aboutsummaryrefslogtreecommitdiffhomepage
path: root/Eigen/src/Core/arch/CUDA/Half.h
blob: bfda39df5e4ac2ff823e1f3f8d750d2c33210586 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
//
// The conversion routines are Copyright (c) Fabian Giesen, 2016.
// The original license follows:
//
// Copyright (c) Fabian Giesen, 2016
// All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted.
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.


// Standard 16-bit float type, mostly useful for GPUs. Defines a new
// type Eigen::half (inheriting from CUDA's __half struct) with
// operator overloads such that it behaves basically as an arithmetic
// type. It will be quite slow on CPUs (so it is recommended to stay
// in fp32 for CPUs, except for simple parameter conversions, I/O
// to disk and the likes), but fast on GPUs.


#ifndef EIGEN_HALF_CUDA_H
#define EIGEN_HALF_CUDA_H

#if __cplusplus > 199711L
#define EIGEN_EXPLICIT_CAST(tgt_type) explicit operator tgt_type()
#else
#define EIGEN_EXPLICIT_CAST(tgt_type) operator tgt_type()
#endif


namespace Eigen {

struct half;

namespace half_impl {

#if !defined(EIGEN_HAS_CUDA_FP16)
// Make our own __half_raw definition that is similar to CUDA's.
struct __half_raw {
  EIGEN_DEVICE_FUNC __half_raw() : x(0) {}
  explicit EIGEN_DEVICE_FUNC __half_raw(unsigned short raw) : x(raw) {}
  unsigned short x;
};
#elif defined(EIGEN_CUDACC_VER) && EIGEN_CUDACC_VER < 90000
// In CUDA < 9.0, __half is the equivalent of CUDA 9's __half_raw
typedef __half __half_raw;
#endif

EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC __half_raw raw_uint16_to_half(unsigned short x);
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC __half_raw float_to_half_rtne(float ff);
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC float half_to_float(__half_raw h);

struct half_base : public __half_raw {
  EIGEN_DEVICE_FUNC half_base() {}
  EIGEN_DEVICE_FUNC half_base(const half_base& h) : __half_raw(h) {}
  EIGEN_DEVICE_FUNC half_base(const __half_raw& h) : __half_raw(h) {}
#if defined(EIGEN_HAS_CUDA_FP16) && defined(EIGEN_CUDACC_VER) && EIGEN_CUDACC_VER >= 90000
  EIGEN_DEVICE_FUNC half_base(const __half& h) : __half_raw(*(__half_raw*)&h) {}
#endif
};

} // namespace half_impl

// Class definition.
struct half : public half_impl::half_base {
  #if !defined(EIGEN_HAS_CUDA_FP16) || (defined(EIGEN_CUDACC_VER) && EIGEN_CUDACC_VER < 90000)
    typedef half_impl::__half_raw __half_raw;
  #endif

  EIGEN_DEVICE_FUNC half() {}

  EIGEN_DEVICE_FUNC half(const __half_raw& h) : half_impl::half_base(h) {}
  EIGEN_DEVICE_FUNC half(const half& h) : half_impl::half_base(h) {}
#if defined(EIGEN_HAS_CUDA_FP16) && defined(EIGEN_CUDACC_VER) && EIGEN_CUDACC_VER >= 90000
  EIGEN_DEVICE_FUNC half(const __half& h) : half_impl::half_base(h) {}
#endif

  explicit EIGEN_DEVICE_FUNC half(bool b)
      : half_impl::half_base(half_impl::raw_uint16_to_half(b ? 0x3c00 : 0)) {}
  template<class T>
  explicit EIGEN_DEVICE_FUNC half(const T& val)
      : half_impl::half_base(half_impl::float_to_half_rtne(static_cast<float>(val))) {}
  explicit EIGEN_DEVICE_FUNC half(float f)
      : half_impl::half_base(half_impl::float_to_half_rtne(f)) {}

