// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2008-2009 Gael Guennebaud // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #include "main.h" #include using namespace std; // NOTE the following workaround was needed on some 32 bits builds to kill extra precision of x87 registers. // It seems that it is not needed anymore, but let's keep it here, just in case... template EIGEN_DONT_INLINE void kill_extra_precision(T& /* x */) { // This one worked but triggered a warning: /* eigen_assert((void*)(&x) != (void*)0); */ // An alternative could be: /* volatile T tmp = x; */ /* x = tmp; */ } template void alignedbox(const BoxType& box) { /* this test covers the following files: AlignedBox.h */ typedef typename BoxType::Scalar Scalar; typedef NumTraits ScalarTraits; typedef typename ScalarTraits::Real RealScalar; typedef Matrix VectorType; const Index dim = box.dim(); VectorType p0 = VectorType::Random(dim); VectorType p1 = VectorType::Random(dim); while( p1 == p0 ){ p1 = VectorType::Random(dim); } RealScalar s1 = internal::random(0,1); BoxType b0(dim); BoxType b1(VectorType::Random(dim),VectorType::Random(dim)); BoxType b2; kill_extra_precision(b1); kill_extra_precision(p0); kill_extra_precision(p1); b0.extend(p0); b0.extend(p1); VERIFY(b0.contains(p0*s1+(Scalar(1)-s1)*p1)); VERIFY(b0.contains(b0.center())); VERIFY_IS_APPROX(b0.center(),(p0+p1)/Scalar(2)); (b2 = b0).extend(b1); VERIFY(b2.contains(b0)); VERIFY(b2.contains(b1)); VERIFY_IS_APPROX(b2.clamp(b0), b0); // intersection BoxType box1(VectorType::Random(dim)); box1.extend(VectorType::Random(dim)); BoxType box2(VectorType::Random(dim)); box2.extend(VectorType::Random(dim)); VERIFY(box1.intersects(box2) == !box1.intersection(box2).isEmpty()); // alignment -- make sure there is no memory alignment assertion BoxType *bp0 = new BoxType(dim); BoxType *bp1 = new BoxType(dim); bp0->extend(*bp1); delete bp0; delete bp1; // sampling for( int i=0; i<10; ++i ) { VectorType r = b0.sample(); VERIFY(b0.contains(r)); } } template void alignedboxTranslatable(const BoxType& box) { typedef typename BoxType::Scalar Scalar; typedef Matrix VectorType; typedef Transform IsometryTransform; typedef Transform AffineTransform; alignedbox(box); const VectorType Ones = VectorType::Ones(); const VectorType UnitX = VectorType::UnitX(); const Index dim = box.dim(); // box((-1, -1, -1), (1, 1, 1)) BoxType a(-Ones, Ones); VERIFY_IS_APPROX(a.sizes(), Ones * Scalar(2)); BoxType b = a; VectorType translate = Ones; translate[0] = Scalar(2); b.translate(translate); // translate by (2, 1, 1) -> box((1, 0, 0), (3, 2, 2)) VERIFY_IS_APPROX(b.sizes(), Ones * Scalar(2)); VERIFY_IS_APPROX((b.min)(), UnitX); VERIFY_IS_APPROX((b.max)(), Ones * Scalar(2) + UnitX); // Test transform IsometryTransform tf = IsometryTransform::Identity(); tf.translation() = -translate; BoxType c = b.transformed(tf); // translate by (-2, -1, -1) -> box((-1, -1, -1), (1, 1, 1)) VERIFY_IS_APPROX(c.sizes(), a.sizes()); VERIFY_IS_APPROX((c.min)(), (a.min)()); VERIFY_IS_APPROX((c.max)(), (a.max)()); c.transform(tf); // translate