }
- Qed.
- End make_ring.
-
- Section for_stringification.
- Definition aggregate_infos {A B C} (ls : list (A * ErrorT B (C * ToString.C.ident_infos))) : ToString.C.ident_infos
- := fold_right
- ToString.C.ident_info_union
- ToString.C.ident_info_empty
- (List.map
- (fun '(_, res) => match res with
- | Success (_, infos) => infos
- | Error _ => ToString.C.ident_info_empty
- end)
- ls).
-
- Definition extra_synthesis (function_name_prefix : string) (infos : ToString.C.ident_infos)
- : list (string * Pipeline.ErrorT (list string)) * PositiveSet.t
- := let ls_addcarryx := List.flat_map
- (fun lg_split:positive => [sraddcarryx function_name_prefix lg_split; srsubborrowx function_name_prefix lg_split])
- (PositiveSet.elements (ToString.C.addcarryx_lg_splits infos)) in
- let ls_mulx := List.map
- (fun lg_split:positive => srmulx function_name_prefix lg_split)
- (PositiveSet.elements (ToString.C.mulx_lg_splits infos)) in
- let ls_cmov := List.map
- (fun bitwidth:positive => srcmovznz function_name_prefix bitwidth)
- (PositiveSet.elements (ToString.C.cmovznz_bitwidths infos)) in
- let ls := ls_addcarryx ++ ls_mulx ++ ls_cmov in
- let infos := aggregate_infos ls in
- (List.map (fun '(name, res) => (name, (res <- res; Success (fst res))%error)) ls,
- ToString.C.bitwidths_used infos).
-
- Local Open Scope string_scope.
- Local Open Scope list_scope.
-
- Definition known_functions
- := [("mul", srmul);
- ("square", srsquare);
- ("add", sradd);
- ("sub", srsub);
- ("opp", sropp);
- ("from_montgomery", srfrom_montgomery);
- ("nonzero", srnonzero);
- ("selectznz", srselectznz);
- ("to_bytes", srto_bytes);
- ("from_bytes", srfrom_bytes)].
-
- Definition valid_names : string := Eval compute in String.concat ", " (List.map (@fst _ _) known_functions).
-
- Definition synthesize_of_name (function_name_prefix : string) (name : string)
- : string * ErrorT Pipeline.ErrorMessage (list string * ToString.C.ident_infos)
- := fold_right
- (fun v default
- => match v with
- | Some res => res
- | None => default
- end)
- ((name,
- Error
- (Pipeline.Invalid_argument
- ("Unrecognized request to synthesize """ ++ name ++ """; valid names are " ++ valid_names ++ "."))))
- (map
- (fun '(expected_name, resf) => if string_beq name expected_name then Some (resf function_name_prefix) else None)
- known_functions).
-
- (** Note: If you change the name or type signature of this
- function, you will need to update the code in CLI.v *)
- Definition Synthesize (function_name_prefix : string) (requests : list string)
- : list (string * Pipeline.ErrorT (list string)) * PositiveSet.t (* types used *)
- := let ls := match requests with
- | nil => List.map (fun '(_, sr) => sr function_name_prefix) known_functions
- | requests => List.map (synthesize_of_name function_name_prefix) requests
- end in
- let infos := aggregate_infos ls in
- let '(extra_ls, extra_bit_widths) := extra_synthesis function_name_prefix infos in
- (extra_ls ++ List.map (fun '(name, res) => (name, (res <- res; Success (fst res))%error)) ls,
- PositiveSet.union extra_bit_widths (ToString.C.bitwidths_used infos)).
- End for_stringification.
- End rcarry_mul.
-End WordByWordMontgomery.
-
-Module SaturatedSolinas.
- Section MulMod.
- Context (s : Z) (c : list (Z * Z))
- (s_nz : s <> 0) (modulus_nz : s - Associational.eval c <> 0).
- Context (log2base : Z) (log2base_pos : 0 < log2base)
- (n nreductions : nat) (n_nz : n <> 0%nat).
-
- Let weight := weight log2base 1.
- Let props : @weight_properties weight := wprops log2base 1 ltac:(omega).
- Local Lemma base_nz : 2 ^ log2base <> 0. Proof. auto with zarith. Qed.
-
- Derive mulmod
- SuchThat (forall (f g : list Z)
- (Hf : length f = n)
- (Hg : length g = n),
- (eval weight n (fst (mulmod f g)) + weight n * (snd (mulmod f g))) mod (s - Associational.eval c)
- = (eval weight n f * eval weight n g) mod (s - Associational.eval c))
- As eval_mulmod.
- Proof.
- intros.
- rewrite <-Rows.eval_mulmod with (base:=2^log2base) (s:=s) (c:=c) (nreductions:=nreductions) by auto using base_nz.
- eapply f_equal2; [|trivial].
- (* expand_lists (). *) (* uncommenting this line removes some unused multiplications but also inlines a bunch of carry stuff at the end *)
- subst mulmod. reflexivity.
- Qed.
- Definition mulmod' := fun x y => fst (mulmod x y).
- End MulMod.
-
- Derive mulmod_gen
- SuchThat ((forall (log2base s : Z) (c : list (Z * Z)) (n nreductions : nat)
- (f g : list Z),
- Interp (t:=reify_type_of mulmod')
- mulmod_gen s c log2base n nreductions f g
- = mulmod' s c log2base n nreductions f g)
- /\ Wf mulmod_gen)
- As mulmod_gen_correct.
- Proof. Time cache_reify (). Time Qed.
- Module Export ReifyHints.
- Global Hint Extern 1 (_ = mulmod' _ _ _ _ _ _ _) => simple apply (proj1 mulmod_gen_correct) : reify_gen_cache.
- Hint Immediate (proj2 mulmod_gen_correct) : wf_gen_cache.
- End ReifyHints.
-
- Section rmulmod.
- Context (s : Z)
- (c : list (Z * Z))
- (machine_wordsize : Z).
-
- Definition relax_zrange_of_machine_wordsize
- := relax_zrange_gen [1; machine_wordsize]%Z.
-
- Let n : nat := Z.to_nat (Qceiling (Z.log2_up s / machine_wordsize)).
- (* Number of reductions is calculated as follows :
- Let i be the highest limb index of c. Then, each reduction
- decreases the number of extra limbs by (n-i). So, to go from
- the n extra limbs we have post-multiplication down to 0, we
- need ceil (n / (n - i)) reductions. *)
- Let nreductions : nat :=
- let i := fold_right Z.max 0 (map (fun t => Z.log2 (fst t) / machine_wordsize) c) in
- Z.to_nat (Qceiling (Z.of_nat n / (Z.of_nat n - i))).
- Let relax_zrange := relax_zrange_of_machine_wordsize.
- Let bound := Some r[0 ~> (2^machine_wordsize - 1)]%zrange.
- Let boundsn : list (ZRange.type.option.interp base.type.Z)
- := repeat bound n.
-
- (** Note: If you change the name or type signature of this
- function, you will need to update the code in CLI.v *)
- Definition check_args {T} (res : Pipeline.ErrorT T)
- : Pipeline.ErrorT T
- := if (negb (0 <? s - Associational.eval c))%Z
- then Error (Pipeline.Value_not_ltZ "s - Associational.eval c ≤ 0" 0 (s - Associational.eval c))
- else if (s =? 0)%Z
- then Error (Pipeline.Values_not_provably_distinctZ "s ≠ 0" s 0)
- else if (n =? 0)%nat
- then Error (Pipeline.Values_not_provably_distinctZ "n ≠ 0" n 0)
- else if (negb (0 <? machine_wordsize))
- then Error (Pipeline.Value_not_ltZ "0 < machine_wordsize" 0 machine_wordsize)
- else res.
-
- Notation BoundsPipelineToStrings prefix name comment rop in_bounds out_bounds
- := ((prefix ++ name)%string,
- Pipeline.BoundsPipelineToStrings
- true (* static *) prefix (prefix ++ name)%string comment%string%list
- (*false*) false None
- relax_zrange
- rop%Expr in_bounds out_bounds).
-
- Notation BoundsPipeline_correct in_bounds out_bounds op
- := (fun rv (rop : Expr (reify_type_of op)) Hrop
- => @Pipeline.BoundsPipeline_correct_trans
- (*false*) false None I
- relax_zrange
- (relax_zrange_gen_good _)
- _
- rop
- in_bounds
- out_bounds
- _
- op
- Hrop rv)
- (only parsing).
-
- Definition rmulmod_correct
- := BoundsPipeline_correct
- (Some boundsn, (Some boundsn, tt))
- (Some boundsn)
- (mulmod' s c machine_wordsize n nreductions).
-
- Definition srmulmod prefix
- := BoundsPipelineToStrings
- prefix "mulmod" []
- (mulmod_gen @ GallinaReify.Reify s @ GallinaReify.Reify c @ GallinaReify.Reify machine_wordsize @ GallinaReify.Reify n @ GallinaReify.Reify nreductions)
- (Some boundsn, (Some boundsn, tt))
- (Some boundsn).