  EIGEN_DEVICE_FUNC EIGEN_EXPLICIT_CAST(bool) const {
    // +0.0 and -0.0 become false, everything else becomes true.
    return (x & 0x7fff) != 0;
  }
  EIGEN_DEVICE_FUNC EIGEN_EXPLICIT_CAST(signed char) const {
    return static_cast<signed char>(half_impl::half_to_float(*this));
  }
  EIGEN_DEVICE_FUNC EIGEN_EXPLICIT_CAST(unsigned char) const {
    return static_cast<unsigned char>(half_impl::half_to_float(*this));
  }
  EIGEN_DEVICE_FUNC EIGEN_EXPLICIT_CAST(short) const {
    return static_cast<short>(half_impl::half_to_float(*this));
  }
  EIGEN_DEVICE_FUNC EIGEN_EXPLICIT_CAST(unsigned short) const {
    return static_cast<unsigned short>(half_impl::half_to_float(*this));
  }
  EIGEN_DEVICE_FUNC EIGEN_EXPLICIT_CAST(int) const {
    return static_cast<int>(half_impl::half_to_float(*this));
  }
  EIGEN_DEVICE_FUNC EIGEN_EXPLICIT_CAST(unsigned int) const {
    return static_cast<unsigned int>(half_impl::half_to_float(*this));
  }
  EIGEN_DEVICE_FUNC EIGEN_EXPLICIT_CAST(long) const {
    return static_cast<long>(half_impl::half_to_float(*this));
  }
  EIGEN_DEVICE_FUNC EIGEN_EXPLICIT_CAST(unsigned long) const {
    return static_cast<unsigned long>(half_impl::half_to_float(*this));
  }
  EIGEN_DEVICE_FUNC EIGEN_EXPLICIT_CAST(long long) const {
    return static_cast<long long>(half_impl::half_to_float(*this));
  }
  EIGEN_DEVICE_FUNC EIGEN_EXPLICIT_CAST(unsigned long long) const {
    return static_cast<unsigned long long>(half_to_float(*this));
  }
  EIGEN_DEVICE_FUNC EIGEN_EXPLICIT_CAST(float) const {
    return half_impl::half_to_float(*this);
  }
  EIGEN_DEVICE_FUNC EIGEN_EXPLICIT_CAST(double) const {
    return static_cast<double>(half_impl::half_to_float(*this));
  }

  EIGEN_DEVICE_FUNC half& operator=(const half& other) {
    x = other.x;
    return *this;
  }
};

namespace half_impl {

#if defined(EIGEN_HAS_CUDA_FP16) && defined(EIGEN_CUDA_ARCH) && EIGEN_CUDA_ARCH >= 530

// Intrinsics for native fp16 support. Note that on current hardware,
// these are no faster than fp32 arithmetic (you need to use the half2
// versions to get the ALU speed increased), but you do save the
// conversion steps back and forth.

EIGEN_STRONG_INLINE __device__ half operator + (const half& a, const half& b) {
  return __hadd(a, b);
}
EIGEN_STRONG_INLINE __device__ half operator * (const half& a, const half& b) {
  return __hmul(a, b);
}
EIGEN_STRONG_INLINE __device__ half operator - (const half& a, const half& b) {
  return __hsub(a, b);
}
EIGEN_STRONG_INLINE __device__ half operator / (const half& a, const half& b) {
  float num = __half2float(a);
  float denom = __half2float(b);
  return __float2half(num / denom);
}
EIGEN_STRONG_INLINE __device__ half operator - (const half& a) {
  return __hneg(a);
}
EIGEN_STRONG_INLINE __device__ half& operator += (half& a, const half& b) {
  a = a + b;
  return a;
}
EIGEN_STRONG_INLINE __device__ half& operator *= (half& a, const half& b) {
  a = a * b;
  return a;
}
EIGEN_STRONG_INLINE __device__ half& operator -= (half& a, const half& b) {
  a = a - b;
  return a;
}
EIGEN_STRONG_INLINE __device__ half& operator /= (half& a, const half& b) {
  a = a / b;
  return a;
}
EIGEN_STRONG_INLINE __device__ bool operator == (const half& a, const half& b) {
  return __heq(a, b);
}
EIGEN_STRONG_INLINE __device__ bool operator != (const half& a, const half& b) {
  return __hne(a, b);
}
EIGEN_STRONG_INLINE __device__ bool operator < (const half& a, const half& b) {
  return __hlt(a, b);
}
EIGEN_STRONG_INLINE __device__ bool operator <= (const half& a, const half& b) {
  return __hle(a, b);
}
EIGEN_STRONG_INLINE __device__ bool operator > (const half& a, const half& b) {
  return __hgt(a, b);
}
EIGEN_STRONG_INLINE __device__ bool operator >= (const half& a, const half& b) {
  return __hge(a, b);
}

