// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2006-2008 Benoit Jacob // Copyright (C) 2009 Ricard Marxer // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #include "main.h" #include using namespace std; template void reverse(const MatrixType& m) { typedef typename MatrixType::Scalar Scalar; typedef Matrix VectorType; Index rows = m.rows(); Index cols = m.cols(); // this test relies a lot on Random.h, and there's not much more that we can do // to test it, hence I consider that we will have tested Random.h MatrixType m1 = MatrixType::Random(rows, cols), m2; VectorType v1 = VectorType::Random(rows); MatrixType m1_r = m1.reverse(); // Verify that MatrixBase::reverse() works for ( int i = 0; i < rows; i++ ) { for ( int j = 0; j < cols; j++ ) { VERIFY_IS_APPROX(m1_r(i, j), m1(rows - 1 - i, cols - 1 - j)); } } Reverse m1_rd(m1); // Verify that a Reverse default (in both directions) of an expression works for ( int i = 0; i < rows; i++ ) { for ( int j = 0; j < cols; j++ ) { VERIFY_IS_APPROX(m1_rd(i, j), m1(rows - 1 - i, cols - 1 - j)); } } Reverse m1_rb(m1); // Verify that a Reverse in both directions of an expression works for ( int i = 0; i < rows; i++ ) { for ( int j = 0; j < cols; j++ ) { VERIFY_IS_APPROX(m1_rb(i, j), m1(rows - 1 - i, cols - 1 - j)); } } Reverse m1_rv(m1); // Verify that a Reverse in the vertical directions of an expression works for ( int i = 0; i < rows; i++ ) { for ( int j = 0; j < cols; j++ ) { VERIFY_IS_APPROX(m1_rv(i, j), m1(rows - 1 - i, j)); } } Reverse m1_rh(m1); // Verify that a Reverse in the horizontal directions of an expression works for ( int i = 0; i < rows; i++ ) { for ( int j = 0; j < cols; j++ ) { VERIFY_IS_APPROX(m1_rh(i, j), m1(i, cols - 1 - j)); } } VectorType v1_r = v1.reverse(); // Verify that a VectorType::reverse() of an expression works for ( int i = 0; i < rows; i++ ) { VERIFY_IS_APPROX(v1_r(i), v1(rows - 1 - i)); } MatrixType m1_cr = m1.colwise().reverse(); // Verify that PartialRedux::reverse() works (for colwise()) for ( int i = 0; i < rows; i++ ) { for ( int j = 0; j < cols; j++ ) { VERIFY_IS_APPROX(m1_cr(i, j), m1(rows - 1 - i, j)); } } MatrixType m1_rr = m1.rowwise().reverse(); // Verify that PartialRedux::reverse() works (for rowwise()) for ( int i = 0; i < rows; i++ ) { for ( int j = 0; j < cols; j++ ) { VERIFY_IS_APPROX(m1_rr(i, j), m1(i, cols - 1 - j)); } } Scalar x = internal::random(); Index r = internal::random(0, rows-1), c = internal::random(0, cols-1); m1.reverse()(r, c) = x; VERIFY_IS_APPROX(x, m1(rows - 1 - r, cols - 1 - c)); m2 = m1; m2.reverseInPlace(); VERIFY_IS_APPROX(m2,m1.reverse().eval()); m2 = m1; m2.col(0).reverseInPlace(); VERIFY_IS_APPROX(m2.col(0),m1.col(0).reverse().eval()); m2 = m1; m2.row(0).reverseInPlace(); VERIFY_IS_APPROX(m2.row(0),m1.row(0).reverse().eval()); m2 = m1; m2.rowwise().reverseInPlace(); VERIFY_IS_APPROX(m2,m1.rowwise().reverse().eval()); m2 = m1; m2.colwise().reverseInPlace(); VERIFY_IS_APPROX(m2,m1.colwise().reverse().eval()); m1.colwise().reverse()(r, c) = x; VERIFY_IS_APPROX(x, m1(rows - 1 - r, c)); m1.rowwise().reverse()(r, c) = x; VERIFY_IS_APPROX(x, m1(r, cols - 1 - c)); } template void array_reverse_extra() { Vector4f x; x << 1, 2, 3, 4; Vector4f y; y << 4, 3, 2, 1; VERIFY(x.reverse()[1] == 3); VERIFY(x.reverse() == y); } // Simpler version of reverseInPlace leveraging a bug // in clang 6/7 with -O2 and AVX or AVX512 enabled. // This simpler version ensure that the clang bug is not simply hidden // through mis-inlining of reverseInPlace or other minor changes. template EIGEN_DONT_INLINE void bug1684_job1(MatrixType& m1, MatrixType& m2) { m2 = m1; m2.col(0).swap(m2.col(3)); m2.col(1).swap(m2.col(2)); } template EIGEN_DONT_INLINE void bug1684_job2(MatrixType& m1, MatrixType& m2) { m2 = m1; // load m1/m2 in AVX registers m1.col(0) = m2.col(3); // perform 128 bits moves m1.col(1) = m2.col(2); m1.col(2) = m2.col(1); m1.col(3) = m2.col(0); } template EIGEN_DONT_INLINE void bug1684_job3(MatrixType& m1, MatrixType& m2) { m2 = m1; Vector4f tmp; tmp = m2.col(0); m2.col(0) = m2.col(3); m2.col(3) = tmp; tmp = m2.col(1); m2.col(1) = m2.col(2); m2.col(2) = tmp; } template void bug1684() { Matrix4f m1 = Matrix4f::Random(); Matrix4f m2 = Matrix4f::Random(); bug1684_job1(m1,m2); VERIFY_IS_APPROX(m2, m1.rowwise().reverse().eval()); bug1684_job2(m1,m2); VERIFY_IS_APPROX(m2, m1.rowwise().reverse().eval()); // This one still fail after our swap's workaround, // but I expect users not to implement their own swap. // bug1684_job3(m1,m2); // VERIFY_IS_APPROX(m2, m1.rowwise().reverse().eval()); } EIGEN_DECLARE_TEST(array_reverse) { for(int i = 0; i < g_repeat; i++) { CALL_SUBTEST_1( reverse(Matrix()) ); CALL_SUBTEST_2( reverse(Matrix2f()) ); CALL_SUBTEST_3( reverse(Matrix4f()) ); CALL_SUBTEST_4( reverse(Matrix4d()) ); CALL_SUBTEST_5( reverse(MatrixXcf(internal::random(1,EIGEN_TEST_MAX_SIZE), internal::random(1,EIGEN_TEST_MAX_SIZE))) ); CALL_SUBTEST_6( reverse(MatrixXi(internal::random(1,EIGEN_TEST_MAX_SIZE), internal::random(1,EIGEN_TEST_MAX_SIZE))) ); CALL_SUBTEST_7( reverse(MatrixXcd(internal::random(1,EIGEN_TEST_MAX_SIZE), internal::random(1,EIGEN_TEST_MAX_SIZE))) ); CALL_SUBTEST_8( reverse(Matrix()) ); CALL_SUBTEST_9( reverse(Matrix(internal::random(1,EIGEN_TEST_MAX_SIZE), internal::random(1,EIGEN_TEST_MAX_SIZE))) ); CALL_SUBTEST_3( bug1684<0>() ); } CALL_SUBTEST_3( array_reverse_extra<0>() ); }