// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. // // The conversion routines are Copyright (c) Fabian Giesen, 2016. // The original license follows: // // Copyright (c) Fabian Giesen, 2016 // All rights reserved. // Redistribution and use in source and binary forms, with or without // modification, are permitted. // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // Standard 16-bit float type, mostly useful for GPUs. Defines a new // type Eigen::half (inheriting from CUDA's __half struct) with // operator overloads such that it behaves basically as an arithmetic // type. It will be quite slow on CPUs (so it is recommended to stay // in fp32 for CPUs, except for simple parameter conversions, I/O // to disk and the likes), but fast on GPUs. #ifndef EIGEN_HALF_CUDA_H #define EIGEN_HALF_CUDA_H #if __cplusplus > 199711L #define EIGEN_EXPLICIT_CAST(tgt_type) explicit operator tgt_type() #else #define EIGEN_EXPLICIT_CAST(tgt_type) operator tgt_type() #endif namespace Eigen { struct half; namespace half_impl { #if !defined(EIGEN_HAS_CUDA_FP16) // Make our own __half_raw definition that is similar to CUDA's. struct __half_raw { EIGEN_DEVICE_FUNC __half_raw() : x(0) {} explicit EIGEN_DEVICE_FUNC __half_raw(unsigned short raw) : x(raw) {} unsigned short x; }; #elif defined(EIGEN_CUDACC_VER) && EIGEN_CUDACC_VER < 90000 // In CUDA < 9.0, __half is the equivalent of CUDA 9's __half_raw typedef __half __half_raw; #endif EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC __half_raw raw_uint16_to_half(unsigned short x); EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC __half_raw float_to_half_rtne(float ff); EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC float half_to_float(__half_raw h); struct half_base : public __half_raw { EIGEN_DEVICE_FUNC half_base() {} EIGEN_DEVICE_FUNC half_base(const half_base& h) : __half_raw(h) {} EIGEN_DEVICE_FUNC half_base(const __half_raw& h) : __half_raw(h) {} #if defined(EIGEN_HAS_CUDA_FP16) && defined(EIGEN_CUDACC_VER) && EIGEN_CUDACC_VER >= 90000 EIGEN_DEVICE_FUNC half_base(const __half& h) : __half_raw(*(__half_raw*)&h) {} #endif }; } // namespace half_impl // Class definition. struct half : public half_impl::half_base { #if !defined(EIGEN_HAS_CUDA_FP16) || (defined(EIGEN_CUDACC_VER) && EIGEN_CUDACC_VER < 90000) typedef half_impl::__half_raw __half_raw; #endif EIGEN_DEVICE_FUNC half() {} EIGEN_DEVICE_FUNC half(const __half_raw& h) : half_impl::half_base(h) {} EIGEN_DEVICE_FUNC half(const half& h) : half_impl::half_base(h) {} #if defined(EIGEN_HAS_CUDA_FP16) && defined(EIGEN_CUDACC_VER) && EIGEN_CUDACC_VER >= 90000 EIGEN_DEVICE_FUNC half(const __half& h) : half_impl::half_base(h) {} #endif explicit EIGEN_DEVICE_FUNC half(bool b) : half_impl::half_base(half_impl::raw_uint16_to_half(b ? 0x3c00 : 0)) {} template explicit EIGEN_DEVICE_FUNC half(const T& val) : half_impl::half_base(half_impl::float_to_half_rtne(static_cast(val))) {} explicit EIGEN_DEVICE_FUNC half(float f) : half_impl::half_base(half_impl::float_to_half_rtne(f)) {} EIGEN_DEVICE_FUNC EIGEN_EXPLICIT_CAST(bool) const { // +0.0 and -0.0 become false, everything else becomes true. return (x & 0x7fff) != 0; } EIGEN_DEVICE_FUNC EIGEN_EXPLICIT_CAST(signed char) const { return static_cast(half_impl::half_to_float(*this)); } EIGEN_DEVICE_FUNC EIGEN_EXPLICIT_CAST(unsigned char) const { return static_cast(half_impl::half_to_float(*this)); } EIGEN_DEVICE_FUNC EIGEN_EXPLICIT_CAST(short) const { return static_cast(half_impl::half_to_float(*this)); } EIGEN_DEVICE_FUNC EIGEN_EXPLICIT_CAST(unsigned short) const { return static_cast(half_impl::half_to_float(*this)); } EIGEN_DEVICE_FUNC EIGEN_EXPLICIT_CAST(int) const { return static_cast(half_impl::half_to_float(*this)); } EIGEN_DEVICE_FUNC