#else  // Emulate support for half floats

// Definitions for CPUs and older CUDA, mostly working through conversion
// to/from fp32.

EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half operator + (const half& a, const half& b) {
  return half(float(a) + float(b));
}
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half operator * (const half& a, const half& b) {
  return half(float(a) * float(b));
}
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half operator - (const half& a, const half& b) {
  return half(float(a) - float(b));
}
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half operator / (const half& a, const half& b) {
  return half(float(a) / float(b));
}
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half operator - (const half& a) {
  half result;
  result.x = a.x ^ 0x8000;
  return result;
}
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half& operator += (half& a, const half& b) {
  a = half(float(a) + float(b));
  return a;
}
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half& operator *= (half& a, const half& b) {
  a = half(float(a) * float(b));
  return a;
}
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half& operator -= (half& a, const half& b) {
  a = half(float(a) - float(b));
  return a;
}
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half& operator /= (half& a, const half& b) {
  a = half(float(a) / float(b));
  return a;
}
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bool operator == (const half& a, const half& b) {
  return float(a) == float(b);
}
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bool operator != (const half& a, const half& b) {
  return float(a) != float(b);
}
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bool operator < (const half& a, const half& b) {
  return float(a) < float(b);
}
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bool operator <= (const half& a, const half& b) {
  return float(a) <= float(b);
}
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bool operator > (const half& a, const half& b) {
  return float(a) > float(b);
}
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bool operator >= (const half& a, const half& b) {
  return float(a) >= float(b);
}

#endif  // Emulate support for half floats

// Division by an index. Do it in full float precision to avoid accuracy
// issues in converting the denominator to half.
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half operator / (const half& a, Index b) {
  return half(static_cast<float>(a) / static_cast<float>(b));
}

// Conversion routines, including fallbacks for the host or older CUDA.
// Note that newer Intel CPUs (Haswell or newer) have vectorized versions of
// these in hardware. If we need more performance on older/other CPUs, they are
// also possible to vectorize directly.

EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC __half_raw raw_uint16_to_half(unsigned short x) {
  __half_raw h;
  h.x = x;
  return h;
}

union FP32 {
  unsigned int u;
  float f;
};

EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC __half_raw float_to_half_rtne(float ff) {
#if defined(EIGEN_HAS_CUDA_FP16) && defined(EIGEN_CUDA_ARCH) && EIGEN_CUDA_ARCH >= 300
  __half tmp_ff = __float2half(ff);
  return *(__half_raw*)&tmp_ff;

#elif defined(EIGEN_HAS_FP16_C)
  __half_raw h;
  h.x = _cvtss_sh(ff, 0);
  return h;

#else
  FP32 f; f.f = ff;

  const FP32 f32infty = { 255 << 23 };
  const FP32 f16max = { (127 + 16) << 23 };
  const FP32 denorm_magic = { ((127 - 15) + (23 - 10) + 1) << 23 };
  unsigned int sign_mask = 0x80000000u;
  __half_raw o;
  o.x = static_cast<unsigned short>(0x0u);

  unsigned int sign = f.u & sign_mask;
  f.u ^= sign;

  // NOTE all the integer compares in this function can be safely
  // compiled into signed compares since all operands are below
  // 0x80000000. Important if you want fast straight SSE2 code
  // (since there's no unsigned PCMPGTD).

  if (f.u >= f16max.u) {  // result is Inf or NaN (all exponent bits set)
    o.x = (f.u > f32infty.u) ? 0x7e00 : 0x7c00; // NaN->qNaN and Inf->Inf
  } else {  // (De)normalized number or zero
    if (f.u < (113 << 23)) {  // resulting FP16 is subnormal or zero
      // use a magic value to align our 10 mantissa bits at the bottom of
      // the float. as long as FP addition is round-to-nearest-even this
      // just works.
      f.f += denorm_magic.f;