by (-2, -1, -1) -> box((-3, -2, -2), (-1, 0, 0)) VERIFY_IS_APPROX(c.sizes(), a.sizes()); VERIFY_IS_APPROX((c.min)(), Ones * Scalar(-2) - UnitX); VERIFY_IS_APPROX((c.max)(), -UnitX); // Scaling AffineTransform atf = AffineTransform::Identity(); atf.scale(Scalar(3)); c.transform(atf); // scale by 3 -> box((-9, -6, -6), (-3, 0, 0)) VERIFY_IS_APPROX(c.sizes(), Scalar(3) * a.sizes()); VERIFY_IS_APPROX((c.min)(), Ones * Scalar(-6) - UnitX * Scalar(3)); VERIFY_IS_APPROX((c.max)(), UnitX * Scalar(-3)); atf = AffineTransform::Identity(); atf.scale(Scalar(-3)); c.transform(atf); // scale by -3 -> box((27, 18, 18), (9, 0, 0)) VERIFY_IS_APPROX(c.sizes(), Scalar(9) * a.sizes()); VERIFY_IS_APPROX((c.min)(), UnitX * Scalar(9)); VERIFY_IS_APPROX((c.max)(), Ones * Scalar(18) + UnitX * Scalar(9)); // Check identity transform within numerical precision. BoxType transformedC = c.transformed(IsometryTransform::Identity()); VERIFY_IS_APPROX(transformedC, c); for (size_t i = 0; i < 10; ++i) { VectorType minCorner; VectorType maxCorner; for (Index d = 0; d < dim; ++d) { minCorner[d] = internal::random(-10,10); maxCorner[d] = minCorner[d] + internal::random(0, 10); } c = BoxType(minCorner, maxCorner); translate = VectorType::Random(); c.translate(translate); VERIFY_IS_APPROX((c.min)(), minCorner + translate); VERIFY_IS_APPROX((c.max)(), maxCorner + translate); } } template Rotation rotate2D(Scalar angle) { return Rotation2D(angle); } template Rotation rotate2DIntegral(typename NumTraits::NonInteger angle) { typedef typename NumTraits::NonInteger NonInteger; return Rotation2D(angle).toRotationMatrix(). template cast(); } template Rotation rotate3DZAxis(Scalar angle) { return AngleAxis(angle, Matrix(0, 0, 1)); } template Rotation rotate3DZAxisIntegral(typename NumTraits::NonInteger angle) { typedef typename NumTraits::NonInteger NonInteger; return AngleAxis(angle, Matrix(0, 0, 1)). toRotationMatrix().template cast(); } template Rotation rotate4DZWAxis(Scalar angle) { Rotation result = Matrix::Identity(); result.block(0, 0, 3, 3) = rotate3DZAxis(angle).toRotationMatrix(); return result; } template MatrixType randomRotationMatrix() { // algorithm from // https://www.isprs-ann-photogramm-remote-sens-spatial-inf-sci.net/III-7/103/2016/isprs-annals-III-7-103-2016.pdf const MatrixType rand = MatrixType::Random(); const MatrixType q = rand.householderQr().householderQ(); const JacobiSVD svd = q.jacobiSvd(ComputeFullU | ComputeFullV); const typename MatrixType::Scalar det = (svd.matrixU() * svd.matrixV().transpose()).determinant(); MatrixType diag = rand.Identity(); diag(MatrixType::RowsAtCompileTime - 1, MatrixType::ColsAtCompileTime - 1) = det; const MatrixType rotation = svd.matrixU() * diag * svd.matrixV().transpose(); return rotation; } template Matrix boxGetCorners(const Matrix& min_, const Matrix& max_) { Matrix result; for(Index i=0; i<(1< void alignedboxRotatable( const BoxType& box, Rotation (*rotate)(typename NumTraits::NonInteger /*_angle*/)) { alignedboxTranslatable(box); typedef