aboutsummaryrefslogtreecommitdiffhomepage
path: root/test/geo_alignedbox.cpp
blob: 7b1684f292cdefc934c015b52f4c6c71ed03f6e9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.

#include "main.h"
#include <Eigen/Geometry>

using namespace std;

// NOTE the following workaround was needed on some 32 bits builds to kill extra precision of x87 registers.
// It seems that it is not needed anymore, but let's keep it here, just in case...

template<typename T> EIGEN_DONT_INLINE
void kill_extra_precision(T& /* x */) {
  // This one worked but triggered a warning:
  /* eigen_assert((void*)(&x) != (void*)0); */
  // An alternative could be:
  /* volatile T tmp = x; */
  /* x = tmp; */
}


template<typename BoxType> void alignedbox(const BoxType& box)
{
  /* this test covers the following files:
     AlignedBox.h
  */
  typedef typename BoxType::Scalar Scalar;
  typedef NumTraits<Scalar> ScalarTraits;
  typedef typename ScalarTraits::Real RealScalar;
  typedef Matrix<Scalar, BoxType::AmbientDimAtCompileTime, 1> VectorType;

  const Index dim = box.dim();

  VectorType p0 = VectorType::Random(dim);
  VectorType p1 = VectorType::Random(dim);
  while( p1 == p0 ){
      p1 =  VectorType::Random(dim); }
  RealScalar s1 = internal::random<RealScalar>(0,1);

  BoxType b0(dim);
  BoxType b1(VectorType::Random(dim),VectorType::Random(dim));
  BoxType b2;

  kill_extra_precision(b1);
  kill_extra_precision(p0);
  kill_extra_precision(p1);

  b0.extend(p0);
  b0.extend(p1);
  VERIFY(b0.contains(p0*s1+(Scalar(1)-s1)*p1));
  VERIFY(b0.contains(b0.center()));
  VERIFY_IS_APPROX(b0.center(),(p0+p1)/Scalar(2));

  (b2 = b0).extend(b1);
  VERIFY(b2.contains(b0));
  VERIFY(b2.contains(b1));
  VERIFY_IS_APPROX(b2.clamp(b0), b0);

  // intersection
  BoxType box1(VectorType::Random(dim));
  box1.extend(VectorType::Random(dim));
  BoxType box2(VectorType::Random(dim));
  box2.extend(VectorType::Random(dim));

  VERIFY(box1.intersects(box2) == !box1.intersection(box2).isEmpty());

  // alignment -- make sure there is no memory alignment assertion
  BoxType *bp0 = new BoxType(dim);
  BoxType *bp1 = new BoxType(dim);
  bp0->extend(*bp1);
  delete bp0;
  delete bp1;

  // sampling
  for( int i=0; i<10; ++i )
  {
      VectorType r = b0.sample();
      VERIFY(b0.contains(r));
  }

}

template<typename BoxType> void alignedboxTranslatable(const BoxType& box)
{
  typedef typename BoxType::Scalar Scalar;
  typedef Matrix<Scalar, BoxType::AmbientDimAtCompileTime, 1> VectorType;
  typedef Transform<Scalar, BoxType::AmbientDimAtCompileTime, Isometry> IsometryTransform;
  typedef Transform<Scalar, BoxType::AmbientDimAtCompileTime, Affine> AffineTransform;

  alignedbox(box);

  const VectorType Ones = VectorType::Ones();
  const VectorType UnitX = VectorType::UnitX();
  const Index dim = box.dim();

  // box((-1, -1, -1), (1, 1, 1))
  BoxType a(-Ones, Ones);

  VERIFY_IS_APPROX(a.sizes(), Ones * Scalar(2));

  BoxType b = a;
  VectorType translate = Ones;
  translate[0] = Scalar(2);
  b.translate(translate);
  // translate by (2, 1, 1) -> box((1, 0, 0), (3, 2, 2))

  VERIFY_IS_APPROX(b.sizes(), Ones * Scalar(2));
  VERIFY_IS_APPROX((b.min)(), UnitX);
  VERIFY_IS_APPROX((b.max)(), Ones * Scalar(2) + UnitX);