-
- Notation type_of_strip_3arrow := ((fun (d : Prop) (_ : forall A B C, d) => d) _).
- Definition rmulmod_correctT rv : Prop
- := type_of_strip_3arrow (@rmulmod_correct rv).
-
- Section for_stringification.
- Definition aggregate_infos {A B C} (ls : list (A * ErrorT B (C * ToString.C.ident_infos))) : ToString.C.ident_infos
- := fold_right
- ToString.C.ident_info_union
- ToString.C.ident_info_empty
- (List.map
- (fun '(_, res) => match res with
- | Success (_, infos) => infos
- | Error _ => ToString.C.ident_info_empty
- end)
- ls).
-
- Definition extra_synthesis (function_name_prefix : string) (infos : ToString.C.ident_infos)
- : list (string * Pipeline.ErrorT (list string)) * PositiveSet.t
- := let ls_addcarryx := List.flat_map
- (fun lg_split:positive => [sraddcarryx machine_wordsize function_name_prefix lg_split; srsubborrowx machine_wordsize function_name_prefix lg_split])
- (PositiveSet.elements (ToString.C.addcarryx_lg_splits infos)) in
- let ls_mulx := List.map
- (fun lg_split:positive => srmulx machine_wordsize function_name_prefix lg_split)
- (PositiveSet.elements (ToString.C.mulx_lg_splits infos)) in
- let ls_cmov := List.map
- (fun bitwidth:positive => srcmovznz machine_wordsize function_name_prefix bitwidth)
- (PositiveSet.elements (ToString.C.cmovznz_bitwidths infos)) in
- let ls := ls_addcarryx ++ ls_mulx ++ ls_cmov in
- let infos := aggregate_infos ls in
- (List.map (fun '(name, res) => (name, (res <- res; Success (fst res))%error)) ls,
- ToString.C.bitwidths_used infos).
-
- Local Open Scope string_scope.
- Local Open Scope list_scope.
-
- Definition known_functions
- := [("mulmod", srmulmod)].
-
- Definition valid_names : string := Eval compute in String.concat ", " (List.map (@fst _ _) known_functions).
-
- Definition synthesize_of_name (function_name_prefix : string) (name : string)
- : string * ErrorT Pipeline.ErrorMessage (list string * ToString.C.ident_infos)
- := fold_right
- (fun v default
- => match v with
- | Some res => res
- | None => default
- end)
- ((name,
- Error
- (Pipeline.Invalid_argument
- ("Unrecognized request to synthesize """ ++ name ++ """; valid names are " ++ valid_names ++ "."))))
- (map
- (fun '(expected_name, resf) => if string_beq name expected_name then Some (resf function_name_prefix) else None)
- known_functions).
-
- (** Note: If you change the name or type signature of this
- function, you will need to update the code in CLI.v *)
- Definition Synthesize (function_name_prefix : string) (requests : list string)
- : list (string * Pipeline.ErrorT (list string)) * PositiveSet.t (* types used *)
- := let ls := match requests with
- | nil => List.map (fun '(_, sr) => sr function_name_prefix) known_functions
- | requests => List.map (synthesize_of_name function_name_prefix) requests
- end in
- let infos := aggregate_infos ls in
- let '(extra_ls, extra_bit_widths) := extra_synthesis function_name_prefix infos in
- (extra_ls ++ List.map (fun '(name, res) => (name, (res <- res; Success (fst res))%error)) ls,
- PositiveSet.union extra_bit_widths (ToString.C.bitwidths_used infos)).
- End for_stringification.
- End rmulmod.
-End SaturatedSolinas.
-
-Ltac solve_rmulmod := solve_rop SaturatedSolinas.rmulmod_correct.
-Ltac solve_rmulmod_nocache := solve_rop_nocache SaturatedSolinas.rmulmod_correct.
-
-Module Import InvertHighLow.
- Section with_wordmax.
- Context (log2wordmax : Z) (consts : list Z).
- Let wordmax := 2 ^ log2wordmax.
- Let half_bits := log2wordmax / 2.
- Let wordmax_half_bits := 2 ^ half_bits.
-
- Inductive kind_of_constant := upper_half (c : BinInt.Z) | lower_half (c : BinInt.Z).
-
- Definition constant_to_scalar_single (const x : BinInt.Z) : option kind_of_constant :=
- if x =? (BinInt.Z.shiftr const half_bits)
- then Some (upper_half const)
- else if x =? (BinInt.Z.land const (wordmax_half_bits - 1))
- then Some (lower_half const)
- else None.
-
- Definition constant_to_scalar (x : BinInt.Z)
- : option kind_of_constant :=
- fold_right (fun c res => match res with
- | Some s => Some s
- | None => constant_to_scalar_single c x
- end) None consts.
-
- Definition invert_low (v : BinInt.Z) : option BinInt.Z
- := match constant_to_scalar v with
- | Some (lower_half v) => Some v
- | _ => None
- end.
-
- Definition invert_high (v : BinInt.Z) : option BinInt.Z
- := match constant_to_scalar v with
- | Some (upper_half v) => Some v
- | _ => None
- end.
- End with_wordmax.
-End InvertHighLow.
-
-Module BarrettReduction.
- (* TODO : generalize to multi-word and operate on (list Z) instead of T; maybe stop taking ops as context variables *)
- Section Generic.
- Context {T} (rep : T -> Z -> Prop)
- (k : Z) (k_pos : 0 < k)
- (low : T -> Z)
- (low_correct : forall a x, rep a x -> low a = x mod 2 ^ k)
- (shiftr : T -> Z -> T)
- (shiftr_correct : forall a x n,
- rep a x ->
- 0 <= n <= k ->
- rep (shiftr a n) (x / 2 ^ n))
- (mul_high : T -> T -> Z -> T)
- (mul_high_correct : forall a b x y x0y1,
- rep a x ->
- rep b y ->
- 2 ^ k <= x < 2^(k+1) ->
- 0 <= y < 2^(k+1) ->
- x0y1 = x mod 2 ^ k * (y / 2 ^ k) ->
- rep (mul_high a b x0y1) (x * y / 2 ^ k))
- (mul : Z -> Z -> T)
- (mul_correct : forall x y,
- 0 <= x < 2^k ->
- 0 <= y < 2^k ->
- rep (mul x y) (x * y))
- (sub : T -> T -> T)
- (sub_correct : forall a b x y,
- rep a x ->
- rep b y ->
- 0 <= x - y < 2^k * 2^k ->
- rep (sub a b) (x - y))
- (cond_sub1 : T -> Z -> Z)
- (cond_sub1_correct : forall a x y,
- rep a x ->
- 0 <= x < 2 * y ->
- 0 <= y < 2 ^ k ->
- cond_sub1 a y = if (x <? 2 ^ k) then x else x - y)
- (cond_sub2 : Z -> Z -> Z)
- (cond_sub2_correct : forall x y, cond_sub2 x y = if (x <? y) then x else x - y).
- Context (xt mut : T) (M muSelect: Z).
-
- Let mu := 2 ^ (2 * k) / M.
- Context x (mu_rep : rep mut mu) (x_rep : rep xt x).
- Context (M_nz : 0 < M)
- (x_range : 0 <= x < M * 2 ^ k)
- (M_range : 2 ^ (k - 1) < M < 2 ^ k)
- (M_good : 2 * (2 ^ (2 * k) mod M) <= 2 ^ (k + 1) - mu)
- (muSelect_correct: muSelect = mu mod 2 ^ k * (x / 2 ^ (k - 1) / 2 ^ k)).
-
- Definition qt :=
- dlet_nd muSelect := muSelect in (* makes sure muSelect is not inlined in the output *)
- dlet_nd q1 := shiftr xt (k - 1) in
- dlet_nd twoq := mul_high mut q1 muSelect in
- shiftr twoq 1.
- Definition reduce :=
- dlet_nd qt := qt in
- dlet_nd r2 := mul (low qt) M in
- dlet_nd r := sub xt r2 in
- let q3 := cond_sub1 r M in
- cond_sub2 q3 M.
-
- Lemma looser_bound : M * 2 ^ k < 2 ^ (2*k).
- Proof. clear -M_range M_nz x_range k_pos; rewrite <-Z.add_diag, Z.pow_add_r; nia. Qed.
-
- Lemma pow_2k_eq : 2 ^ (2*k) = 2 ^ (k - 1) * 2 ^ (k + 1).
- Proof. clear -k_pos; rewrite <-Z.pow_add_r by omega. f_equal; ring. Qed.
-
- Lemma mu_bounds : 2 ^ k <= mu < 2^(k+1).
- Proof.
- pose proof looser_bound.
- subst mu. split.
- { apply Z.div_le_lower_bound; omega. }
- { apply Z.div_lt_upper_bound; try omega.
- rewrite pow_2k_eq; apply Z.mul_lt_mono_pos_r; auto with zarith. }
- Qed.