typename BoxType::Scalar Scalar; typedef typename NumTraits::NonInteger NonInteger; typedef Matrix VectorType; typedef Transform IsometryTransform; typedef Transform AffineTransform; const VectorType Zero = VectorType::Zero(); const VectorType Ones = VectorType::Ones(); const VectorType UnitX = VectorType::UnitX(); const VectorType UnitY = VectorType::UnitY(); // this is vector (0, 0, -1, -1, -1, ...), i.e. with zeros at first and second dimensions const VectorType UnitZ = Ones - UnitX - UnitY; // in this kind of comments the 3D case values will be illustrated // box((-1, -1, -1), (1, 1, 1)) BoxType a(-Ones, Ones); // to allow templating this test for both 2D and 3D cases, we always set all // but the first coordinate to the same value; so basically 3D case works as // if you were looking at the scene from top VectorType minPoint = -2 * Ones; minPoint[0] = -3; VectorType maxPoint = Zero; maxPoint[0] = -1; BoxType c(minPoint, maxPoint); // box((-3, -2, -2), (-1, 0, 0)) IsometryTransform tf2 = IsometryTransform::Identity(); // for some weird reason the following statement has to be put separate from // the following rotate call, otherwise precision problems arise... Rotation rot = rotate(NonInteger(EIGEN_PI)); tf2.rotate(rot); c.transform(tf2); // rotate by 180 deg around origin -> box((1, 0, -2), (3, 2, 0)) VERIFY_IS_APPROX(c.sizes(), a.sizes()); VERIFY_IS_APPROX((c.min)(), UnitX - UnitZ * Scalar(2)); VERIFY_IS_APPROX((c.max)(), UnitX * Scalar(3) + UnitY * Scalar(2)); rot = rotate(NonInteger(EIGEN_PI / 2)); tf2.setIdentity(); tf2.rotate(rot); c.transform(tf2); // rotate by 90 deg around origin -> box((-2, 1, -2), (0, 3, 0)) VERIFY_IS_APPROX(c.sizes(), a.sizes()); VERIFY_IS_APPROX((c.min)(), Ones * Scalar(-2) + UnitY * Scalar(3)); VERIFY_IS_APPROX((c.max)(), UnitY * Scalar(3)); // box((-1, -1, -1), (1, 1, 1)) AffineTransform atf = AffineTransform::Identity(); atf.linearExt()(0, 1) = Scalar(1); c = BoxType(-Ones, Ones); c.transform(atf); // 45 deg shear in x direction -> box((-2, -1, -1), (2, 1, 1)) VERIFY_IS_APPROX(c.sizes(), Ones * Scalar(2) + UnitX * Scalar(2)); VERIFY_IS_APPROX((c.min)(), -Ones - UnitX); VERIFY_IS_APPROX((c.max)(), Ones + UnitX); } template void alignedboxNonIntegralRotatable( const BoxType& box, Rotation (*rotate)(typename NumTraits::NonInteger /*_angle*/)) { alignedboxRotatable(box, rotate); typedef typename BoxType::Scalar Scalar; typedef typename NumTraits::NonInteger NonInteger; enum { Dim = BoxType::AmbientDimAtCompileTime }; typedef Matrix VectorType; typedef Matrix CornersType; typedef Transform IsometryTransform; typedef Transform AffineTransform; const Index dim = box.dim(); const VectorType Zero = VectorType::Zero(); const VectorType Ones = VectorType::Ones(); VectorType minPoint = -2 * Ones; minPoint[1] = 1; VectorType maxPoint = Zero; maxPoint[1] = 3; BoxType c(minPoint, maxPoint); // ((-2, 1, -2), (0, 3, 0)) VectorType cornerBL = (c.min)(); VectorType cornerTR = (c.max)(); VectorType cornerBR = (c.min)(); cornerBR[0] = cornerTR[0]; VectorType