  // Test transform

  IsometryTransform tf = IsometryTransform::Identity();
  tf.translation() = -translate;

  BoxType c = b.transformed(tf);
  // translate by (-2, -1, -1) -> box((-1, -1, -1), (1, 1, 1))
  VERIFY_IS_APPROX(c.sizes(), a.sizes());
  VERIFY_IS_APPROX((c.min)(), (a.min)());
  VERIFY_IS_APPROX((c.max)(), (a.max)());

  c.transform(tf);
  // translate by (-2, -1, -1) -> box((-3, -2, -2), (-1, 0, 0))
  VERIFY_IS_APPROX(c.sizes(), a.sizes());
  VERIFY_IS_APPROX((c.min)(), Ones * Scalar(-2) - UnitX);
  VERIFY_IS_APPROX((c.max)(), -UnitX);

  // Scaling

  AffineTransform atf = AffineTransform::Identity();
  atf.scale(Scalar(3));
  c.transform(atf);
  // scale by 3 -> box((-9, -6, -6), (-3, 0, 0))
  VERIFY_IS_APPROX(c.sizes(), Scalar(3) * a.sizes());
  VERIFY_IS_APPROX((c.min)(), Ones * Scalar(-6) - UnitX * Scalar(3));
  VERIFY_IS_APPROX((c.max)(), UnitX * Scalar(-3));

  atf = AffineTransform::Identity();
  atf.scale(Scalar(-3));
  c.transform(atf);
  // scale by -3 -> box((27, 18, 18), (9, 0, 0))
  VERIFY_IS_APPROX(c.sizes(), Scalar(9) * a.sizes());
  VERIFY_IS_APPROX((c.min)(), UnitX * Scalar(9));
  VERIFY_IS_APPROX((c.max)(), Ones * Scalar(18) + UnitX * Scalar(9));

  // Check identity transform within numerical precision.
  BoxType transformedC = c.transformed(IsometryTransform::Identity());
  VERIFY_IS_APPROX(transformedC, c);

  for (size_t i = 0; i < 10; ++i)
  {
    VectorType minCorner;
    VectorType maxCorner;
    for (Index d = 0; d < dim; ++d)
    {
      minCorner[d] = internal::random<Scalar>(-10,10);
      maxCorner[d] = minCorner[d] + internal::random<Scalar>(0, 10);
    }

    c = BoxType(minCorner, maxCorner);

    translate = VectorType::Random();
    c.translate(translate);

    VERIFY_IS_APPROX((c.min)(), minCorner + translate);
    VERIFY_IS_APPROX((c.max)(), maxCorner + translate);
  }
}

template<typename Scalar, typename Rotation>
Rotation rotate2D(Scalar angle) {
  return Rotation2D<Scalar>(angle);
}

template<typename Scalar, typename Rotation>
Rotation rotate2DIntegral(typename NumTraits<Scalar>::NonInteger angle) {
  typedef typename NumTraits<Scalar>::NonInteger NonInteger;
  return Rotation2D<NonInteger>(angle).toRotationMatrix().
      template cast<Scalar>();
}

template<typename Scalar, typename Rotation>
Rotation rotate3DZAxis(Scalar angle) {
  return AngleAxis<Scalar>(angle, Matrix<Scalar, 3, 1>(0, 0, 1));
}

template<typename Scalar, typename Rotation>
Rotation rotate3DZAxisIntegral(typename NumTraits<Scalar>::NonInteger angle) {
  typedef typename NumTraits<Scalar>::NonInteger NonInteger;
  return AngleAxis<NonInteger>(angle, Matrix<NonInteger, 3, 1>(0, 0, 1)).
      toRotationMatrix().template cast<Scalar>();
}

template<typename Scalar, typename Rotation>
Rotation rotate4DZWAxis(Scalar angle) {
  Rotation result = Matrix<Scalar, 4, 4>::Identity();
  result.block(0, 0, 3, 3) = rotate3DZAxis<Scalar, AngleAxisd>(angle).toRotationMatrix();
  return result;
}