      // and one integer subtract of the bias later, we have our final float!
      o.x = static_cast<unsigned short>(f.u - denorm_magic.u);
    } else {
      unsigned int mant_odd = (f.u >> 13) & 1; // resulting mantissa is odd

      // update exponent, rounding bias part 1
      f.u += ((unsigned int)(15 - 127) << 23) + 0xfff;
      // rounding bias part 2
      f.u += mant_odd;
      // take the bits!
      o.x = static_cast<unsigned short>(f.u >> 13);
    }
  }

  o.x |= static_cast<unsigned short>(sign >> 16);
  return o;
#endif
}

EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC float half_to_float(__half_raw h) {
#if defined(EIGEN_HAS_CUDA_FP16) && defined(EIGEN_CUDA_ARCH) && EIGEN_CUDA_ARCH >= 300
  return __half2float(h);

#elif defined(EIGEN_HAS_FP16_C)
  return _cvtsh_ss(h.x);

#else
  const FP32 magic = { 113 << 23 };
  const unsigned int shifted_exp = 0x7c00 << 13; // exponent mask after shift
  FP32 o;

  o.u = (h.x & 0x7fff) << 13;             // exponent/mantissa bits
  unsigned int exp = shifted_exp & o.u;   // just the exponent
  o.u += (127 - 15) << 23;                // exponent adjust

  // handle exponent special cases
  if (exp == shifted_exp) {     // Inf/NaN?
    o.u += (128 - 16) << 23;    // extra exp adjust
  } else if (exp == 0) {        // Zero/Denormal?
    o.u += 1 << 23;             // extra exp adjust
    o.f -= magic.f;             // renormalize
  }

  o.u |= (h.x & 0x8000) << 16;    // sign bit
  return o.f;
#endif
}

// --- standard functions ---

EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bool (isinf)(const half& a) {
  return (a.x & 0x7fff) == 0x7c00;
}
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bool (isnan)(const half& a) {
#if defined(EIGEN_HAS_CUDA_FP16) && defined(EIGEN_CUDA_ARCH) && EIGEN_CUDA_ARCH >= 530
  return __hisnan(a);
#else
  return (a.x & 0x7fff) > 0x7c00;
#endif
}
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bool (isfinite)(const half& a) {
  return !(isinf EIGEN_NOT_A_MACRO (a)) && !(isnan EIGEN_NOT_A_MACRO (a));
}

EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half abs(const half& a) {
  half result;
  result.x = a.x & 0x7FFF;
  return result;
}
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half exp(const half& a) {
#if EIGEN_CUDACC_VER >= 80000 && defined EIGEN_CUDA_ARCH && EIGEN_CUDA_ARCH >= 530
  return half(hexp(a));
#else
   return half(::expf(float(a)));
#endif
}
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half expm1(const half& a) {
  return half(numext::expm1(float(a)));
}
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half log(const half& a) {
#if defined(EIGEN_HAS_CUDA_FP16) && EIGEN_CUDACC_VER >= 80000 && defined(EIGEN_CUDA_ARCH) && EIGEN_CUDA_ARCH >= 530
  return half(::hlog(a));
#else
  return half(::logf(float(a)));
#endif
}
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half log1p(const half& a) {
  return half(numext::log1p(float(a)));
}
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half log10(const half& a) {
  return half(::log10f(float(a)));
}
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half sqrt(const half& a) {
#if EIGEN_CUDACC_VER >= 80000 && defined EIGEN_CUDA_ARCH && EIGEN_CUDA_ARCH >= 530
  return half(hsqrt(a));
#else
    return half(::sqrtf(float(a)));
#endif
}
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half pow(const half& a, const half& b) {
  return half(::powf(float(a), float(b)));
}
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half sin(const half& a) {
  return half(::sinf(float(a)));
}
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half cos(const half& a) {
  return half(::cosf(float(a)));
}
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half tan(const half& a) {
  return half(::tanf(float(a)));
}
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half tanh(const half& a) {
  return half(::tanhf(float(a)));
}
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half floor(const half& a) {
#if EIGEN_CUDACC_VER >= 80000 && defined EIGEN_CUDA_ARCH && EIGEN_CUDA_ARCH >= 300
  return half(hfloor(a));
#else
  return half(::floorf(float(a)));
#endif
}
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half ceil(const half& a) {
#if EIGEN_CUDACC_VER >= 80000 && defined EIGEN_CUDA_ARCH && EIGEN_CUDA_ARCH >= 300
  return half(hceil(a));
#else
  return half(::ceilf(float(a)));
#endif
}

EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half (min)(const half& a, const half& b) {
#if defined(EIGEN_HAS_CUDA_FP16) && defined(EIGEN_CUDA_ARCH) && EIGEN_CUDA_ARCH >= 530
  return __hlt(b, a) ? b : a;
#else
  const float f1 = static_cast<float>(a);
  const float f2 = static_cast<float>(b);
  return f2 < f1 ? b : a;
#endif
}
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half (max)(const half& a, const half& b) {
#if defined(EIGEN_HAS_CUDA_FP16) && defined(EIGEN_CUDA_ARCH) && EIGEN_CUDA_ARCH >= 530
  return __hlt(a, b) ? b : a;
#else
  const float f1 = static_cast<float>(a);
  const float f2 = static_cast<float>(b);
  return f1 < f2 ? b : a;
#endif
}

EIGEN_ALWAYS_INLINE std::ostream& operator << (std::ostream& os, const half& v) {
  os << static_cast<float>(v);
  return os;
}

} // end namespace half_impl

// import Eigen::half_impl::half into Eigen namespace
// using half_impl::half;

namespace internal {

template<>
struct random_default_impl<half, false, false>
{
  static inline half run(const half& x, const half& y)
  {
    return x + (y-x) * half(float(std::rand()) / float(RAND_MAX));
  }
  static inline half run()
  {
    return run(half(-1.f), half(1.f));
  }
};

template<> struct is_arithmetic<half> { enum { value = true }; };

} // end namespace internal

}  // end namespace Eigen

namespace std {
template<>
struct numeric_limits<Eigen::half> {
  static const bool is_specialized = true;
  static const bool is_signed = true;
  static const bool is_integer = false;
  static const bool is_exact = false;
  static const bool has_infinity = true;
  static const bool has_quiet_NaN = true;
  static const bool has_signaling_NaN = true;
  static const float_denorm_style has_denorm = denorm_present;
  static const bool has_denorm_loss = false;
  static const std::float_round_style round_style = std::round_to_nearest;
  static const bool is_iec559 = false;
  static const bool is_bounded = false;
  static const bool is_modulo = false;
  static const int digits = 11;
  static const int digits10 = 3;      // according to http://half.sourceforge.net/structstd_1_1numeric__limits_3_01half__float_1_1half_01_4.html
  static const int max_digits10 = 5;  // according to http://half.sourceforge.net/structstd_1_1numeric__limits_3_01half__float_1_1half_01_4.html
  static const int radix = 2;
  static const int min_exponent = -13;
  static const int min_exponent10 = -4;
  static const int max_exponent = 16;
  static const int max_exponent10 = 4;
  static const bool traps = true;
  static const bool tinyness_before = false;

  static Eigen::half (min)() { return Eigen::half_impl::raw_uint16_to_half(0x400); }
  static Eigen::half lowest() { return Eigen::half_impl::raw_uint16_to_half(0xfbff); }
  static Eigen::half (max)() { return Eigen::half_impl::raw_uint16_to_half(0x7bff); }
  static Eigen::half epsilon() { return Eigen::half_impl::raw_uint16_to_half(0x0800); }
  static Eigen::half round_error() { return Eigen::half(0.5); }
  static Eigen::half infinity() { return Eigen::half_impl::raw_uint16_to_half(0x7c00); }
  static Eigen::half quiet_NaN() { return Eigen::half_impl::raw_uint16_to_half(0x7e00); }
  static Eigen::half signaling_NaN() { return Eigen::half_impl::raw_uint16_to_half(0x7e00); }
  static Eigen::half denorm_min() { return Eigen::half_impl::raw_uint16_to_half(0x1); }
};
}

namespace Eigen {

template<> struct NumTraits<Eigen::half>
    : GenericNumTraits<Eigen::half>
{
  enum {
    IsSigned = true,
    IsInteger = false,
    IsComplex = false,
    RequireInitialization = false
  };

  EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE Eigen::half epsilon() {
    return half_impl::raw_uint16_to_half(0x0800);
  }
  EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE Eigen::half dummy_precision() { return Eigen::half(1e-2f); }
  EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE Eigen::half highest() {
    return half_impl::raw_uint16_to_half(0x7bff);
  }
  EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE Eigen::half lowest() {
    return half_impl::raw_uint16_to_half(0xfbff);
  }
  EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE Eigen::half infinity() {
    return half_impl::raw_uint16_to_half(0x7c00);
  }
  EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE Eigen::half quiet_NaN() {
    return half_impl::raw_uint16_to_half(0x7c01);
  }
};

} // end namespace Eigen

// C-like standard mathematical functions and trancendentals.
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Eigen::half fabsh(const Eigen::half& a) {
  Eigen::half result;
  result.x = a.x & 0x7FFF;
  return result;
}
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Eigen::half exph(const Eigen::half& a) {
  return Eigen::half(::expf(float(a)));
}
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Eigen::half logh(const Eigen::half& a) {
#if EIGEN_CUDACC_VER >= 80000 && defined(EIGEN_CUDA_ARCH) && EIGEN_CUDA_ARCH >= 530
  return Eigen::half(::hlog(a));
#else
  return Eigen::half(::logf(float(a)));
#endif
}
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Eigen::half sqrth(const Eigen::half& a) {
  return Eigen::half(::sqrtf(float(a)));
}
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Eigen::half powh(const Eigen::half& a, const Eigen::half& b) {
  return Eigen::half(::powf(float(a), float(b)));
}
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Eigen::half floorh(const Eigen::half& a) {
  return Eigen::half(::floorf(float(a)));
}
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Eigen::half ceilh(const Eigen::half& a) {
  return Eigen::half(::ceilf(float(a)));
}

namespace std {

#if __cplusplus > 199711L
template <>
struct hash<Eigen::half> {
  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE std::size_t operator()(const Eigen::half& a) const {
    return static_cast<std::size_t>(a.x);
  }
};
#endif

} // end namespace std


// Add the missing shfl_xor intrinsic
#if defined(EIGEN_CUDA_ARCH) && EIGEN_CUDA_ARCH >= 300
__device__ EIGEN_STRONG_INLINE Eigen::half __shfl_xor(Eigen::half var, int laneMask, int width=warpSize) {
  #if EIGEN_CUDACC_VER < 90000
  return static_cast<Eigen::half>(__shfl_xor(static_cast<float>(var), laneMask, width));
  #else
  return static_cast<Eigen::half>(__shfl_xor_sync(0xFFFFFFFF, static_cast<float>(var), laneMask, width));
  #endif
}
#endif

// ldg() has an overload for __half_raw, but we also need one for Eigen::half.
#if defined(EIGEN_CUDA_ARCH) && EIGEN_CUDA_ARCH >= 350
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Eigen::half __ldg(const Eigen::half* ptr) {
  return Eigen::half_impl::raw_uint16_to_half(
      __ldg(reinterpret_cast<const unsigned short*>(ptr)));
}
#endif


#if defined(EIGEN_CUDA_ARCH)
namespace Eigen {
namespace numext {

template<>
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
bool (isnan)(const Eigen::half& h) {
  return (half_impl::isnan)(h);
}

template<>
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
bool (isinf)(const Eigen::half& h) {
  return (half_impl::isinf)(h);
}

template<>
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
bool (isfinite)(const Eigen::half& h) {
  return (half_impl::isfinite)(h);
}

} // namespace Eigen
}  // namespace numext
#endif

#endif // EIGEN_HALF_CUDA_H