-
- Lemma shiftr_x_bounds : 0 <= x / 2 ^ (k - 1) < 2^(k+1).
- Proof.
- pose proof looser_bound.
- split; [ solve [Z.zero_bounds] | ].
- apply Z.div_lt_upper_bound; auto with zarith.
- rewrite <-pow_2k_eq. omega.
- Qed.
- Hint Resolve shiftr_x_bounds.
-
- Ltac solve_rep := eauto using shiftr_correct, mul_high_correct, mul_correct, sub_correct with omega.
-
- Let q := mu * (x / 2 ^ (k - 1)) / 2 ^ (k + 1).
-
- Lemma q_correct : rep qt q .
- Proof.
- pose proof mu_bounds. cbv [qt]; subst q.
- rewrite Z.pow_add_r, <-Z.div_div by Z.zero_bounds.
- solve_rep.
- Qed.
- Hint Resolve q_correct.
-
- Lemma x_mod_small : x mod 2 ^ (k - 1) <= M.
- Proof. transitivity (2 ^ (k - 1)); auto with zarith. Qed.
- Hint Resolve x_mod_small.
-
- Lemma q_bounds : 0 <= q < 2 ^ k.
- Proof.
- pose proof looser_bound. pose proof x_mod_small. pose proof mu_bounds.
- split; subst q; [ solve [Z.zero_bounds] | ].
- edestruct q_nice_strong with (n:=M) as [? Hqnice];
- try rewrite Hqnice; auto; try omega; [ ].
- apply Z.le_lt_trans with (m:= x / M).
- { break_match; omega. }
- { apply Z.div_lt_upper_bound; omega. }
- Qed.
-
- Lemma two_conditional_subtracts :
- forall a x,
- rep a x ->
- 0 <= x < 2 * M ->
- cond_sub2 (cond_sub1 a M) M = cond_sub2 (cond_sub2 x M) M.
- Proof.
- intros.
- erewrite !cond_sub2_correct, !cond_sub1_correct by (eassumption || omega).
- break_match; Z.ltb_to_lt; try lia; discriminate.
- Qed.
-
- Lemma r_bounds : 0 <= x - q * M < 2 * M.
- Proof.
- pose proof looser_bound. pose proof q_bounds. pose proof x_mod_small.
- subst q mu; split.
- { Z.zero_bounds. apply qn_small; omega. }
- { apply r_small_strong; rewrite ?Z.pow_1_r; auto; omega. }
- Qed.
-
- Lemma reduce_correct : reduce = x mod M.
- Proof.
- pose proof looser_bound. pose proof r_bounds. pose proof q_bounds.
- assert (2 * M < 2^k * 2^k) by nia.
- rewrite barrett_reduction_small with (k:=k) (m:=mu) (offset:=1) (b:=2) by (auto; omega).
- cbv [reduce Let_In].
- erewrite low_correct by eauto. Z.rewrite_mod_small.
- erewrite two_conditional_subtracts by solve_rep.
- rewrite !cond_sub2_correct.
- subst q; reflexivity.
- Qed.
- End Generic.
-
- Section BarrettReduction.
- Context (k : Z) (k_bound : 2 <= k).
- Context (M muLow : Z).
- Context (M_pos : 0 < M)
- (muLow_eq : muLow + 2^k = 2^(2*k) / M)
- (muLow_bounds : 0 <= muLow < 2^k)
- (M_bound1 : 2 ^ (k - 1) < M < 2^k)
- (M_bound2: 2 * (2 ^ (2 * k) mod M) <= 2 ^ (k + 1) - (muLow + 2^k)).
-
- Context (n:nat) (Hn_nz: n <> 0%nat) (n_le_k : Z.of_nat n <= k).
- Context (nout : nat) (Hnout : nout = 2%nat).
- Let w := weight k 1.
- Local Lemma k_range : 0 < 1 <= k. Proof. omega. Qed.
- Let props : @weight_properties w := wprops k 1 k_range.
-
- Hint Rewrite Positional.eval_nil Positional.eval_snoc : push_eval.
-
- Definition low (t : list Z) : Z := nth_default 0 t 0.
- Definition high (t : list Z) : Z := nth_default 0 t 1.
- Definition represents (t : list Z) (x : Z) :=
- t = [x mod 2^k; x / 2^k] /\ 0 <= x < 2^k * 2^k.
-
- Lemma represents_eq t x :
- represents t x -> t = [x mod 2^k; x / 2^k].
- Proof. cbv [represents]; tauto. Qed.
-
- Lemma represents_length t x : represents t x -> length t = 2%nat.
- Proof. cbv [represents]; intuition. subst t; reflexivity. Qed.
-
- Lemma represents_low t x :
- represents t x -> low t = x mod 2^k.
- Proof. cbv [represents]; intros; rewrite (represents_eq t x) by auto; reflexivity. Qed.
-
- Lemma represents_high t x :
- represents t x -> high t = x / 2^k.
- Proof. cbv [represents]; intros; rewrite (represents_eq t x) by auto; reflexivity. Qed.
-
- Lemma represents_low_range t x :
- represents t x -> 0 <= x mod 2^k < 2^k.
- Proof. auto with zarith. Qed.
-
- Lemma represents_high_range t x :
- represents t x -> 0 <= x / 2^k < 2^k.
- Proof.
- destruct 1 as [? [? ?] ]; intros.
- auto using Z.div_lt_upper_bound with zarith.
- Qed.
- Hint Resolve represents_length represents_low_range represents_high_range.
-
- Lemma represents_range t x :
- represents t x -> 0 <= x < 2^k*2^k.
- Proof. cbv [represents]; tauto. Qed.
-
- Lemma represents_id x :
- 0 <= x < 2^k * 2^k ->
- represents [x mod 2^k; x / 2^k] x.
- Proof.
- intros; cbv [represents]; autorewrite with cancel_pair.
- Z.rewrite_mod_small; tauto.
- Qed.
-
- Local Ltac push_rep :=
- repeat match goal with
- | H : represents ?t ?x |- _ => unique pose proof (represents_low_range _ _ H)
- | H : represents ?t ?x |- _ => unique pose proof (represents_high_range _ _ H)
- | H : represents ?t ?x |- _ => rewrite (represents_low t x) in * by assumption
- | H : represents ?t ?x |- _ => rewrite (represents_high t x) in * by assumption
- end.
-
- Definition shiftr (t : list Z) (n : Z) : list Z :=
- [Z.rshi (2^k) (high t) (low t) n; Z.rshi (2^k) 0 (high t) n].
-
- Lemma shiftr_represents a i x :
- represents a x ->
- 0 <= i <= k ->
- represents (shiftr a i) (x / 2 ^ i).
- Proof.
- cbv [shiftr]; intros; push_rep.
- match goal with H : _ |- _ => pose proof (represents_range _ _ H) end.
- assert (0 < 2 ^ i) by auto with zarith.
- assert (x < 2 ^ i * 2 ^ k * 2 ^ k) by nia.
- assert (0 <= x / 2 ^ k / 2 ^ i < 2 ^ k) by
- (split; Z.zero_bounds; auto using Z.div_lt_upper_bound with zarith).
- repeat match goal with
- | _ => rewrite Z.rshi_correct by auto with zarith
- | _ => rewrite <-Z.div_mod''' by auto with zarith
- | _ => progress autorewrite with zsimplify_fast
- | _ => progress Z.rewrite_mod_small
- | |- context [represents [(?a / ?c) mod ?b; ?a / ?b / ?c] ] =>
- rewrite (Z.div_div_comm a b c) by auto with zarith
- | _ => solve [auto using represents_id, Z.div_lt_upper_bound with zarith lia]
- end.
- Qed.
-
- Context (Hw : forall i, w i = (2 ^ k) ^ Z.of_nat i).
- Ltac change_weight := rewrite !Hw, ?Z.pow_0_r, ?Z.pow_1_r, ?Z.pow_2_r.
-
- Definition wideadd t1 t2 := fst (Rows.add w 2 t1 t2).
- (* TODO: use this definition once issue #352 is resolved *)
- (* Definition widesub t1 t2 := fst (Rows.sub w 2 t1 t2). *)
- Definition widesub (t1 t2 : list Z) :=
- let t1_0 := hd 0 t1 in
- let t1_1 := hd 0 (tl t1) in
- let t2_0 := hd 0 t2 in
- let t2_1 := hd 0 (tl t2) in
- dlet_nd x0 := Z.sub_get_borrow_full (2^k) t1_0 t2_0 in
- dlet_nd x1 := Z.sub_with_get_borrow_full (2^k) (snd x0) t1_1 t2_1 in
- [fst x0; fst x1].
- Definition widemul := BaseConversion.widemul_inlined k n nout.
-
- Lemma partition_represents x :
- 0 <= x < 2^k*2^k ->
- represents (Partition.partition w 2 x) x.
- Proof.
- intros; cbn. change_weight.
- Z.rewrite_mod_small.
- autorewrite with zsimplify_fast.
- auto using represents_id.
- Qed.