template <typename MatrixType>
MatrixType randomRotationMatrix()
{
  // algorithm from
  // https://www.isprs-ann-photogramm-remote-sens-spatial-inf-sci.net/III-7/103/2016/isprs-annals-III-7-103-2016.pdf
  const MatrixType rand = MatrixType::Random();
  const MatrixType q = rand.householderQr().householderQ();
  const JacobiSVD<MatrixType> svd = q.jacobiSvd(ComputeFullU | ComputeFullV);
  const typename MatrixType::Scalar det = (svd.matrixU() * svd.matrixV().transpose()).determinant();
  MatrixType diag = rand.Identity();
  diag(MatrixType::RowsAtCompileTime - 1, MatrixType::ColsAtCompileTime - 1) = det;
  const MatrixType rotation = svd.matrixU() * diag * svd.matrixV().transpose();
  return rotation;
}

template <typename Scalar, int Dim>
Matrix<Scalar, Dim, (1<<Dim)> boxGetCorners(const Matrix<Scalar, Dim, 1>& min_, const Matrix<Scalar, Dim, 1>& max_)
{
  Matrix<Scalar, Dim, (1<<Dim) > result;
  for(Index i=0; i<(1<<Dim); ++i)
  {
    for(Index j=0; j<Dim; ++j)
      result(j,i) = (i & (1<<j)) ? min_(j) : max_(j);
  }
  return result;
}

template<typename BoxType, typename Rotation> void alignedboxRotatable(
    const BoxType& box,
    Rotation (*rotate)(typename NumTraits<typename BoxType::Scalar>::NonInteger /*_angle*/))
{
  alignedboxTranslatable(box);

  typedef typename BoxType::Scalar Scalar;
  typedef typename NumTraits<Scalar>::NonInteger NonInteger;
  typedef Matrix<Scalar, BoxType::AmbientDimAtCompileTime, 1> VectorType;
  typedef Transform<Scalar, BoxType::AmbientDimAtCompileTime, Isometry> IsometryTransform;
  typedef Transform<Scalar, BoxType::AmbientDimAtCompileTime, Affine> AffineTransform;

  const VectorType Zero = VectorType::Zero();
  const VectorType Ones = VectorType::Ones();
  const VectorType UnitX = VectorType::UnitX();
  const VectorType UnitY = VectorType::UnitY();
  // this is vector (0, 0, -1, -1, -1, ...), i.e. with zeros at first and second dimensions
  const VectorType UnitZ = Ones - UnitX - UnitY;

  // in this kind of comments the 3D case values will be illustrated
  // box((-1, -1, -1), (1, 1, 1))
  BoxType a(-Ones, Ones);

  // to allow templating this test for both 2D and 3D cases, we always set all
  // but the first coordinate to the same value; so basically 3D case works as
  // if you were looking at the scene from top

  VectorType minPoint = -2 * Ones;
  minPoint[0] = -3;
  VectorType maxPoint = Zero;
  maxPoint[0] = -1;
  BoxType c(minPoint, maxPoint);
  // box((-3, -2, -2), (-1, 0, 0))

  IsometryTransform tf2 = IsometryTransform::Identity();
  // for some weird reason the following statement has to be put separate from
  // the following rotate call, otherwise precision problems arise...
  Rotation rot = rotate(NonInteger(EIGEN_PI));
  tf2.rotate(rot);

  c.transform(tf2);
  // rotate by 180 deg around origin -> box((1, 0, -2), (3, 2, 0))

  VERIFY_IS_APPROX(c.sizes(), a.sizes());
  VERIFY_IS_APPROX((c.min)(), UnitX - UnitZ * Scalar(2));
  VERIFY_IS_APPROX((c.max)(), UnitX * Scalar(3) + UnitY * Scalar(2));

  rot = rotate(NonInteger(EIGEN_PI / 2));
  tf2.setIdentity();
  tf2.rotate(rot);

  c.transform(tf2);
  // rotate by 90 deg around origin ->  box((-2, 1, -2), (0, 3, 0))

