aboutsummaryrefslogtreecommitdiffhomepage
path: root/bench/sparse_trisolver.cpp
blob: 13f4f0a24801343df19d76d37f6dab7b850a9c88 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220

//g++ -O3 -g0 -DNDEBUG  sparse_product.cpp -I.. -I/home/gael/Coding/LinearAlgebra/mtl4/ -DDENSITY=0.005 -DSIZE=10000 && ./a.out
//g++ -O3 -g0 -DNDEBUG  sparse_product.cpp -I.. -I/home/gael/Coding/LinearAlgebra/mtl4/ -DDENSITY=0.05 -DSIZE=2000 && ./a.out
// -DNOGMM -DNOMTL
// -I /home/gael/Coding/LinearAlgebra/CSparse/Include/ /home/gael/Coding/LinearAlgebra/CSparse/Lib/libcsparse.a

#ifndef SIZE
#define SIZE 10000
#endif

#ifndef DENSITY
#define DENSITY 0.01
#endif

#ifndef REPEAT
#define REPEAT 1
#endif

#include "BenchSparseUtil.h"

#ifndef MINDENSITY
#define MINDENSITY 0.0004
#endif

#ifndef NBTRIES
#define NBTRIES 10
#endif

#define BENCH(X) \
  timer.reset(); \
  for (int _j=0; _j<NBTRIES; ++_j) { \
    timer.start(); \
    for (int _k=0; _k<REPEAT; ++_k) { \
        X  \
  } timer.stop(); }

typedef SparseMatrix<Scalar,UpperTriangular> EigenSparseTriMatrix;
typedef SparseMatrix<Scalar,RowMajorBit|UpperTriangular> EigenSparseTriMatrixRow;

void fillMatrix(float density, int rows, int cols,  EigenSparseTriMatrix& dst)
{
  dst.startFill(rows*cols*density);
  for(int j = 0; j < cols; j++)
  {
    for(int i = 0; i < j; i++)
    {
      Scalar v = (internal::random<float>(0,1) < density) ? internal::random<Scalar>() : 0;
      if (v!=0)
        dst.fill(i,j) = v;
    }
    dst.fill(j,j) = internal::random<Scalar>();
  }
  dst.endFill();
}

int main(int argc, char *argv[])
{
  int rows = SIZE;
  int cols = SIZE;
  float density = DENSITY;
  BenchTimer timer;
  #if 1
  EigenSparseTriMatrix sm1(rows,cols);
  typedef Matrix<Scalar,Dynamic,1> DenseVector;
  DenseVector b = DenseVector::Random(cols);
  DenseVector x = DenseVector::Random(cols);

  bool densedone = false;

  for (float density = DENSITY; density>=MINDENSITY; density*=0.5)
  {
    EigenSparseTriMatrix sm1(rows, cols);
    fillMatrix(density, rows, cols, sm1);

    // dense matrices
    #ifdef DENSEMATRIX
    if (!densedone)
    {
      densedone = true;
      std::cout << "Eigen Dense\t" << density*100 << "%\n";
      DenseMatrix m1(rows,cols);
      Matrix<Scalar,Dynamic,Dynamic,Dynamic,Dynamic,RowMajorBit> m2(rows,cols);
      eiToDense(sm1, m1);
      m2 = m1;

      BENCH(x = m1.marked<UpperTriangular>().solveTriangular(b);)
      std::cout << "   colmajor^-1 * b:\t" << timer.value() << endl;
//       std::cerr << x.transpose() << "\n";

      BENCH(x = m2.marked<UpperTriangular>().solveTriangular(b);)
      std::cout << "   rowmajor^-1 * b:\t" << timer.value() << endl;
//       std::cerr << x.transpose() << "\n";
    }
    #endif

    // eigen sparse matrices
    {
      std::cout << "Eigen sparse\t" << density*100 << "%\n";
      EigenSparseTriMatrixRow sm2 = sm1;

      BENCH(x = sm1.solveTriangular(b);)
      std::cout << "   colmajor^-1 * b:\t" << timer.value() << endl;
//       std::cerr << x.transpose() << "\n";

