aboutsummaryrefslogtreecommitdiffhomepage
path: root/test/dynalloc.cpp
blob: 23c90a7b5e901a2916b2ff7a418bcf51dad98a36 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.

#include "main.h"

#if EIGEN_MAX_ALIGN_BYTES>0
#define ALIGNMENT EIGEN_MAX_ALIGN_BYTES
#else
#define ALIGNMENT 1
#endif

typedef Matrix<float,16,1> Vector16f;
typedef Matrix<float,8,1> Vector8f;

void check_handmade_aligned_malloc()
{
  for(int i = 1; i < 1000; i++)
  {
    char *p = (char*)internal::handmade_aligned_malloc(i);
    VERIFY(internal::UIntPtr(p)%ALIGNMENT==0);
    // if the buffer is wrongly allocated this will give a bad write --> check with valgrind
    for(int j = 0; j < i; j++) p[j]=0;
    internal::handmade_aligned_free(p);
  }
}

void check_aligned_malloc()
{
  for(int i = ALIGNMENT; i < 1000; i++)
  {
    char *p = (char*)internal::aligned_malloc(i);
    VERIFY(internal::UIntPtr(p)%ALIGNMENT==0);
    // if the buffer is wrongly allocated this will give a bad write --> check with valgrind
    for(int j = 0; j < i; j++) p[j]=0;
    internal::aligned_free(p);
  }
}

void check_aligned_new()
{
  for(int i = ALIGNMENT; i < 1000; i++)
  {
    float *p = internal::aligned_new<float>(i);
    VERIFY(internal::UIntPtr(p)%ALIGNMENT==0);
    // if the buffer is wrongly allocated this will give a bad write --> check with valgrind
    for(int j = 0; j < i; j++) p[j]=0;
    internal::aligned_delete(p,i);
  }
}

void check_aligned_stack_alloc()
{
  for(int i = ALIGNMENT; i < 400; i++)
  {
    ei_declare_aligned_stack_constructed_variable(float,p,i,0);
    VERIFY(internal::UIntPtr(p)%ALIGNMENT==0);
    // if the buffer is wrongly allocated this will give a bad write --> check with valgrind
    for(int j = 0; j < i; j++) p[j]=0;
  }
}


// test compilation with both a struct and a class...
struct MyStruct
{
  EIGEN_MAKE_ALIGNED_OPERATOR_NEW
  char dummychar;
  Vector16f avec;
};

class MyClassA
{
  public:
    EIGEN_MAKE_ALIGNED_OPERATOR_NEW
    char dummychar;
    Vector16f avec;
};

template<typename T> void check_dynaligned()
{
  // TODO have to be updated once we support multiple alignment values
  if(T::SizeAtCompileTime % ALIGNMENT == 0)
  {
    T* obj = new T;
    VERIFY(T::NeedsToAlign==1);
    VERIFY(internal::UIntPtr(obj)%ALIGNMENT==0);
    delete obj;
  }
}

template<typename T> void check_custom_new_delete()
{
  {
    T* t = new T;
    delete t;
  }
  
  {
    std::size_t N = internal::random<std::size_t>(1,10);
    T* t = new T[N];
    delete[] t;
  }
  
#if EIGEN_MAX_ALIGN_BYTES>0 && (!EIGEN_HAS_CXX17_OVERALIGN)
  {
    T* t = static_cast<T *>((T::operator new)(sizeof(T)));
    (T::operator delete)(t, sizeof(T));
  }
  
  {
    T* t = static_cast<T *>((T::operator new)(sizeof(T)));
    (T::operator delete)(t);
  }
#endif
}

EIGEN_DECLARE_TEST(dynalloc)
{
  // low level dynamic memory allocation
  CALL_SUBTEST(check_handmade_aligned_malloc());
  CALL_SUBTEST(check_aligned_malloc());
  CALL_SUBTEST(check_aligned_new());
  CALL_SUBTEST(check_aligned_stack_alloc());

  for (int i=0; i<g_repeat*100; ++i)
  {
    CALL_SUBTEST( check_custom_new_delete<Vector4f>() );
    CALL_SUBTEST( check_custom_new_delete<Vector2f>() );
    CALL_SUBTEST( check_custom_new_delete<Matrix4f>() );
    CALL_SUBTEST( check_custom_new_delete<MatrixXi>() );
  }
  
  // check static allocation, who knows ?
  #if EIGEN_MAX_STATIC_ALIGN_BYTES
  for (int i=0; i<g_repeat*100; ++i)
  {
    CALL_SUBTEST(check_dynaligned<Vector4f>() );
    CALL_SUBTEST(check_dynaligned<Vector2d>() );
    CALL_SUBTEST(check_dynaligned<Matrix4f>() );
    CALL_SUBTEST(check_dynaligned<Vector4d>() );
    CALL_SUBTEST(check_dynaligned<Vector4i>() );
    CALL_SUBTEST(check_dynaligned<Vector8f>() );
    CALL_SUBTEST(check_dynaligned<Vector16f>() );
  }

  {
    MyStruct foo0;  VERIFY(internal::UIntPtr(foo0.avec.data())%ALIGNMENT==0);
    MyClassA fooA;  VERIFY(internal::UIntPtr(fooA.avec.data())%ALIGNMENT==0);
  }
  
  // dynamic allocation, single object
  for (int i=0; i<g_repeat*100; ++i)
  {
    MyStruct *foo0 = new MyStruct();  VERIFY(internal::UIntPtr(foo0->avec.data())%ALIGNMENT==0);
    MyClassA *fooA = new MyClassA();  VERIFY(internal::UIntPtr(fooA->avec.data())%ALIGNMENT==0);
    delete foo0;
    delete fooA;
  }

  // dynamic allocation, array
  const int N = 10;
  for (int i=0; i<g_repeat*100; ++i)
  {
    MyStruct *foo0 = new MyStruct[N];  VERIFY(internal::UIntPtr(foo0->avec.data())%ALIGNMENT==0);
    MyClassA *fooA = new MyClassA[N];  VERIFY(internal::UIntPtr(fooA->avec.data())%ALIGNMENT==0);
    delete[] foo0;
    delete[] fooA;
  }
  #endif
  
}