  VERIFY_IS_APPROX(c.sizes(), a.sizes());
  VERIFY_IS_APPROX((c.min)(), Ones * Scalar(-2) + UnitY * Scalar(3));
  VERIFY_IS_APPROX((c.max)(), UnitY * Scalar(3));

  // box((-1, -1, -1), (1, 1, 1))
  AffineTransform atf = AffineTransform::Identity();
  atf.linearExt()(0, 1) = Scalar(1);
  c = BoxType(-Ones, Ones);
  c.transform(atf);
  // 45 deg shear in x direction -> box((-2, -1, -1), (2, 1, 1))

  VERIFY_IS_APPROX(c.sizes(), Ones * Scalar(2) + UnitX * Scalar(2));
  VERIFY_IS_APPROX((c.min)(), -Ones - UnitX);
  VERIFY_IS_APPROX((c.max)(), Ones + UnitX);
}

template<typename BoxType, typename Rotation> void alignedboxNonIntegralRotatable(
    const BoxType& box,
    Rotation (*rotate)(typename NumTraits<typename BoxType::Scalar>::NonInteger /*_angle*/))
{
  alignedboxRotatable(box, rotate);

  typedef typename BoxType::Scalar Scalar;
  typedef typename NumTraits<Scalar>::NonInteger NonInteger;
  enum { Dim = BoxType::AmbientDimAtCompileTime };
  typedef Matrix<Scalar, Dim, 1> VectorType;
  typedef Matrix<Scalar, Dim, (1 << Dim)> CornersType;
  typedef Transform<Scalar, Dim, Isometry> IsometryTransform;
  typedef Transform<Scalar, Dim, Affine> AffineTransform;

  const Index dim = box.dim();
  const VectorType Zero = VectorType::Zero();
  const VectorType Ones = VectorType::Ones();

  VectorType minPoint = -2 * Ones;
  minPoint[1] = 1;
  VectorType maxPoint = Zero;
  maxPoint[1] = 3;
  BoxType c(minPoint, maxPoint);
  // ((-2, 1, -2), (0, 3, 0))

  VectorType cornerBL = (c.min)();
  VectorType cornerTR = (c.max)();
  VectorType cornerBR = (c.min)(); cornerBR[0] = cornerTR[0];
  VectorType cornerTL = (c.max)(); cornerTL[0] = cornerBL[0];

  NonInteger angle = NonInteger(EIGEN_PI/3);
  Rotation rot = rotate(angle);
  IsometryTransform tf2;
  tf2.setIdentity();
  tf2.rotate(rot);

  c.transform(tf2);
  // rotate by 60 deg ->  box((-3.59, -1.23, -2), (-0.86, 1.5, 0))

  cornerBL = tf2 * cornerBL;
  cornerBR = tf2 * cornerBR;
  cornerTL = tf2 * cornerTL;
  cornerTR = tf2 * cornerTR;

  VectorType minCorner = Ones * Scalar(-2);
  VectorType maxCorner = Zero;
  minCorner[0] = (min)((min)(cornerBL[0], cornerBR[0]), (min)(cornerTL[0], cornerTR[0]));
  maxCorner[0] = (max)((max)(cornerBL[0], cornerBR[0]), (max)(cornerTL[0], cornerTR[0]));
  minCorner[1] = (min)((min)(cornerBL[1], cornerBR[1]), (min)(cornerTL[1], cornerTR[1]));
  maxCorner[1] = (max)((max)(cornerBL[1], cornerBR[1]), (max)(cornerTL[1], cornerTR[1]));

  for (Index d = 2; d < dim; ++d)
    VERIFY_IS_APPROX(c.sizes()[d], Scalar(2));

  VERIFY_IS_APPROX((c.min)(), minCorner);
  VERIFY_IS_APPROX((c.max)(), maxCorner);