      BENCH(x = sm2.solveTriangular(b);)
      std::cout << "   rowmajor^-1 * b:\t" << timer.value() << endl;
//       std::cerr << x.transpose() << "\n";

//       x = b;
//       BENCH(sm1.inverseProductInPlace(x);)
//       std::cout << "   colmajor^-1 * b:\t" << timer.value() << " (inplace)" << endl;
//       std::cerr << x.transpose() << "\n";
//
//       x = b;
//       BENCH(sm2.inverseProductInPlace(x);)
//       std::cout << "   rowmajor^-1 * b:\t" << timer.value() << " (inplace)" << endl;
//       std::cerr << x.transpose() << "\n";
    }



    // CSparse
    #ifdef CSPARSE
    {
      std::cout << "CSparse \t" << density*100 << "%\n";
      cs *m1;
      eiToCSparse(sm1, m1);

      BENCH(x = b; if (!cs_lsolve (m1, x.data())){std::cerr << "cs_lsolve failed\n"; break;}; )
      std::cout << "   colmajor^-1 * b:\t" << timer.value() << endl;
    }
    #endif

    // GMM++
    #ifndef NOGMM
    {
      std::cout << "GMM++ sparse\t" << density*100 << "%\n";
      GmmSparse m1(rows,cols);
      gmm::csr_matrix<Scalar> m2;
      eiToGmm(sm1, m1);
      gmm::copy(m1,m2);
      std::vector<Scalar> gmmX(cols), gmmB(cols);
      Map<Matrix<Scalar,Dynamic,1> >(&gmmX[0], cols) = x;
      Map<Matrix<Scalar,Dynamic,1> >(&gmmB[0], cols) = b;

      gmmX = gmmB;
      BENCH(gmm::upper_tri_solve(m1, gmmX, false);)
      std::cout << "   colmajor^-1 * b:\t" << timer.value() << endl;
//       std::cerr << Map<Matrix<Scalar,Dynamic,1> >(&gmmX[0], cols).transpose() << "\n";

      gmmX = gmmB;
      BENCH(gmm::upper_tri_solve(m2, gmmX, false);)
      timer.stop();
      std::cout << "   rowmajor^-1 * b:\t" << timer.value() << endl;
//       std::cerr << Map<Matrix<Scalar,Dynamic,1> >(&gmmX[0], cols).transpose() << "\n";
    }
    #endif

    // MTL4
    #ifndef NOMTL
    {
      std::cout << "MTL4\t" << density*100 << "%\n";
      MtlSparse m1(rows,cols);
      MtlSparseRowMajor m2(rows,cols);
      eiToMtl(sm1, m1);
      m2 = m1;
      mtl::dense_vector<Scalar> x(rows, 1.0);
      mtl::dense_vector<Scalar> b(rows, 1.0);

      BENCH(x = mtl::upper_trisolve(m1,b);)
      std::cout << "   colmajor^-1 * b:\t" << timer.value() << endl;
//       std::cerr << x << "\n";

      BENCH(x = mtl::upper_trisolve(m2,b);)
      std::cout << "   rowmajor^-1 * b:\t" << timer.value() << endl;
//       std::cerr << x << "\n";
    }
    #endif


    std::cout << "\n\n";
  }
  #endif

  #if 0
    // bench small matrices (in-place versus return bye value)
    {
      timer.reset();
      for (int _j=0; _j<10; ++_j) {
        Matrix4f m = Matrix4f::Random();
        Vector4f b = Vector4f::Random();
        Vector4f x = Vector4f::Random();
        timer.start();
        for (int _k=0; _k<1000000; ++_k) {
          b = m.inverseProduct(b);
        }
        timer.stop();
      }
      std::cout << "4x4 :\t" << timer.value() << endl;
    }

    {
      timer.reset();
      for (int _j=0; _j<10; ++_j) {
        Matrix4f m = Matrix4f::Random();
        Vector4f b = Vector4f::Random();
        Vector4f x = Vector4f::Random();
        timer.start();
        for (int _k=0; _k<1000000; ++_k) {
          m.inverseProductInPlace(x);
        }
        timer.stop();
      }
      std::cout << "4x4 IP :\t" << timer.value() << endl;
    }
  #endif

  return 0;
}