-
- Lemma eval_represents t x :
- represents t x -> eval w 2 t = x.
- Proof.
- intros; rewrite (represents_eq t x) by assumption.
- cbn. change_weight; push_rep.
- autorewrite with zsimplify. reflexivity.
- Qed.
-
- Ltac wide_op partitions_pf :=
- repeat match goal with
- | _ => rewrite partitions_pf by eauto
- | _ => rewrite partitions_pf by auto with zarith
- | _ => erewrite eval_represents by eauto
- | _ => solve [auto using partition_represents, represents_id]
- end.
-
- Lemma wideadd_represents t1 t2 x y :
- represents t1 x ->
- represents t2 y ->
- 0 <= x + y < 2^k*2^k ->
- represents (wideadd t1 t2) (x + y).
- Proof. intros; cbv [wideadd]. wide_op Rows.add_partitions. Qed.
-
- Lemma widesub_represents t1 t2 x y :
- represents t1 x ->
- represents t2 y ->
- 0 <= x - y < 2^k*2^k ->
- represents (widesub t1 t2) (x - y).
- Proof.
- intros; cbv [widesub Let_In].
- rewrite (represents_eq t1 x) by assumption.
- rewrite (represents_eq t2 y) by assumption.
- cbn [hd tl].
- autorewrite with to_div_mod.
- pull_Zmod.
- match goal with |- represents [?m; ?d] ?x =>
- replace d with (x / 2 ^ k); [solve [auto using represents_id] |] end.
- rewrite <-(Z.mod_small ((x - y) / 2^k) (2^k)) by (split; try apply Z.div_lt_upper_bound; Z.zero_bounds).
- f_equal.
- transitivity ((x mod 2^k - y mod 2^k + 2^k * (x / 2 ^ k) - 2^k * (y / 2^k)) / 2^k). {
- rewrite (Z.div_mod x (2^k)) at 1 by auto using Z.pow_nonzero with omega.
- rewrite (Z.div_mod y (2^k)) at 1 by auto using Z.pow_nonzero with omega.
- f_equal. ring. }
- autorewrite with zsimplify.
- ring.
- Qed.
- (* Works with Rows.sub-based widesub definition
- Proof. intros; cbv [widesub]. wide_op Rows.sub_partitions. Qed.
- *)
-
- Lemma widemul_represents x y :
- 0 <= x < 2^k ->
- 0 <= y < 2^k ->
- represents (widemul x y) (x * y).
- Proof.
- intros; cbv [widemul].
- assert (0 <= x * y < 2^k*2^k) by auto with zarith.
- wide_op BaseConversion.widemul_correct.
- Qed.
-
- Definition mul_high (a b : list Z) a0b1 : list Z :=
- dlet_nd a0b0 := widemul (low a) (low b) in
- dlet_nd ab := wideadd [high a0b0; high b] [low b; 0] in
- wideadd ab [a0b1; 0].
-
- Lemma mul_high_idea d a b a0 a1 b0 b1 :
- d <> 0 ->
- a = d * a1 + a0 ->
- b = d * b1 + b0 ->
- (a * b) / d = a0 * b0 / d + d * a1 * b1 + a1 * b0 + a0 * b1.
- Proof.
- intros. subst a b. autorewrite with push_Zmul.
- ring_simplify_subterms. rewrite Z.pow_2_r.
- rewrite Z.div_add_exact by (push_Zmod; autorewrite with zsimplify; omega).
- repeat match goal with
- | |- context [d * ?a * ?b * ?c] =>
- replace (d * a * b * c) with (a * b * c * d) by ring
- | |- context [d * ?a * ?b] =>
- replace (d * a * b) with (a * b * d) by ring
- end.
- rewrite !Z.div_add by omega.
- autorewrite with zsimplify.
- rewrite (Z.mul_comm a0 b0).
- ring_simplify. ring.
- Qed.
-
- Lemma represents_trans t x y:
- represents t y -> y = x ->
- represents t x.
- Proof. congruence. Qed.
-
- Lemma represents_add x y :
- 0 <= x < 2 ^ k ->
- 0 <= y < 2 ^ k ->
- represents [x;y] (x + 2^k*y).
- Proof.
- intros; cbv [represents]; autorewrite with zsimplify.
- repeat split; (reflexivity || nia).
- Qed.
-
- Lemma represents_small x :
- 0 <= x < 2^k ->
- represents [x; 0] x.
- Proof.
- intros.
- eapply represents_trans.
- { eauto using represents_add with zarith. }
- { ring. }
- Qed.
-
- Lemma mul_high_represents a b x y a0b1 :
- represents a x ->
- represents b y ->
- 2^k <= x < 2^(k+1) ->
- 0 <= y < 2^(k+1) ->
- a0b1 = x mod 2^k * (y / 2^k) ->
- represents (mul_high a b a0b1) ((x * y) / 2^k).
- Proof.
- cbv [mul_high Let_In]; rewrite Z.pow_add_r, Z.pow_1_r by omega; intros.
- assert (4 <= 2 ^ k) by (transitivity (Z.pow 2 2); auto with zarith).
- assert (0 <= x * y / 2^k < 2^k*2^k) by (Z.div_mod_to_quot_rem_in_goal; nia).
-
- rewrite mul_high_idea with (a:=x) (b:=y) (a0 := low a) (a1 := high a) (b0 := low b) (b1 := high b) in *
- by (push_rep; Z.div_mod_to_quot_rem_in_goal; lia).
-
- push_rep. subst a0b1.
- assert (y / 2 ^ k < 2) by (apply Z.div_lt_upper_bound; omega).
- replace (x / 2 ^ k) with 1 in * by (rewrite Z.div_between_1; lia).
- autorewrite with zsimplify_fast in *.
-
- eapply represents_trans.
- { repeat (apply wideadd_represents;
- [ | apply represents_small; Z.div_mod_to_quot_rem_in_goal; nia| ]).
- erewrite represents_high; [ | apply widemul_represents; solve [ auto with zarith ] ].
- { apply represents_add; try reflexivity; solve [auto with zarith]. }
- { match goal with H : 0 <= ?x + ?y < ?z |- 0 <= ?x < ?z =>
- split; [ solve [Z.zero_bounds] | ];
- eapply Z.le_lt_trans with (m:= x + y); nia
- end. }
- { omega. } }
- { ring. }
- Qed.
-
- Definition cond_sub1 (a : list Z) y : Z :=
- dlet_nd maybe_y := Z.zselect (Z.cc_l (high a)) 0 y in
- dlet_nd diff := Z.sub_get_borrow_full (2^k) (low a) maybe_y in
- fst diff.
-
- Lemma cc_l_only_bit : forall x s, 0 <= x < 2 * s -> Z.cc_l (x / s) = 0 <-> x < s.
- Proof.
- cbv [Z.cc_l]; intros.
- rewrite Z.div_between_0_if by omega.
- break_match; Z.ltb_to_lt; Z.rewrite_mod_small; omega.
- Qed.
-
- Lemma cond_sub1_correct a x y :
- represents a x ->
- 0 <= x < 2 * y ->
- 0 <= y < 2 ^ k ->
- cond_sub1 a y = if (x <? 2 ^ k) then x else x - y.
- Proof.
- intros; cbv [cond_sub1 Let_In]. rewrite Z.zselect_correct. push_rep.
- break_match; Z.ltb_to_lt; rewrite cc_l_only_bit in *; try omega;
- autorewrite with zsimplify_fast to_div_mod pull_Zmod; auto with zarith.
- Qed.
-
- Definition cond_sub2 x y := Z.add_modulo x 0 y.
- Lemma cond_sub2_correct x y :
- cond_sub2 x y = if (x <? y) then x else x - y.
- Proof.
- cbv [cond_sub2]. rewrite Z.add_modulo_correct.
- autorewrite with zsimplify_fast. break_match; Z.ltb_to_lt; omega.
- Qed.
-
- Section Defn.
- Context (xLow xHigh : Z) (xLow_bounds : 0 <= xLow < 2^k) (xHigh_bounds : 0 <= xHigh < M).
- Let xt := [xLow; xHigh].
- Let x := xLow + 2^k * xHigh.
-
- Lemma x_rep : represents xt x.
- Proof. cbv [represents]; subst xt x; autorewrite with cancel_pair zsimplify; repeat split; nia. Qed.
-
- Lemma x_bounds : 0 <= x < M * 2 ^ k.
- Proof. subst x; nia. Qed.
-
- Definition muSelect := Z.zselect (Z.cc_m (2 ^ k) xHigh) 0 muLow.
-
- Local Hint Resolve Z.div_nonneg Z.div_lt_upper_bound.
- Local Hint Resolve shiftr_represents mul_high_represents widemul_represents widesub_represents
- cond_sub1_correct cond_sub2_correct represents_low represents_add.
-
- Lemma muSelect_correct :
- muSelect = (2 ^ (2 * k) / M) mod 2 ^ k * ((x / 2 ^ (k - 1)) / 2 ^ k).
