// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2008 Gael Guennebaud // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #include "main.h" #if EIGEN_MAX_ALIGN_BYTES>0 #define ALIGNMENT EIGEN_MAX_ALIGN_BYTES #else #define ALIGNMENT 1 #endif typedef Matrix Vector16f; typedef Matrix Vector8f; void check_handmade_aligned_malloc() { for(int i = 1; i < 1000; i++) { char *p = (char*)internal::handmade_aligned_malloc(i); VERIFY(internal::UIntPtr(p)%ALIGNMENT==0); // if the buffer is wrongly allocated this will give a bad write --> check with valgrind for(int j = 0; j < i; j++) p[j]=0; internal::handmade_aligned_free(p); } } void check_aligned_malloc() { for(int i = ALIGNMENT; i < 1000; i++) { char *p = (char*)internal::aligned_malloc(i); VERIFY(internal::UIntPtr(p)%ALIGNMENT==0); // if the buffer is wrongly allocated this will give a bad write --> check with valgrind for(int j = 0; j < i; j++) p[j]=0; internal::aligned_free(p); } } void check_aligned_new() { for(int i = ALIGNMENT; i < 1000; i++) { float *p = internal::aligned_new(i); VERIFY(internal::UIntPtr(p)%ALIGNMENT==0); // if the buffer is wrongly allocated this will give a bad write --> check with valgrind for(int j = 0; j < i; j++) p[j]=0; internal::aligned_delete(p,i); } } void check_aligned_stack_alloc() { for(int i = ALIGNMENT; i < 400; i++) { ei_declare_aligned_stack_constructed_variable(float,p,i,0); VERIFY(internal::UIntPtr(p)%ALIGNMENT==0); // if the buffer is wrongly allocated this will give a bad write --> check with valgrind for(int j = 0; j < i; j++) p[j]=0; } } // test compilation with both a struct and a class... struct MyStruct { EIGEN_MAKE_ALIGNED_OPERATOR_NEW char dummychar; Vector16f avec; }; class MyClassA { public: EIGEN_MAKE_ALIGNED_OPERATOR_NEW char dummychar; Vector16f avec; }; template void check_dynaligned() { // TODO have to be updated once we support multiple alignment values if(T::SizeAtCompileTime % ALIGNMENT == 0) { T* obj = new T; VERIFY(T::NeedsToAlign==1); VERIFY(internal::UIntPtr(obj)%ALIGNMENT==0); delete obj; } } template void check_custom_new_delete() { { T* t = new T; delete t; } { std::size_t N = internal::random(1,10); T* t = new T[N]; delete[] t; } #if EIGEN_MAX_ALIGN_BYTES>0 && (!EIGEN_HAS_CXX17_OVERALIGN) { T* t = static_cast((T::operator new)(sizeof(T))); (T::operator delete)(t, sizeof(T)); } { T* t = static_cast((T::operator new)(sizeof(T))); (T::operator delete)(t); } #endif } EIGEN_DECLARE_TEST(dynalloc) { // low level dynamic memory allocation CALL_SUBTEST(check_handmade_aligned_malloc()); CALL_SUBTEST(check_aligned_malloc()); CALL_SUBTEST(check_aligned_new()); CALL_SUBTEST(check_aligned_stack_alloc()); for (int i=0; i() ); CALL_SUBTEST( check_custom_new_delete() ); CALL_SUBTEST( check_custom_new_delete() ); CALL_SUBTEST( check_custom_new_delete() ); } // check static allocation, who knows ? #if EIGEN_MAX_STATIC_ALIGN_BYTES for (int i=0; i() ); CALL_SUBTEST(check_dynaligned() ); CALL_SUBTEST(check_dynaligned() ); CALL_SUBTEST(check_dynaligned() ); CALL_SUBTEST(check_dynaligned() ); CALL_SUBTEST(check_dynaligned() ); CALL_SUBTEST(check_dynaligned() ); } { MyStruct foo0; VERIFY(internal::UIntPtr(foo0.avec.data())%ALIGNMENT==0); MyClassA fooA; VERIFY(internal::UIntPtr(fooA.avec.data())%ALIGNMENT==0); } // dynamic allocation, single object for (int i=0; iavec.data())%ALIGNMENT==0); MyClassA *fooA = new MyClassA(); VERIFY(internal::UIntPtr(fooA->avec.data())%ALIGNMENT==0); delete foo0; delete fooA; } // dynamic allocation, array const int N = 10; for (int i=0; iavec.data())%ALIGNMENT==0); MyClassA *fooA = new MyClassA[N]; VERIFY(internal::UIntPtr(fooA->avec.data())%ALIGNMENT==0); delete[] foo0; delete[] fooA; } #endif }