  VectorType minCornerValue = Ones * Scalar(-2);
  VectorType maxCornerValue = Zero;
  minCornerValue[0] = Scalar(Scalar(-sqrt(2*2 + 3*3)) * Scalar(cos(Scalar(atan(2.0/3.0)) - angle/2)));
  minCornerValue[1] = Scalar(Scalar(-sqrt(1*1 + 2*2)) * Scalar(sin(Scalar(atan(2.0/1.0)) - angle/2)));
  maxCornerValue[0] = Scalar(-sin(angle));
  maxCornerValue[1] = Scalar(3 * cos(angle));
  VERIFY_IS_APPROX((c.min)(), minCornerValue);
  VERIFY_IS_APPROX((c.max)(), maxCornerValue);

  // randomized test - translate and rotate the box and compare to a box made of transformed vertices
  for (size_t i = 0; i < 10; ++i)
  {
    for (Index d = 0; d < dim; ++d)
    {
      minCorner[d] = internal::random<Scalar>(-10,10);
      maxCorner[d] = minCorner[d] + internal::random<Scalar>(0, 10);
    }

    c = BoxType(minCorner, maxCorner);

    CornersType corners = boxGetCorners(minCorner, maxCorner);

    typename AffineTransform::LinearMatrixType rotation =
        randomRotationMatrix<typename AffineTransform::LinearMatrixType>();

    tf2.setIdentity();
    tf2.rotate(rotation);
    tf2.translate(VectorType::Random());

    c.transform(tf2);
    corners = tf2 * corners;

    minCorner = corners.rowwise().minCoeff();
    maxCorner = corners.rowwise().maxCoeff();

    VERIFY_IS_APPROX((c.min)(), minCorner);
    VERIFY_IS_APPROX((c.max)(), maxCorner);
  }

  // randomized test - transform the box with a random affine matrix and compare to a box made of transformed vertices
  for (size_t i = 0; i < 10; ++i)
  {
    for (Index d = 0; d < dim; ++d)
    {
      minCorner[d] = internal::random<Scalar>(-10,10);
      maxCorner[d] = minCorner[d] + internal::random<Scalar>(0, 10);
    }

    c = BoxType(minCorner, maxCorner);

    CornersType corners = boxGetCorners(minCorner, maxCorner);

    AffineTransform atf = AffineTransform::Identity();
    atf.linearExt() = AffineTransform::LinearPart::Random();
    atf.translate(VectorType::Random());

    c.transform(atf);
    corners = atf * corners;

    minCorner = corners.rowwise().minCoeff();
    maxCorner = corners.rowwise().maxCoeff();

    VERIFY_IS_APPROX((c.min)(), minCorner);
    VERIFY_IS_APPROX((c.max)(), maxCorner);
  }
}

template<typename BoxType>
void alignedboxCastTests(const BoxType& box)
{
  // casting
  typedef typename BoxType::Scalar Scalar;
  typedef Matrix<Scalar, BoxType::AmbientDimAtCompileTime, 1> VectorType;

  const Index dim = box.dim();

  VectorType p0 = VectorType::Random(dim);
  VectorType p1 = VectorType::Random(dim);

  BoxType b0(dim);

  b0.extend(p0);
  b0.extend(p1);

  const int Dim = BoxType::AmbientDimAtCompileTime;
  typedef typename GetDifferentType<Scalar>::type OtherScalar;
  AlignedBox<OtherScalar,Dim> hp1f = b0.template cast<OtherScalar>();
  VERIFY_IS_APPROX(hp1f.template cast<Scalar>(),b0);
  AlignedBox<Scalar,Dim> hp1d = b0.template cast<Scalar>();
  VERIFY_IS_APPROX(hp1d.template cast<Scalar>(),b0);
}


void specificTest1()
{
    Vector2f m; m << -1.0f, -2.0f;
    Vector2f M; M <<  1.0f,  5.0f;

    typedef AlignedBox2f  BoxType;
    BoxType box( m, M );

    Vector2f sides = M-m;
    VERIFY_IS_APPROX(sides, box.sizes() );
    VERIFY_IS_APPROX(sides[1], box.sizes()[1] );
    VERIFY_IS_APPROX(sides[1], box.sizes().maxCoeff() );
    VERIFY_IS_APPROX(sides[0], box.sizes().minCoeff() );