- Proof.
- (* assertions to help arith tactics *)
- pose proof x_bounds.
- assert (2^k * M < 2 ^ (2*k)) by (rewrite <-Z.add_diag, Z.pow_add_r; nia).
- assert (0 <= x / (2 ^ k * (2 ^ k / 2)) < 2) by (Z.div_mod_to_quot_rem_in_goal; auto with nia).
- assert (0 < 2 ^ k / 2) by Z.zero_bounds.
- assert (2 ^ (k - 1) <> 0) by auto with zarith.
- assert (2 < 2 ^ k) by (eapply Z.le_lt_trans with (m:=2 ^ 1); auto with zarith).
-
- cbv [muSelect]. rewrite <-muLow_eq.
- rewrite Z.zselect_correct, Z.cc_m_eq by auto with zarith.
- replace xHigh with (x / 2^k) by (subst x; autorewrite with zsimplify; lia).
- autorewrite with pull_Zdiv push_Zpow.
- rewrite (Z.mul_comm (2 ^ k / 2)).
- break_match; [ ring | ].
- match goal with H : 0 <= ?x < 2, H' : ?x <> 0 |- _ => replace x with 1 by omega end.
- autorewrite with zsimplify; reflexivity.
- Qed.
-
- Lemma mu_rep : represents [muLow; 1] (2 ^ (2 * k) / M).
- Proof. rewrite <-muLow_eq. eapply represents_trans; auto with zarith. Qed.
-
- Derive barrett_reduce
- SuchThat (barrett_reduce = x mod M)
- As barrett_reduce_correct.
- Proof.
- erewrite <-reduce_correct with (rep:=represents) (muSelect:=muSelect) (k0:=k) (mut:=[muLow;1]) (xt0:=xt)
- by (auto using x_bounds, muSelect_correct, x_rep, mu_rep; omega).
- subst barrett_reduce. reflexivity.
- Qed.
- End Defn.
- End BarrettReduction.
-
- (* all the list operations from for_reification.ident *)
- Strategy 100 [length seq repeat combine map flat_map partition app rev fold_right update_nth nth_default ].
- Strategy -10 [barrett_reduce reduce].
-
- Derive barrett_red_gen
- SuchThat ((forall (k M muLow : Z)
- (n nout: nat)
- (xLow xHigh : Z),
- Interp (t:=reify_type_of barrett_reduce)
- barrett_red_gen k M muLow n nout xLow xHigh
- = barrett_reduce k M muLow n nout xLow xHigh)
- /\ Wf barrett_red_gen)
- As barrett_red_gen_correct.
- Proof. Time cache_reify (). Time Qed. (* Now only takes ~5-10 s, because we set up [Strategy] commands correctly *)
- Module Export ReifyHints.
- Global Hint Extern 1 (_ = barrett_reduce _ _ _ _ _ _ _) => simple apply (proj1 barrett_red_gen_correct) : reify_gen_cache.
- Hint Immediate (proj2 barrett_red_gen_correct) : wf_gen_cache.
- End ReifyHints.
-
- Section rbarrett_red.
- Context (M : Z)
- (machine_wordsize : Z).
-
- Let value_range := r[0 ~> (2^machine_wordsize - 1)%Z]%zrange.
- Let flag_range := r[0 ~> 1]%zrange.
- Let bound := Some value_range.
- Let mu := (2 ^ (2 * machine_wordsize)) / M.
- Let muLow := mu mod (2 ^ machine_wordsize).
- Let consts_list := [M; muLow].
-
- Definition relax_zrange_of_machine_wordsize'
- := relax_zrange_gen [1; machine_wordsize / 2; machine_wordsize; 2 * machine_wordsize]%Z.
- (* TODO: This is a special-case hack to let the prefancy pass have enough bounds information. *)
- Definition relax_zrange_of_machine_wordsize r : option zrange :=
- if (lower r =? 0) && (upper r =? 2)
- then Some r
- else relax_zrange_of_machine_wordsize' r.
-
- Lemma relax_zrange_good (r r' z : zrange) :
- (z <=? r)%zrange = true ->
- relax_zrange_of_machine_wordsize r = Some r' -> (z <=? r')%zrange = true.
- Proof.
- cbv [relax_zrange_of_machine_wordsize]; break_match; [congruence|].
- eauto using relax_zrange_gen_good.
- Qed.
-
- Local Arguments relax_zrange_of_machine_wordsize / .
-
- Let relax_zrange := relax_zrange_of_machine_wordsize.
-
- Definition check_args {T} (res : Pipeline.ErrorT T)
- : Pipeline.ErrorT T
- := if (mu / (2 ^ machine_wordsize) =? 0)
- then Error (Pipeline.Values_not_provably_distinctZ "mu / 2 ^ k ≠ 0" (mu / 2 ^ machine_wordsize) 0)
- else if (machine_wordsize <? 2)
- then Error (Pipeline.Value_not_leZ "~ (2 <=k)" 2 machine_wordsize)
- else if (negb (Z.log2 M + 1 =? machine_wordsize))
- then Error
- (Pipeline.Values_not_provably_equalZ "log2(M)+1 != k" (Z.log2 M + 1) machine_wordsize)
- else if (2 ^ (machine_wordsize + 1) - mu <? 2 * (2 ^ (2 * machine_wordsize) mod M))
- then Error
- (Pipeline.Value_not_leZ "~ (2 * (2 ^ (2*k) mod M) <= 2^(k + 1) - mu)"
- (2 * (2 ^ (2*machine_wordsize) mod M))
- (2^(machine_wordsize + 1) - mu))
- else res.
-
- Let fancy_args
- := (Some {| Pipeline.invert_low log2wordsize := invert_low log2wordsize consts_list;
- Pipeline.invert_high log2wordsize := invert_high log2wordsize consts_list;
- Pipeline.value_range := value_range;
- Pipeline.flag_range := flag_range |}).
-
- Lemma fancy_args_good
- : match fancy_args with
- | Some {| Pipeline.invert_low := il ; Pipeline.invert_high := ih |}
- => (forall s v v' : Z, il s v = Some v' -> v = Z.land v' (2^(s/2)-1))
- /\ (forall s v v' : Z, ih s v = Some v' -> v = Z.shiftr v' (s/2))
- | None => True
- end.
- Proof.
- cbv [fancy_args invert_low invert_high constant_to_scalar constant_to_scalar_single consts_list fold_right];
- split; intros; break_innermost_match_hyps; Z.ltb_to_lt; subst; congruence.
- Qed.
-
- Notation BoundsPipeline_correct in_bounds out_bounds op
- := (fun rv (rop : Expr (reify_type_of op)) Hrop
- => @Pipeline.BoundsPipeline_correct_trans
- false (* subst01 *)
- fancy_args
- fancy_args_good
- relax_zrange
- relax_zrange_good
- _
- rop
- in_bounds
- out_bounds
- _
- op
- Hrop rv)
- (only parsing).
-
- Definition rbarrett_red_correct
- := BoundsPipeline_correct
- (bound, (bound, tt))
- bound
- (barrett_reduce machine_wordsize M muLow 2 2).
-
- Notation type_of_strip_3arrow := ((fun (d : Prop) (_ : forall A B C, d) => d) _).
- Definition rbarrett_red_correctT rv : Prop
- := type_of_strip_3arrow (@rbarrett_red_correct rv).
- End rbarrett_red.
-End BarrettReduction.
-
-Ltac solve_rbarrett_red := solve_rop BarrettReduction.rbarrett_red_correct.
-Ltac solve_rbarrett_red_nocache := solve_rop_nocache BarrettReduction.rbarrett_red_correct.
-
-Module MontgomeryReduction.
- Section MontRed'.
- Context (N R N' R' : Z).
- Context (HN_range : 0 <= N < R) (HN'_range : 0 <= N' < R) (HN_nz : N <> 0) (R_gt_1 : R > 1)
- (N'_good : Z.equiv_modulo R (N*N') (-1)) (R'_good: Z.equiv_modulo N (R*R') 1).
-
- Context (Zlog2R : Z) .
- Let w : nat -> Z := weight Zlog2R 1.
- Context (n:nat) (Hn_nz: n <> 0%nat) (n_good : Zlog2R mod Z.of_nat n = 0).
- Context (R_big_enough : n <= Zlog2R)
- (R_two_pow : 2^Zlog2R = R).
- Let w_mul : nat -> Z := weight (Zlog2R / n) 1.
- Context (nout : nat) (Hnout : nout = 2%nat).
-
- Definition montred' (lo_hi : (Z * Z)) :=
- dlet_nd y := nth_default 0 (BaseConversion.widemul_inlined Zlog2R n nout (fst lo_hi) N') 0 in
- dlet_nd t1_t2 := (BaseConversion.widemul_inlined_reverse Zlog2R n nout N y) in
- dlet_nd sum_carry := Rows.add (weight Zlog2R 1) 2 [fst lo_hi; snd lo_hi] t1_t2 in
- dlet_nd y' := Z.zselect (snd sum_carry) 0 N in
- dlet_nd lo''_carry := Z.sub_get_borrow_full R (nth_default 0 (fst sum_carry) 1) y' in
- Z.add_modulo (fst lo''_carry) 0 N.