cornerTL = (c.max)(); cornerTL[0] = cornerBL[0]; NonInteger angle = NonInteger(EIGEN_PI/3); Rotation rot = rotate(angle); IsometryTransform tf2; tf2.setIdentity(); tf2.rotate(rot); c.transform(tf2); // rotate by 60 deg -> box((-3.59, -1.23, -2), (-0.86, 1.5, 0)) cornerBL = tf2 * cornerBL; cornerBR = tf2 * cornerBR; cornerTL = tf2 * cornerTL; cornerTR = tf2 * cornerTR; VectorType minCorner = Ones * Scalar(-2); VectorType maxCorner = Zero; minCorner[0] = (min)((min)(cornerBL[0], cornerBR[0]), (min)(cornerTL[0], cornerTR[0])); maxCorner[0] = (max)((max)(cornerBL[0], cornerBR[0]), (max)(cornerTL[0], cornerTR[0])); minCorner[1] = (min)((min)(cornerBL[1], cornerBR[1]), (min)(cornerTL[1], cornerTR[1])); maxCorner[1] = (max)((max)(cornerBL[1], cornerBR[1]), (max)(cornerTL[1], cornerTR[1])); for (Index d = 2; d < dim; ++d) VERIFY_IS_APPROX(c.sizes()[d], Scalar(2)); VERIFY_IS_APPROX((c.min)(), minCorner); VERIFY_IS_APPROX((c.max)(), maxCorner); VectorType minCornerValue = Ones * Scalar(-2); VectorType maxCornerValue = Zero; minCornerValue[0] = Scalar(Scalar(-sqrt(2*2 + 3*3)) * Scalar(cos(Scalar(atan(2.0/3.0)) - angle/2))); minCornerValue[1] = Scalar(Scalar(-sqrt(1*1 + 2*2)) * Scalar(sin(Scalar(atan(2.0/1.0)) - angle/2))); maxCornerValue[0] = Scalar(-sin(angle)); maxCornerValue[1] = Scalar(3 * cos(angle)); VERIFY_IS_APPROX((c.min)(), minCornerValue); VERIFY_IS_APPROX((c.max)(), maxCornerValue); // randomized test - translate and rotate the box and compare to a box made of transformed vertices for (size_t i = 0; i < 10; ++i) { for (Index d = 0; d < dim; ++d) { minCorner[d] = internal::random(-10,10); maxCorner[d] = minCorner[d] + internal::random(0, 10); } c = BoxType(minCorner, maxCorner); CornersType corners = boxGetCorners(minCorner, maxCorner); typename AffineTransform::LinearMatrixType rotation = randomRotationMatrix(); tf2.setIdentity(); tf2.rotate(rotation); tf2.translate(VectorType::Random()); c.transform(tf2); corners = tf2 * corners; minCorner = corners.rowwise().minCoeff(); maxCorner = corners.rowwise().maxCoeff(); VERIFY_IS_APPROX((c.min)(), minCorner); VERIFY_IS_APPROX((c.max)(), maxCorner); } // randomized test - transform the box with a random affine matrix and compare to a box made of transformed vertices for (size_t i = 0; i < 10; ++i) { for (Index d = 0; d < dim; ++d) { minCorner[d] = internal::random(-10,10); maxCorner[d] = minCorner[d] + internal::random(0, 10); } c = BoxType(minCorner, maxCorner); CornersType corners = boxGetCorners(minCorner, maxCorner); AffineTransform atf = AffineTransform::Identity(); atf.linearExt() = AffineTransform::LinearPart::Random(); atf.translate(VectorType::Random()); c.transform(atf); corners = atf * corners; minCorner = corners.rowwise().minCoeff(); maxCorner = corners.rowwise().maxCoeff(); VERIFY_IS_APPROX((c.min)(), minCorner); VERIFY_IS_APPROX((c.max)(), maxCorner); } } template void alignedboxCastTests(const BoxType& box) { // casting typedef typename BoxType::Scalar Scalar; typedef Matrix VectorType; const