    VERIFY_IS_APPROX( 14.0f, box.volume() );
    VERIFY_IS_APPROX( 53.0f, box.diagonal().squaredNorm() );
    VERIFY_IS_APPROX( std::sqrt( 53.0f ), box.diagonal().norm() );

    VERIFY_IS_APPROX( m, box.corner( BoxType::BottomLeft ) );
    VERIFY_IS_APPROX( M, box.corner( BoxType::TopRight ) );
    Vector2f bottomRight; bottomRight << M[0], m[1];
    Vector2f topLeft; topLeft << m[0], M[1];
    VERIFY_IS_APPROX( bottomRight, box.corner( BoxType::BottomRight ) );
    VERIFY_IS_APPROX( topLeft, box.corner( BoxType::TopLeft ) );
}


void specificTest2()
{
    Vector3i m; m << -1, -2, 0;
    Vector3i M; M <<  1,  5, 3;

    typedef AlignedBox3i  BoxType;
    BoxType box( m, M );

    Vector3i sides = M-m;
    VERIFY_IS_APPROX(sides, box.sizes() );
    VERIFY_IS_APPROX(sides[1], box.sizes()[1] );
    VERIFY_IS_APPROX(sides[1], box.sizes().maxCoeff() );
    VERIFY_IS_APPROX(sides[0], box.sizes().minCoeff() );

    VERIFY_IS_APPROX( 42, box.volume() );
    VERIFY_IS_APPROX( 62, box.diagonal().squaredNorm() );

    VERIFY_IS_APPROX( m, box.corner( BoxType::BottomLeftFloor ) );
    VERIFY_IS_APPROX( M, box.corner( BoxType::TopRightCeil ) );
    Vector3i bottomRightFloor; bottomRightFloor << M[0], m[1], m[2];
    Vector3i topLeftFloor; topLeftFloor << m[0], M[1], m[2];
    VERIFY_IS_APPROX( bottomRightFloor, box.corner( BoxType::BottomRightFloor ) );
    VERIFY_IS_APPROX( topLeftFloor, box.corner( BoxType::TopLeftFloor ) );
}


EIGEN_DECLARE_TEST(geo_alignedbox)
{
  for(int i = 0; i < g_repeat; i++)
  {
    CALL_SUBTEST_1( (alignedboxNonIntegralRotatable<AlignedBox2f, Rotation2Df>(AlignedBox2f(), &rotate2D)) );
    CALL_SUBTEST_2( alignedboxCastTests(AlignedBox2f()) );

    CALL_SUBTEST_3( (alignedboxNonIntegralRotatable<AlignedBox3f, AngleAxisf>(AlignedBox3f(), &rotate3DZAxis)) );
    CALL_SUBTEST_4( alignedboxCastTests(AlignedBox3f()) );

    CALL_SUBTEST_5( (alignedboxNonIntegralRotatable<AlignedBox4d, Matrix4d>(AlignedBox4d(), &rotate4DZWAxis)) );
    CALL_SUBTEST_6( alignedboxCastTests(AlignedBox4d()) );

    CALL_SUBTEST_7( alignedboxTranslatable(AlignedBox1d()) );
    CALL_SUBTEST_8( alignedboxCastTests(AlignedBox1d()) );

    CALL_SUBTEST_9( alignedboxTranslatable(AlignedBox1i()) );
    CALL_SUBTEST_10( (alignedboxRotatable<AlignedBox2i, Matrix2i>(AlignedBox2i(), &rotate2DIntegral<int, Matrix2i>)) );
    CALL_SUBTEST_11( (alignedboxRotatable<AlignedBox3i, Matrix3i>(AlignedBox3i(), &rotate3DZAxisIntegral<int, Matrix3i>)) );

    CALL_SUBTEST_14( alignedbox(AlignedBox<double,Dynamic>(4)) );
  }
  CALL_SUBTEST_12( specificTest1() );
  CALL_SUBTEST_13( specificTest2() );
}