-
- Local Lemma Hw : forall i, w i = R ^ Z.of_nat i.
- Proof.
- clear -R_big_enough R_two_pow; cbv [w weight]; intro.
- autorewrite with zsimplify.
- rewrite Z.pow_mul_r, R_two_pow by omega; reflexivity.
- Qed.
-
- Local Ltac change_weight := rewrite !Hw, ?Z.pow_0_r, ?Z.pow_1_r, ?Z.pow_2_r, ?Z.pow_1_l in *.
- Local Ltac solve_range :=
- repeat match goal with
- | _ => progress change_weight
- | |- context [?a mod ?b] => unique pose proof (Z.mod_pos_bound a b ltac:(omega))
- | |- 0 <= _ => progress Z.zero_bounds
- | |- 0 <= _ * _ < _ * _ =>
- split; [ solve [Z.zero_bounds] | apply Z.mul_lt_mono_nonneg; omega ]
- | _ => solve [auto]
- | _ => omega
- end.
-
- Local Lemma eval2 x y : eval w 2 [x;y] = x + R * y.
- Proof. cbn. change_weight. ring. Qed.
-
- Hint Rewrite BaseConversion.widemul_inlined_reverse_correct BaseConversion.widemul_inlined_correct
- using (autorewrite with widemul push_nth_default; solve [solve_range]) : widemul.
-
- Lemma montred'_eq lo_hi T (HT_range: 0 <= T < R * N)
- (Hlo: fst lo_hi = T mod R) (Hhi: snd lo_hi = T / R):
- montred' lo_hi = reduce_via_partial N R N' T.
- Proof.
- rewrite <-reduce_via_partial_alt_eq by nia.
- cbv [montred' partial_reduce_alt reduce_via_partial_alt prereduce Let_In].
- rewrite Hlo, Hhi.
- assert (0 <= (T mod R) * N' < w 2) by (solve_range).
-
- autorewrite with widemul.
- rewrite Rows.add_partitions, Rows.add_div by (distr_length; apply wprops; omega).
- rewrite R_two_pow.
- cbv [Partition.partition seq]. rewrite !eval2.
- autorewrite with push_nth_default push_map.
- autorewrite with to_div_mod. rewrite ?Z.zselect_correct, ?Z.add_modulo_correct.
- change_weight.
-
- (* pull out value before last modular reduction *)
- match goal with |- (if (?n <=? ?x)%Z then ?x - ?n else ?x) = (if (?n <=? ?y) then ?y - ?n else ?y)%Z =>
- let P := fresh "H" in assert (x = y) as P; [|rewrite P; reflexivity] end.
-
- autorewrite with zsimplify.
- rewrite (Z.mul_comm (((T mod R) * N') mod R) N) in *.
- break_match; try reflexivity; Z.ltb_to_lt; rewrite Z.div_small_iff in * by omega;
- repeat match goal with
- | _ => progress autorewrite with zsimplify_fast
- | |- context [?x mod (R * R)] =>
- unique pose proof (Z.mod_pos_bound x (R * R));
- try rewrite (Z.mod_small x (R * R)) in * by Z.rewrite_mod_small_solver
- | _ => omega
- | _ => progress Z.rewrite_mod_small
- end.
- Qed.
-
- Lemma montred'_correct lo_hi T (HT_range: 0 <= T < R * N)
- (Hlo: fst lo_hi = T mod R) (Hhi: snd lo_hi = T / R): montred' lo_hi = (T * R') mod N.
- Proof.
- erewrite montred'_eq by eauto.
- apply Z.equiv_modulo_mod_small; auto using reduce_via_partial_correct.
- replace 0 with (Z.min 0 (R-N)) by (apply Z.min_l; omega).
- apply reduce_via_partial_in_range; omega.
- Qed.
- End MontRed'.
-
- Derive montred_gen
- SuchThat ((forall (N R N' : Z)
- (Zlog2R : Z)
- (n nout: nat)
- (lo_hi : Z * Z),
- Interp (t:=reify_type_of montred')
- montred_gen N R N' Zlog2R n nout lo_hi
- = montred' N R N' Zlog2R n nout lo_hi)
- /\ Wf montred_gen)
- As montred_gen_correct.
- Proof. Time cache_reify (). Time Qed.
- Module Export ReifyHints.
- Global Hint Extern 1 (_ = montred' _ _ _ _ _ _ _) => simple apply (proj1 montred_gen_correct) : reify_gen_cache.
- Hint Immediate (proj2 montred_gen_correct) : wf_gen_cache.
- End ReifyHints.
-
- Section rmontred.
- Context (N R N' : Z)
- (machine_wordsize : Z).
-
- Let value_range := r[0 ~> (2^machine_wordsize - 1)%Z]%zrange.
- Let flag_range := r[0 ~> 1]%zrange.
- Let bound := Some value_range.
- Let consts_list := [N; N'].
-
- Definition relax_zrange_of_machine_wordsize
- := relax_zrange_gen [1; machine_wordsize / 2; machine_wordsize; 2 * machine_wordsize]%Z.
- Local Arguments relax_zrange_of_machine_wordsize / .
-
- Let relax_zrange := relax_zrange_of_machine_wordsize.
-
- Definition check_args {T} (res : Pipeline.ErrorT T)
- : Pipeline.ErrorT T
- := res. (* TODO: this should actually check stuff that corresponds with preconditions of montred'_correct *)
-
- Let fancy_args
- := (Some {| Pipeline.invert_low log2wordsize := invert_low log2wordsize consts_list;
- Pipeline.invert_high log2wordsize := invert_high log2wordsize consts_list;
- Pipeline.value_range := value_range;
- Pipeline.flag_range := flag_range |}).
-
- Lemma fancy_args_good
- : match fancy_args with
- | Some {| Pipeline.invert_low := il ; Pipeline.invert_high := ih |}
- => (forall s v v' : Z, il s v = Some v' -> v = Z.land v' (2^(s/2)-1))
- /\ (forall s v v' : Z, ih s v = Some v' -> v = Z.shiftr v' (s/2))
- | None => True
- end.
- Proof.
- cbv [fancy_args invert_low invert_high constant_to_scalar constant_to_scalar_single consts_list fold_right];
- split; intros; break_innermost_match_hyps; Z.ltb_to_lt; subst; congruence.
- Qed.
-
- Notation BoundsPipeline_correct in_bounds out_bounds op
- := (fun rv (rop : Expr (reify_type_of op)) Hrop
- => @Pipeline.BoundsPipeline_correct_trans
- false (* subst01 *)
- fancy_args
- fancy_args_good
- relax_zrange
- (relax_zrange_gen_good _)
- _
- rop
- in_bounds
- out_bounds
- _
- op
- Hrop rv)
- (only parsing).
-
- Definition rmontred_correct
- := BoundsPipeline_correct
- ((bound, bound), tt)
- bound
- (montred' N R N' (Z.log2 R) 2 2).
-
- Notation type_of_strip_3arrow := ((fun (d : Prop) (_ : forall A B C, d) => d) _).
- Definition rmontred_correctT rv : Prop
- := type_of_strip_3arrow (@rmontred_correct rv).
- End rmontred.
-End MontgomeryReduction.
-
-Ltac solve_rmontred := solve_rop MontgomeryReduction.rmontred_correct.
-Ltac solve_rmontred_nocache := solve_rop_nocache MontgomeryReduction.rmontred_correct.
-
-
-Time Compute
- (Pipeline.BoundsPipeline
- true None (relax_zrange_gen [64; 128])
- ltac:(let r := Reify (to_associational (weight 51 1) 5) in
- exact r)
- (Some (repeat (@None _) 5), tt)
- ZRange.type.base.option.None).
-
-Time Compute
- (Pipeline.BoundsPipeline
- true None (relax_zrange_gen [64; 128])
- ltac:(let r := Reify (scmul (weight 51 1) 5) in
- exact r)
- (None, (Some (repeat (@None _) 5), tt))
- ZRange.type.base.option.None).
-
-Compute
- (Pipeline.BoundsPipeline
- true None (relax_zrange_gen [64; 128])
- ltac:(let r := Reify (fun f => carry_mulmod 51 1 (2^255) [(1,19)] 5 (seq 0 5 ++ [0; 1])%list%nat f f) in
- exact r)
- (Some (repeat (@None _) 5), tt)
- ZRange.type.base.option.None).
-
-Compute
- (Pipeline.BoundsPipelineToString
- true "fiat_" "fiat_mulx_u64" []
- true None (relax_zrange_gen [64; 128])
- ltac:(let r := Reify (mulx 64) in
- exact r)
- (Some r[0~>2^64-1], (Some r[0~>2^64-1], tt))%zrange
- (Some r[0~>2^64-1], Some r[0~>2^64-1])%zrange).
