aboutsummaryrefslogtreecommitdiffhomepage
path: root/test/array_reverse.cpp
blob: c77528a5bba280a30af5fc5c0feff638d1b4762d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
// Copyright (C) 2009 Ricard Marxer <email@ricardmarxer.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.

#include "main.h"
#include <iostream>

using namespace std;

template<typename MatrixType> void reverse(const MatrixType& m)
{
  typedef typename MatrixType::Scalar Scalar;
  typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType;

  Index rows = m.rows();
  Index cols = m.cols();

  // this test relies a lot on Random.h, and there's not much more that we can do
  // to test it, hence I consider that we will have tested Random.h
  MatrixType m1 = MatrixType::Random(rows, cols), m2;
  VectorType v1 = VectorType::Random(rows);

  MatrixType m1_r = m1.reverse();
  // Verify that MatrixBase::reverse() works
  for ( int i = 0; i < rows; i++ ) {
    for ( int j = 0; j < cols; j++ ) {
      VERIFY_IS_APPROX(m1_r(i, j), m1(rows - 1 - i, cols - 1 - j));
    }
  }

  Reverse<MatrixType> m1_rd(m1);
  // Verify that a Reverse default (in both directions) of an expression works
  for ( int i = 0; i < rows; i++ ) {
    for ( int j = 0; j < cols; j++ ) {
      VERIFY_IS_APPROX(m1_rd(i, j), m1(rows - 1 - i, cols - 1 - j));
    }
  }

  Reverse<MatrixType, BothDirections> m1_rb(m1);
  // Verify that a Reverse in both directions of an expression works
  for ( int i = 0; i < rows; i++ ) {
    for ( int j = 0; j < cols; j++ ) {
      VERIFY_IS_APPROX(m1_rb(i, j), m1(rows - 1 - i, cols - 1 - j));
    }
  }

  Reverse<MatrixType, Vertical> m1_rv(m1);
  // Verify that a Reverse in the vertical directions of an expression works
  for ( int i = 0; i < rows; i++ ) {
    for ( int j = 0; j < cols; j++ ) {
      VERIFY_IS_APPROX(m1_rv(i, j), m1(rows - 1 - i, j));
    }
  }

  Reverse<MatrixType, Horizontal> m1_rh(m1);
  // Verify that a Reverse in the horizontal directions of an expression works
  for ( int i = 0; i < rows; i++ ) {
    for ( int j = 0; j < cols; j++ ) {
      VERIFY_IS_APPROX(m1_rh(i, j), m1(i, cols - 1 - j));
    }
  }

  VectorType v1_r = v1.reverse();
  // Verify that a VectorType::reverse() of an expression works
  for ( int i = 0; i < rows; i++ ) {
    VERIFY_IS_APPROX(v1_r(i), v1(rows - 1 - i));
  }

  MatrixType m1_cr = m1.colwise().reverse();
  // Verify that PartialRedux::reverse() works (for colwise())
  for ( int i = 0; i < rows; i++ ) {
    for ( int j = 0; j < cols; j++ ) {
      VERIFY_IS_APPROX(m1_cr(i, j), m1(rows - 1 - i, j));
    }
  }

  MatrixType m1_rr = m1.rowwise().reverse();
  // Verify that PartialRedux::reverse() works (for rowwise())
  for ( int i = 0; i < rows; i++ ) {
    for ( int j = 0; j < cols; j++ ) {
      VERIFY_IS_APPROX(m1_rr(i, j), m1(i, cols - 1 - j));
    }
  }

  Scalar x = internal::random<Scalar>();