Index dim = box.dim(); VectorType p0 = VectorType::Random(dim); VectorType p1 = VectorType::Random(dim); BoxType b0(dim); b0.extend(p0); b0.extend(p1); const int Dim = BoxType::AmbientDimAtCompileTime; typedef typename GetDifferentType::type OtherScalar; AlignedBox hp1f = b0.template cast(); VERIFY_IS_APPROX(hp1f.template cast(),b0); AlignedBox hp1d = b0.template cast(); VERIFY_IS_APPROX(hp1d.template cast(),b0); } void specificTest1() { Vector2f m; m << -1.0f, -2.0f; Vector2f M; M << 1.0f, 5.0f; typedef AlignedBox2f BoxType; BoxType box( m, M ); Vector2f sides = M-m; VERIFY_IS_APPROX(sides, box.sizes() ); VERIFY_IS_APPROX(sides[1], box.sizes()[1] ); VERIFY_IS_APPROX(sides[1], box.sizes().maxCoeff() ); VERIFY_IS_APPROX(sides[0], box.sizes().minCoeff() ); VERIFY_IS_APPROX( 14.0f, box.volume() ); VERIFY_IS_APPROX( 53.0f, box.diagonal().squaredNorm() ); VERIFY_IS_APPROX( std::sqrt( 53.0f ), box.diagonal().norm() ); VERIFY_IS_APPROX( m, box.corner( BoxType::BottomLeft ) ); VERIFY_IS_APPROX( M, box.corner( BoxType::TopRight ) ); Vector2f bottomRight; bottomRight << M[0], m[1]; Vector2f topLeft; topLeft << m[0], M[1]; VERIFY_IS_APPROX( bottomRight, box.corner( BoxType::BottomRight ) ); VERIFY_IS_APPROX( topLeft, box.corner( BoxType::TopLeft ) ); } void specificTest2() { Vector3i m; m << -1, -2, 0; Vector3i M; M << 1, 5, 3; typedef AlignedBox3i BoxType; BoxType box( m, M ); Vector3i sides = M-m; VERIFY_IS_APPROX(sides, box.sizes() ); VERIFY_IS_APPROX(sides[1], box.sizes()[1] ); VERIFY_IS_APPROX(sides[1], box.sizes().maxCoeff() ); VERIFY_IS_APPROX(sides[0], box.sizes().minCoeff() ); VERIFY_IS_APPROX( 42, box.volume() ); VERIFY_IS_APPROX( 62, box.diagonal().squaredNorm() ); VERIFY_IS_APPROX( m, box.corner( BoxType::BottomLeftFloor ) ); VERIFY_IS_APPROX( M, box.corner( BoxType::TopRightCeil ) ); Vector3i bottomRightFloor; bottomRightFloor << M[0], m[1], m[2]; Vector3i topLeftFloor; topLeftFloor << m[0], M[1], m[2]; VERIFY_IS_APPROX( bottomRightFloor, box.corner( BoxType::BottomRightFloor ) ); VERIFY_IS_APPROX( topLeftFloor, box.corner( BoxType::TopLeftFloor ) ); } EIGEN_DECLARE_TEST(geo_alignedbox) { for(int i = 0; i < g_repeat; i++) { CALL_SUBTEST_1( (alignedboxNonIntegralRotatable(AlignedBox2f(), &rotate2D)) ); CALL_SUBTEST_2( alignedboxCastTests(AlignedBox2f()) ); CALL_SUBTEST_3( (alignedboxNonIntegralRotatable(AlignedBox3f(), &rotate3DZAxis)) ); CALL_SUBTEST_4( alignedboxCastTests(AlignedBox3f()) ); CALL_SUBTEST_5( (alignedboxNonIntegralRotatable(AlignedBox4d(), &rotate4DZWAxis)) ); CALL_SUBTEST_6( alignedboxCastTests(AlignedBox4d()) ); CALL_SUBTEST_7( alignedboxTranslatable(AlignedBox1d()) ); CALL_SUBTEST_8( alignedboxCastTests(AlignedBox1d()) ); CALL_SUBTEST_9( alignedboxTranslatable(AlignedBox1i()) ); CALL_SUBTEST_10( (alignedboxRotatable(AlignedBox2i(), &rotate2DIntegral)) ); CALL_SUBTEST_11( (alignedboxRotatable(AlignedBox3i(), &rotate3DZAxisIntegral)) ); CALL_SUBTEST_14( alignedbox(AlignedBox(4)) ); } CALL_SUBTEST_12( specificTest1() ); CALL_SUBTEST_13( specificTest2() ); }