-
-Compute
- (Pipeline.BoundsPipelineToString
- true "fiat_" "fiat_addcarryx_u64" []
- true None (relax_zrange_gen [1; 64; 128])
- ltac:(let r := Reify (addcarryx 64) in
- exact r)
- (Some r[0~>1], (Some r[0~>2^64-1], (Some r[0~>2^64-1], tt)))%zrange
- (Some r[0~>2^64-1], Some r[0~>1])%zrange).
-
-Compute
- (Pipeline.BoundsPipelineToString
- true "fiat_" "fiat_addcarryx_u51" []
- true None (relax_zrange_gen [1; 64; 128])
- ltac:(let r := Reify (addcarryx 51) in
- exact r)
- (Some r[0~>1], (Some r[0~>2^51-1], (Some r[0~>2^51-1], tt)))%zrange
- (Some r[0~>2^51-1], Some r[0~>1])%zrange).
-
-Compute
- (Pipeline.BoundsPipelineToString
- true "fiat_" "fiat_subborrowx_u64" []
- true None (relax_zrange_gen [1; 64; 128])
- ltac:(let r := Reify (subborrowx 64) in
- exact r)
- (Some r[0~>1], (Some r[0~>2^64-1], (Some r[0~>2^64-1], tt)))%zrange
- (Some r[0~>2^64-1], Some r[0~>1])%zrange).
-Compute
- (Pipeline.BoundsPipelineToString
- true "fiat_" "fiat_subborrowx_u51" []
- true None (relax_zrange_gen [1; 64; 128])
- ltac:(let r := Reify (subborrowx 51) in
- exact r)
- (Some r[0~>1], (Some r[0~>2^51-1], (Some r[0~>2^51-1], tt)))%zrange
- (Some r[0~>2^51-1], Some r[0~>1])%zrange).
-
-Compute
- (Pipeline.BoundsPipelineToString
- true "fiat_" "fiat_cmovznz64" []
- true None (relax_zrange_gen [1; 64; 128])
- ltac:(let r := Reify (cmovznz 64) in
- exact r)
- (Some r[0~>1], (Some r[0~>2^64-1], (Some r[0~>2^64-1], tt)))%zrange
- (Some r[0~>2^64-1])%zrange).
diff --git a/src/Experiments/NewPipeline/Toplevel2.v b/src/Experiments/NewPipeline/Toplevel2.v
index 37be58f82..72a2233c3 100644
--- a/src/Experiments/NewPipeline/Toplevel2.v
+++ b/src/Experiments/NewPipeline/Toplevel2.v
@@ -55,7 +55,7 @@ Require Crypto.Experiments.NewPipeline.AbstractInterpretationProofs.
Require Crypto.Experiments.NewPipeline.Rewriter.
Require Crypto.Experiments.NewPipeline.MiscCompilerPasses.
Require Crypto.Experiments.NewPipeline.CStringification.
-Require Export Crypto.Experiments.NewPipeline.Toplevel1.
+Require Export Crypto.Experiments.NewPipeline.PushButtonSynthesis.
Require Import Crypto.Util.Notations.
Import ListNotations. Local Open Scope Z_scope.
@@ -86,6 +86,8 @@ Notation "x" := (expr.Var x) (only printing, at level 9) : expr_scope.
Import UnsaturatedSolinas.
+(* TODO: Figure out what examples should go here *)
+(*
Module X25519_64.
Definition n := 5%nat.
Definition s := 2^255.
@@ -370,6 +372,154 @@ mulmod = fun var : type -> Type => λ x x0 : var (type.base (base.type.list (bas
*)
End P192_64.
+ *)
+
+(** TODO: Figure out if this belongs here *)
+Module PrintingNotations.
+ Export ident.
+ (*Global Set Printing Width 100000.*)
+ Open Scope zrange_scope.
+ Notation "'uint256'"
+ := (r[0 ~> 115792089237316195423570985008687907853269984665640564039457584007913129639935]%zrange) : zrange_scope.
+ Notation "'uint128'"
+ := (r[0 ~> 340282366920938463463374607431768211455]%zrange) : zrange_scope.
+ Notation "'uint64'"
+ := (r[0 ~> 18446744073709551615]) : zrange_scope.
+ Notation "'uint32'"
+ := (r[0 ~> 4294967295]) : zrange_scope.
+ Notation "'bool'"
+ := (r[0 ~> 1]%zrange) : zrange_scope.
+ Notation "( range )( ls [[ n ]] )"
+ := ((#(ident.Z_cast range) @ (ls [[ n ]]))%expr)
+ (format "( range )( ls [[ n ]] )") : expr_scope.
+ (*Notation "( range )( v )" := (ident.Z_cast range @@ v)%expr : expr_scope.*)
+ Notation "x *₂₅₆ y"
+ := (#(ident.Z_cast uint256) @ (#ident.Z_mul @ x @ y))%expr (at level 40) : expr_scope.
+ Notation "x *₁₂₈ y"
+ := (#(ident.Z_cast uint128) @ (#ident.Z_mul @ x @ y))%expr (at level 40) : expr_scope.
+ Notation "x *₆₄ y"
+ := (#(ident.Z_cast uint64) @ (#ident.Z_mul @ x @ y))%expr (at level 40) : expr_scope.
+ Notation "x *₃₂ y"
+ := (#(ident.Z_cast uint32) @ (#ident.Z_mul @ x @ y))%expr (at level 40) : expr_scope.
+ Notation "x +₂₅₆ y"
+ := (#(ident.Z_cast uint256) @ (#ident.Z_add @ x @ y))%expr (at level 50) : expr_scope.
+ Notation "x +₁₂₈ y"
+ := (#(ident.Z_cast uint128) @ (#ident.Z_add @ x @ y))%expr (at level 50) : expr_scope.
+ Notation "x +₆₄ y"
+ := (#(ident.Z_cast uint64) @ (#ident.Z_add @ x @ y))%expr (at level 50) : expr_scope.
+ Notation "x +₃₂ y"
+ := (#(ident.Z_cast uint32) @ (#ident.Z_add @ x @ y))%expr (at level 50) : expr_scope.
+ Notation "x -₁₂₈ y"
+ := (#(ident.Z_cast uint128) @ (#ident.Z_sub @ x @ y))%expr (at level 50) : expr_scope.
+ Notation "x -₆₄ y"
+ := (#(ident.Z_cast uint64) @ (#ident.Z_sub @ x @ y))%expr (at level 50) : expr_scope.
+ Notation "x -₃₂ y"
+ := (#(ident.Z_cast uint32) @ (#ident.Z_sub @ x @ y))%expr (at level 50) : expr_scope.
+ Notation "( out_t )( v >> count )"
+ := ((#(ident.Z_cast out_t) @ (#ident.Z_shiftr @ v @ count))%expr)
+ (format "( out_t )( v >> count )") : expr_scope.
+ Notation "( out_t )( v << count )"
+ := ((#(ident.Z_cast out_t) @ (#ident.Z_shiftl @ v @ count))%expr)
+ (format "( out_t )( v << count )") : expr_scope.
+ Notation "( range )( v )"
+ := ((#(ident.Z_cast range) @ $v)%expr)
+ (format "( range )( v )") : expr_scope.
+ Notation "( mask & ( out_t )( v ) )"
+ := ((#(ident.Z_cast out_t) @ (#ident.Z_land @ #(ident.Literal (t:=base.type.Z) mask) @ v))%expr)
+ (format "( mask & ( out_t )( v ) )")
+ : expr_scope.
+ Notation "( ( out_t )( v ) & mask )"
+ := ((#(ident.Z_cast out_t) @ (#ident.Z_land @ v @ #(ident.Literal (t:=base.type.Z) mask)))%expr)
+ (format "( ( out_t )( v ) & mask )")
+ : expr_scope.
+
+ Notation "x" := (#(ident.Z_cast _) @ $x)%expr (only printing, at level 9) : expr_scope.
+ Notation "x" := (#(ident.Z_cast2 _) @ $x)%expr (only printing, at level 9) : expr_scope.
+ Notation "v ₁" := (#ident.fst @ $v)%expr (at level 10, format "v ₁") : expr_scope.
+ Notation "v ₂" := (#ident.snd @ $v)%expr (at level 10, format "v ₂") : expr_scope.
+ Notation "v ₁" := (#(ident.Z_cast _) @ (#ident.fst @ $v))%expr (at level 10, format "v ₁") : expr_scope.
+ Notation "v ₂" := (#(ident.Z_cast _) @ (#ident.snd @ $v))%expr (at level 10, format "v ₂") : expr_scope.
+ Notation "v ₁" := (#(ident.Z_cast _) @ (#ident.fst @ (#(ident.Z_cast2 _) @ $v)))%expr (at level 10, format "v ₁") : expr_scope.
+ Notation "v ₂" := (#(ident.Z_cast _) @ (#ident.snd @ (#(ident.Z_cast2 _) @ $v)))%expr (at level 10, format "v ₂") : expr_scope.
