aboutsummaryrefslogtreecommitdiffhomepage
path: root/test/geo_quaternion.cpp
blob: 6ad9a099d6f0ddd5e9de45e0a741b11055cb1ad4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr>
// Copyright (C) 2009 Mathieu Gautier <mathieu.gautier@cea.fr>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.

#include "main.h"
#include <Eigen/Geometry>
#include <Eigen/LU>
#include <Eigen/SVD>

template<typename Scalar> void quaternion(void)
{
  /* this test covers the following files:
     Quaternion.h
  */

  typedef Matrix<Scalar,3,3> Matrix3;
  typedef Matrix<Scalar,3,1> Vector3;
  typedef Quaternion<Scalar> Quaternionx;
  typedef AngleAxis<Scalar> AngleAxisx;

  Scalar largeEps = test_precision<Scalar>();
  if (internal::is_same_type<Scalar,float>::ret)
    largeEps = 1e-3f;

  Scalar eps = internal::random<Scalar>() * Scalar(1e-2);

  Vector3 v0 = Vector3::Random(),
          v1 = Vector3::Random(),
          v2 = Vector3::Random(),
          v3 = Vector3::Random();

  Scalar a = internal::random<Scalar>(-Scalar(M_PI), Scalar(M_PI));

  // Quaternion: Identity(), setIdentity();
  Quaternionx q1, q2;
  q2.setIdentity();
  VERIFY_IS_APPROX(Quaternionx(Quaternionx::Identity()).coeffs(), q2.coeffs());
  q1.coeffs().setRandom();
  VERIFY_IS_APPROX(q1.coeffs(), (q1*q2).coeffs());

  // concatenation
  q1 *= q2;

  q1 = AngleAxisx(a, v0.normalized());
  q2 = AngleAxisx(a, v1.normalized());

  // angular distance
  Scalar refangle = internal::abs(AngleAxisx(q1.inverse()*q2).angle());
  if (refangle>Scalar(M_PI))
    refangle = Scalar(2)*Scalar(M_PI) - refangle;

  if((q1.coeffs()-q2.coeffs()).norm() > 10*largeEps)
  {
    VERIFY(internal::isApprox(q1.angularDistance(q2), refangle, largeEps));
  }

  // rotation matrix conversion
  VERIFY_IS_APPROX(q1 * v2, q1.toRotationMatrix() * v2);
  VERIFY_IS_APPROX(q1 * q2 * v2,
    q1.toRotationMatrix() * q2.toRotationMatrix() * v2);

  VERIFY(  (q2*q1).isApprox(q1*q2, largeEps)
        || !(q2 * q1 * v2).isApprox(q1.toRotationMatrix() * q2.toRotationMatrix() * v2));

  q2 = q1.toRotationMatrix();
  VERIFY_IS_APPROX(q1*v1,q2*v1);


  // angle-axis conversion
  AngleAxisx aa = AngleAxisx(q1);
  VERIFY_IS_APPROX(q1 * v1, Quaternionx(aa) * v1);
  VERIFY_IS_NOT_APPROX(q1 * v1, Quaternionx(AngleAxisx(aa.angle()*2,aa.axis())) * v1);

  // from two vector creation
  VERIFY_IS_APPROX( v2.normalized(),(q2.setFromTwoVectors(v1, v2)*v1).normalized());
  VERIFY_IS_APPROX( v1.normalized(),(q2.setFromTwoVectors(v1, v1)*v1).normalized());
  VERIFY_IS_APPROX(-v1.normalized(),(q2.setFromTwoVectors(v1,-v1)*v1).normalized());
  if (internal::is_same_type<Scalar,double>::ret)
  {
    v3 = (v1.array()+eps).matrix();
    VERIFY_IS_APPROX( v3.normalized(),(q2.setFromTwoVectors(v1, v3)*v1).normalized());
    VERIFY_IS_APPROX(-v3.normalized(),(q2.setFromTwoVectors(v1,-v3)*v1).normalized());
  }

  // inverse and conjugate
  VERIFY_IS_APPROX(q1 * (q1.inverse() * v1), v1);
  VERIFY_IS_APPROX(q1 * (q1.conjugate() * v1), v1);

  // test casting
  Quaternion<float> q1f = q1.template cast<float>();
  VERIFY_IS_APPROX(q1f.template cast<Scalar>(),q1);
  Quaternion<double> q1d = q1.template cast<double>();
  VERIFY_IS_APPROX(q1d.template cast<Scalar>(),q1);
}

template<typename Scalar> void mapQuaternion(void){
  typedef Map<Quaternion<Scalar>, Aligned> MQuaternionA;
  typedef Map<Quaternion<Scalar> > MQuaternionUA;
  typedef Quaternion<Scalar> Quaternionx;

	EIGEN_ALIGN16 Scalar array1[4];
	EIGEN_ALIGN16 Scalar array2[4];
	EIGEN_ALIGN16 Scalar array3[4+1];
	Scalar* array3unaligned = array3+1;

  MQuaternionA(array1).coeffs().setRandom();
  (MQuaternionA(array2)) = MQuaternionA(array1);
  (MQuaternionUA(array3unaligned)) = MQuaternionA(array1);

  Quaternionx q1 = MQuaternionA(array1);
  Quaternionx q2 = MQuaternionA(array2);
  Quaternionx q3 = MQuaternionUA(array3unaligned);

  VERIFY_IS_APPROX(q1.coeffs(), q2.coeffs());
  VERIFY_IS_APPROX(q1.coeffs(), q3.coeffs());
  #ifdef EIGEN_VECTORIZE
  VERIFY_RAISES_ASSERT((MQuaternionA(array3unaligned)));
  #endif
}

void test_geo_quaternion()
{
  for(int i = 0; i < g_repeat; i++) {
    CALL_SUBTEST_1( quaternion<float>() );
    CALL_SUBTEST_2( quaternion<double>() );
    CALL_SUBTEST( mapQuaternion<float>() );
    CALL_SUBTEST( mapQuaternion<double>() );
  }
}