//g++ -O3 -g0 -DNDEBUG sparse_product.cpp -I.. -I/home/gael/Coding/LinearAlgebra/mtl4/ -DDENSITY=0.005 -DSIZE=10000 && ./a.out //g++ -O3 -g0 -DNDEBUG sparse_product.cpp -I.. -I/home/gael/Coding/LinearAlgebra/mtl4/ -DDENSITY=0.05 -DSIZE=2000 && ./a.out // -DNOGMM -DNOMTL // -I /home/gael/Coding/LinearAlgebra/CSparse/Include/ /home/gael/Coding/LinearAlgebra/CSparse/Lib/libcsparse.a #ifndef SIZE #define SIZE 10000 #endif #ifndef DENSITY #define DENSITY 0.01 #endif #ifndef REPEAT #define REPEAT 1 #endif #include "BenchSparseUtil.h" #ifndef MINDENSITY #define MINDENSITY 0.0004 #endif #ifndef NBTRIES #define NBTRIES 10 #endif #define BENCH(X) \ timer.reset(); \ for (int _j=0; _j EigenSparseTriMatrix; typedef SparseMatrix EigenSparseTriMatrixRow; void fillMatrix(float density, int rows, int cols, EigenSparseTriMatrix& dst) { dst.startFill(rows*cols*density); for(int j = 0; j < cols; j++) { for(int i = 0; i < j; i++) { Scalar v = (internal::random(0,1) < density) ? internal::random() : 0; if (v!=0) dst.fill(i,j) = v; } dst.fill(j,j) = internal::random(); } dst.endFill(); } int main(int argc, char *argv[]) { int rows = SIZE; int cols = SIZE; float density = DENSITY; BenchTimer timer; #if 1 EigenSparseTriMatrix sm1(rows,cols); typedef Matrix DenseVector; DenseVector b = DenseVector::Random(cols); DenseVector x = DenseVector::Random(cols); bool densedone = false; for (float density = DENSITY; density>=MINDENSITY; density*=0.5) { EigenSparseTriMatrix sm1(rows, cols); fillMatrix(density, rows, cols, sm1); // dense matrices #ifdef DENSEMATRIX if (!densedone) { densedone = true; std::cout << "Eigen Dense\t" << density*100 << "%\n"; DenseMatrix m1(rows,cols); Matrix m2(rows,cols); eiToDense(sm1, m1); m2 = m1; BENCH(x = m1.marked().solveTriangular(b);) std::cout << " colmajor^-1 * b:\t" << timer.value() << endl; // std::cerr << x.transpose() << "\n"; BENCH(x = m2.marked().solveTriangular(b);) std::cout << " rowmajor^-1 * b:\t" << timer.value() << endl; // std::cerr << x.transpose() << "\n"; } #endif // eigen sparse matrices { std::cout << "Eigen sparse\t" << density*100 << "%\n"; EigenSparseTriMatrixRow sm2 = sm1; BENCH(x = sm1.solveTriangular(b);) std::cout << " colmajor^-1 * b:\t" << timer.value() << endl; // std::cerr << x.transpose() << "\n"; BENCH(x = sm2.solveTriangular(b);) std::cout << " rowmajor^-1 * b:\t" << timer.value() << endl; // std::cerr << x.transpose() << "\n"; // x = b; // BENCH(sm1.inverseProductInPlace(x);) // std::cout << " colmajor^-1 * b:\t" << timer.value() << " (inplace)" << endl; // std::cerr << x.transpose() << "\n"; // // x = b; // BENCH(sm2.inverseProductInPlace(x);) // std::cout << " rowmajor^-1 * b:\t" << timer.value() << " (inplace)" << endl; // std::cerr << x.transpose() << "\n"; } // CSparse #ifdef CSPARSE { std::cout << "CSparse \t" << density*100 << "%\n"; cs *m1; eiToCSparse(sm1, m1); BENCH(x = b; if (!cs_lsolve (m1, x.data())){std::cerr << "cs_lsolve failed\n"; break;}; ) std::cout << " colmajor^-1 * b:\t" << timer.value() << endl; } #endif // GMM++ #ifndef NOGMM { std::cout << "GMM++ sparse\t" << density*100 << "%\n"; GmmSparse m1(rows,cols); gmm::csr_matrix m2; eiToGmm(sm1, m1); gmm::copy(m1,m2); std::vector gmmX(cols), gmmB(cols); Map >(&gmmX[0], cols) = x; Map >(&gmmB[0], cols) = b; gmmX = gmmB; BENCH(gmm::upper_tri_solve(m1, gmmX, false);) std::cout << " colmajor^-1 * b:\t" << timer.value() << endl; // std::cerr << Map >(&gmmX[0], cols).transpose() << "\n"; gmmX = gmmB; BENCH(gmm::upper_tri_solve(m2, gmmX, false);) timer.stop(); std::cout << " rowmajor^-1 * b:\t" << timer.value() << endl; // std::cerr << Map >(&gmmX[0], cols).transpose() << "\n"; } #endif // MTL4 #ifndef NOMTL { std::cout << "MTL4\t" << density*100 << "%\n"; MtlSparse m1(rows,cols); MtlSparseRowMajor m2(rows,cols); eiToMtl(sm1, m1); m2 = m1; mtl::dense_vector x(rows, 1.0); mtl::dense_vector b(rows, 1.0); BENCH(x = mtl::upper_trisolve(m1,b);) std::cout << " colmajor^-1 * b:\t" << timer.value() << endl; // std::cerr << x << "\n"; BENCH(x = mtl::upper_trisolve(m2,b);) std::cout << " rowmajor^-1 * b:\t" << timer.value() << endl; // std::cerr << x << "\n"; } #endif std::cout << "\n\n"; } #endif #if 0 // bench small matrices (in-place versus return bye value) { timer.reset(); for (int _j=0; _j<10; ++_j) { Matrix4f m = Matrix4f::Random(); Vector4f b = Vector4f::Random(); Vector4f x = Vector4f::Random(); timer.start(); for (int _k=0; _k<1000000; ++_k) { b = m.inverseProduct(b); } timer.stop(); } std::cout << "4x4 :\t" << timer.value() << endl; } { timer.reset(); for (int _j=0; _j<10; ++_j) { Matrix4f m = Matrix4f::Random(); Vector4f b = Vector4f::Random(); Vector4f x = Vector4f::Random(); timer.start(); for (int _k=0; _k<1000000; ++_k) { m.inverseProductInPlace(x); } timer.stop(); } std::cout << "4x4 IP :\t" << timer.value() << endl; } #endif return 0; }