+ Notation "x" := (#(ident.Literal x%Z))%expr (only printing) : expr_scope.
+
+ (*Notation "ls [[ n ]]" := (List.nth_default_concrete _ n @@ ls)%expr : expr_scope.
+ Notation "( range )( v )" := (ident.Z_cast range @@ v)%expr : expr_scope.
+ Notation "x *₁₂₈ y"
+ := (ident.Z_cast uint128 @@ (ident.Z.mul (x, y)))%expr (at level 40) : expr_scope.
+ Notation "( out_t )( v >> count )"
+ := (ident.Z_cast out_t (ident.Z.shiftr count @@ v)%expr)
+ (format "( out_t )( v >> count )") : expr_scope.
+ Notation "( out_t )( v >> count )"
+ := (ident.Z_cast out_t (ident.Z.shiftr count @@ v)%expr)
+ (format "( out_t )( v >> count )") : expr_scope.
+ Notation "v ₁" := (ident.fst @@ v)%expr (at level 10, format "v ₁") : expr_scope.
+ Notation "v ₂" := (ident.snd @@ v)%expr (at level 10, format "v ₂") : expr_scope.*)
+ (*
+ Notation "'ℤ'"
+ := BoundsAnalysis.type.Z : zrange_scope.
+ Notation "ls [[ n ]]" := (List.nth n @@ ls)%nexpr : nexpr_scope.
+ Notation "x *₆₄₋₆₄₋₁₂₈ y"
+ := (mul uint64 uint64 uint128 @@ (x, y))%nexpr (at level 40) : nexpr_scope.
+ Notation "x *₆₄₋₆₄₋₆₄ y"
+ := (mul uint64 uint64 uint64 @@ (x, y))%nexpr (at level 40) : nexpr_scope.
+ Notation "x *₃₂₋₃₂₋₃₂ y"
+ := (mul uint32 uint32 uint32 @@ (x, y))%nexpr (at level 40) : nexpr_scope.
+ Notation "x *₃₂₋₁₂₈₋₁₂₈ y"
+ := (mul uint32 uint128 uint128 @@ (x, y))%nexpr (at level 40) : nexpr_scope.
+ Notation "x *₃₂₋₆₄₋₆₄ y"
+ := (mul uint32 uint64 uint64 @@ (x, y))%nexpr (at level 40) : nexpr_scope.
+ Notation "x *₃₂₋₃₂₋₆₄ y"
+ := (mul uint32 uint32 uint64 @@ (x, y))%nexpr (at level 40) : nexpr_scope.
+ Notation "x +₁₂₈ y"
+ := (add uint128 uint128 uint128 @@ (x, y))%nexpr (at level 50) : nexpr_scope.
+ Notation "x +₆₄₋₁₂₈₋₁₂₈ y"
+ := (add uint64 uint128 uint128 @@ (x, y))%nexpr (at level 50) : nexpr_scope.
+ Notation "x +₃₂₋₆₄₋₆₄ y"
+ := (add uint32 uint64 uint64 @@ (x, y))%nexpr (at level 50) : nexpr_scope.
+ Notation "x +₆₄ y"
+ := (add uint64 uint64 uint64 @@ (x, y))%nexpr (at level 50) : nexpr_scope.
+ Notation "x +₃₂ y"
+ := (add uint32 uint32 uint32 @@ (x, y))%nexpr (at level 50) : nexpr_scope.
+ Notation "x -₁₂₈ y"
+ := (sub uint128 uint128 uint128 @@ (x, y))%nexpr (at level 50) : nexpr_scope.
+ Notation "x -₆₄₋₁₂₈₋₁₂₈ y"
+ := (sub uint64 uint128 uint128 @@ (x, y))%nexpr (at level 50) : nexpr_scope.
+ Notation "x -₃₂₋₆₄₋₆₄ y"
+ := (sub uint32 uint64 uint64 @@ (x, y))%nexpr (at level 50) : nexpr_scope.
+ Notation "x -₆₄ y"
+ := (sub uint64 uint64 uint64 @@ (x, y))%nexpr (at level 50) : nexpr_scope.
+ Notation "x -₃₂ y"
+ := (sub uint32 uint32 uint32 @@ (x, y))%nexpr (at level 50) : nexpr_scope.
+ Notation "x" := ({| BoundsAnalysis.type.value := x |}) (only printing) : nexpr_scope.
+ Notation "( out_t )( v >> count )"
+ := ((shiftr _ out_t count @@ v)%nexpr)
+ (format "( out_t )( v >> count )")
+ : nexpr_scope.
+ Notation "( out_t )( v << count )"
+ := ((shiftl _ out_t count @@ v)%nexpr)
+ (format "( out_t )( v << count )")
+ : nexpr_scope.
+ Notation "( ( out_t ) v & mask )"
+ := ((land _ out_t mask @@ v)%nexpr)
+ (format "( ( out_t ) v & mask )")
+ : nexpr_scope.
+*)
+ (* TODO: come up with a better notation for arithmetic with carries
+ that still distinguishes it from arithmetic without carries? *)
+ Local Notation "'TwoPow256'" := 115792089237316195423570985008687907853269984665640564039457584007913129639936 (only parsing).
+ Notation "'ADD_256' ( x , y )" := (#(ident.Z_cast2 (uint256, bool)%core) @ (#ident.Z_add_get_carry @ #(ident.Literal (t:=base.type.Z) TwoPow256) @ x @ y))%expr : expr_scope.
+ Notation "'ADD_128' ( x , y )" := (#(ident.Z_cast2 (uint128, bool)%core) @ (#ident.Z_add_get_carry @ #(ident.Literal (t:=base.type.Z) TwoPow256) @ x @ y))%expr : expr_scope.
+ Notation "'ADDC_256' ( x , y , z )" := (#(ident.Z_cast2 (uint256, bool)%core) @ (#ident.Z_add_with_get_carry @ #(ident.Literal (t:=base.type.Z) TwoPow256) @ x @ y @ z))%expr : expr_scope.
+ Notation "'ADDC_128' ( x , y , z )" := (#(ident.Z_cast2 (uint128, bool)%core) @ (#ident.Z_add_with_get_carry @ #(ident.Literal (t:=base.type.Z) TwoPow256) @ x @ y @ z))%expr : expr_scope.
+ Notation "'SUB_256' ( x , y )" := (#(ident.Z_cast2 (uint256, bool)%core) @ (#ident.Z_sub_get_borrow @ #(ident.Literal (t:=base.type.Z) TwoPow256) @ x @ y))%expr : expr_scope.
+ Notation "'SUBB_256' ( x , y , z )" := (#(ident.Z_cast2 (uint256, bool)%core) @ (#ident.Z_sub_with_get_borrow @ #(ident.Literal (t:=base.type.Z) TwoPow256) @ x @ y @ z))%expr : expr_scope.
+ Notation "'ADDM' ( x , y , z )" := (#(ident.Z_cast uint256) @ (#ident.Z_add_modulo @ x @ y @ z))%expr : expr_scope.
+ Notation "'RSHI' ( x , y , z )" := (#(ident.Z_cast _) @ (#ident.Z_rshi @ _ @ x @ y @ z))%expr : expr_scope.
+ Notation "'SELC' ( x , y , z )" := (#(ident.Z_cast uint256) @ (ident.Z_zselect @ x @ y @ z))%expr : expr_scope.
+ Notation "'SELM' ( x , y , z )" := (#(ident.Z_cast uint256) @ (ident.Z_zselect @ (#(Z_cast bool) @ (#Z_cc_m @ _) @ x) @ y @ z))%expr : expr_scope.
+ Notation "'SELL' ( x , y , z )" := (#(ident.Z_cast uint256) @ (#ident.Z_zselect @ (#(Z_cast bool) @ (#Z_land @ #(ident.Literal (t:=base.type.Z 1)) @ x)) @ y @ z))%expr : expr_scope.
+End PrintingNotations.
Module PreFancy.
Section with_wordmax.
@@ -2404,7 +2554,7 @@ Module Barrett256.
Derive barrett_red256
SuchThat (BarrettReduction.rbarrett_red_correctT M machine_wordsize barrett_red256)
As barrett_red256_correct.
- Proof. Time solve_rbarrett_red machine_wordsize. Time Qed.
+ Proof. Time solve_rbarrett_red_nocache machine_wordsize. Time Qed.
Definition muLow := Eval lazy in (2 ^ (2 * machine_wordsize) / M) mod (2^machine_wordsize).
(*
@@ -2871,7 +3021,7 @@ Module Montgomery256.
Derive montred256
SuchThat (MontgomeryReduction.rmontred_correctT N R N' machine_wordsize montred256)
As montred256_correct.
- Proof. Time solve_rmontred machine_wordsize. Time Qed.
+ Proof. Time solve_rmontred_nocache machine_wordsize. Time Qed.
(*
Definition montred256_prefancy' := PreFancy.of_Expr machine_wordsize [N;N'] montred256.