  Index r = internal::random<Index>(0, rows-1),
        c = internal::random<Index>(0, cols-1);

  m1.reverse()(r, c) = x;
  VERIFY_IS_APPROX(x, m1(rows - 1 - r, cols - 1 - c));
  
  m2 = m1;
  m2.reverseInPlace();
  VERIFY_IS_APPROX(m2,m1.reverse().eval());
  
  m2 = m1;
  m2.col(0).reverseInPlace();
  VERIFY_IS_APPROX(m2.col(0),m1.col(0).reverse().eval());
  
  m2 = m1;
  m2.row(0).reverseInPlace();
  VERIFY_IS_APPROX(m2.row(0),m1.row(0).reverse().eval());
  
  m2 = m1;
  m2.rowwise().reverseInPlace();
  VERIFY_IS_APPROX(m2,m1.rowwise().reverse().eval());
  
  m2 = m1;
  m2.colwise().reverseInPlace();
  VERIFY_IS_APPROX(m2,m1.colwise().reverse().eval());

  m1.colwise().reverse()(r, c) = x;
  VERIFY_IS_APPROX(x, m1(rows - 1 - r, c));

  m1.rowwise().reverse()(r, c) = x;
  VERIFY_IS_APPROX(x, m1(r, cols - 1 - c));
}

template<int>
void array_reverse_extra()
{
  Vector4f x; x << 1, 2, 3, 4;
  Vector4f y; y << 4, 3, 2, 1;
  VERIFY(x.reverse()[1] == 3);
  VERIFY(x.reverse() == y);
}

// Simpler version of reverseInPlace leveraging a bug
// in clang 6/7 with -O2 and AVX or AVX512 enabled.
// This simpler version ensure that the clang bug is not simply hidden
// through mis-inlining of reverseInPlace or other minor changes.
template<typename MatrixType>
EIGEN_DONT_INLINE
void bug1684_job1(MatrixType& m1, MatrixType& m2)
{
  m2 = m1;
  m2.col(0).swap(m2.col(3));
  m2.col(1).swap(m2.col(2));
}

template<typename MatrixType>
EIGEN_DONT_INLINE
void bug1684_job2(MatrixType& m1, MatrixType& m2)
{
  m2 = m1; // load m1/m2 in AVX registers
  m1.col(0) = m2.col(3); // perform 128 bits moves
  m1.col(1) = m2.col(2);
  m1.col(2) = m2.col(1);
  m1.col(3) = m2.col(0);
}

template<typename MatrixType>
EIGEN_DONT_INLINE
void bug1684_job3(MatrixType& m1, MatrixType& m2)
{
  m2 = m1;
  Vector4f tmp;
  tmp = m2.col(0);
  m2.col(0) = m2.col(3);
  m2.col(3) = tmp;
  tmp = m2.col(1);
  m2.col(1) = m2.col(2);
  m2.col(2) = tmp;
  
}

template<int>
void bug1684()
{
  Matrix4f m1 = Matrix4f::Random();
  Matrix4f m2 = Matrix4f::Random();
  bug1684_job1(m1,m2);
  VERIFY_IS_APPROX(m2, m1.rowwise().reverse().eval());
  bug1684_job2(m1,m2);
  VERIFY_IS_APPROX(m2, m1.rowwise().reverse().eval());
  // This one still fail after our swap's workaround,
  // but I expect users not to implement their own swap.
  // bug1684_job3(m1,m2);
  // VERIFY_IS_APPROX(m2, m1.rowwise().reverse().eval());
}

EIGEN_DECLARE_TEST(array_reverse)
{
  for(int i = 0; i < g_repeat; i++) {
    CALL_SUBTEST_1( reverse(Matrix<float, 1, 1>()) );
    CALL_SUBTEST_2( reverse(Matrix2f()) );
    CALL_SUBTEST_3( reverse(Matrix4f()) );
    CALL_SUBTEST_4( reverse(Matrix4d()) );
    CALL_SUBTEST_5( reverse(MatrixXcf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
    CALL_SUBTEST_6( reverse(MatrixXi(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
    CALL_SUBTEST_7( reverse(MatrixXcd(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
    CALL_SUBTEST_8( reverse(Matrix<float, 100, 100>()) );
    CALL_SUBTEST_9( reverse(Matrix<float,Dynamic,Dynamic,RowMajor>(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
    CALL_SUBTEST_3( bug1684<0>() );
  }
  CALL_SUBTEST_3( array_reverse_extra<0>() );
}