EIGEN_EXPLICIT_CAST(unsigned int) const { return static_cast(half_impl::half_to_float(*this)); } EIGEN_DEVICE_FUNC EIGEN_EXPLICIT_CAST(long) const { return static_cast(half_impl::half_to_float(*this)); } EIGEN_DEVICE_FUNC EIGEN_EXPLICIT_CAST(unsigned long) const { return static_cast(half_impl::half_to_float(*this)); } EIGEN_DEVICE_FUNC EIGEN_EXPLICIT_CAST(long long) const { return static_cast(half_impl::half_to_float(*this)); } EIGEN_DEVICE_FUNC EIGEN_EXPLICIT_CAST(unsigned long long) const { return static_cast(half_to_float(*this)); } EIGEN_DEVICE_FUNC EIGEN_EXPLICIT_CAST(float) const { return half_impl::half_to_float(*this); } EIGEN_DEVICE_FUNC EIGEN_EXPLICIT_CAST(double) const { return static_cast(half_impl::half_to_float(*this)); } EIGEN_DEVICE_FUNC half& operator=(const half& other) { x = other.x; return *this; } }; namespace half_impl { #if defined(EIGEN_HAS_CUDA_FP16) && defined(EIGEN_CUDA_ARCH) && EIGEN_CUDA_ARCH >= 530 // Intrinsics for native fp16 support. Note that on current hardware, // these are no faster than fp32 arithmetic (you need to use the half2 // versions to get the ALU speed increased), but you do save the // conversion steps back and forth. EIGEN_STRONG_INLINE __device__ half operator + (const half& a, const half& b) { return __hadd(a, b); } EIGEN_STRONG_INLINE __device__ half operator * (const half& a, const half& b) { return __hmul(a, b); } EIGEN_STRONG_INLINE __device__ half operator - (const half& a, const half& b) { return __hsub(a, b); } EIGEN_STRONG_INLINE __device__ half operator / (const half& a, const half& b) { float num = __half2float(a); float denom = __half2float(b); return __float2half(num / denom); } EIGEN_STRONG_INLINE __device__ half operator - (const half& a) { return __hneg(a); } EIGEN_STRONG_INLINE __device__ half& operator += (half& a, const half& b) { a = a + b; return a; } EIGEN_STRONG_INLINE __device__ half& operator *= (half& a, const half& b) { a = a * b; return a; } EIGEN_STRONG_INLINE __device__ half& operator -= (half& a, const half& b) { a = a - b; return a; } EIGEN_STRONG_INLINE __device__ half& operator /= (half& a, const half& b) { a = a / b; return a; } EIGEN_STRONG_INLINE __device__ bool operator == (const half& a, const half& b) { return __heq(a, b); } EIGEN_STRONG_INLINE __device__ bool operator != (const half& a, const half& b) { return __hne(a, b); } EIGEN_STRONG_INLINE __device__ bool operator < (const half& a, const half& b) { return __hlt(a, b); } EIGEN_STRONG_INLINE __device__ bool operator <= (const half& a, const half& b) { return __hle(a, b); } EIGEN_STRONG_INLINE __device__ bool operator > (const half& a, const half& b) { return __hgt(a, b); } EIGEN_STRONG_INLINE __device__ bool operator >= (const half& a, const half& b) { return __hge(a, b); } #else // Emulate support for half floats // Definitions for CPUs and older CUDA, mostly working through conversion // to/from fp32. EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half operator + (const half& a, const half& b) { return half(float(a) + float(b)); } EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half operator * (const half& a, const half& b) { return half(float(a) * float(b)); } EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half operator - (const half& a, const half& b) { return half(float(a) - float(b)); } EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half operator / (const half& a, const half& b) { return half(float(a) / float(b)); } EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half operator - (const half& a) { half result; result.x = a.x ^ 0x8000; return result; } EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half& operator += (half& a, const half& b) { a = half(float(a) + float(b)); return a; } EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half& operator *= (half& a, const half& b) { a = half(float(a) * float(b)); return a; } EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half& operator -= (half& a, const half& b) { a = half(float(a) - float(b)); return a; } EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half& operator /= (half& a, const half& b) { a = half(float(a) / float(b)); return a; } EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bool operator == (const half& a, const half& b) { return float(a) == float(b); } EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bool operator != (const half& a, const half& b) { return float(a) != float(b); } EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bool operator < (const half& a, const half& b) { return float(a) < float(b); } EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bool operator <= (const half& a, const half& b) { return float(a) <= float(b); } EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bool operator > (const half& a, const half& b) { return float(a) > float(b); } EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bool operator >= (const half& a, const half& b) { return float(a) >= float(b); } #endif // Emulate support for half floats // Division by an index. Do it in full float precision to avoid accuracy // issues in converting the denominator to half. EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half operator / (const half& a, Index b) { return half(static_cast(a) / static_cast(b)); } // Conversion routines, including fallbacks for the host or older CUDA. // Note that newer Intel CPUs (Haswell or newer) have vectorized versions of // these in hardware. If we need more performance on older/other CPUs, they are // also possible to vectorize directly. EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC __half_raw raw_uint16_to_half(unsigned short x) { __half_raw h; h.x = x; return h; } union FP32 { unsigned int u; float f; }; EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC __half_raw float_to_half_rtne(float ff) { #if defined(EIGEN_HAS_CUDA_FP16) && defined(EIGEN_CUDA_ARCH) && EIGEN_CUDA_ARCH >= 300 __half tmp_ff = __float2half(ff); return *(__half_raw*)&tmp_ff; #elif defined(EIGEN_HAS_FP16_C) __half_raw h; h.x = _cvtss_sh(ff, 0); return h; #else FP32 f; f.f = ff; const FP32 f32infty = { 255 << 23 }; const FP32 f16max = { (127 + 16) << 23 }; const FP32 denorm_magic = { ((127 - 15) + (23 - 10) + 1) << 23 }; unsigned int sign_mask = 0x80000000u; __half_raw o; o.x = static_cast(0x0u); unsigned int sign = f.u & sign_mask; f.u ^= sign; // NOTE all the integer compares in this function can be safely // compiled into signed compares since all operands are below // 0x80000000. Important if you want fast straight SSE2 code // (since there's no unsigned PCMPGTD). if (f.u >= f16max.u) { // result is Inf or NaN (all exponent bits set) o.x = (f.u > f32infty.u) ? 0x7e00 : 0x7c00; // NaN->qNaN and Inf->Inf } else { // (De)normalized number or zero if (f.u < (113 << 23)) { // resulting FP16 is subnormal or zero // use a magic value to align our 10 mantissa bits at the bottom of // the float. as long as FP addition is round-to-nearest-even this // just works. f.f += denorm_magic.f; // and one integer subtract of the bias later, we have our final float! o.x = static_cast(f.u - denorm_magic.u); } else { unsigned int mant_odd = (f.u >> 13) & 1; // resulting mantissa is odd // update exponent, rounding bias part 1 f.u += ((unsigned int)(15 - 127) << 23) + 0xfff; // rounding bias part 2 f.u += mant_odd; // take the bits! o.x = static_cast(f.u >> 13); } } o.x |= static_cast(sign >> 16); return o; #endif } EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC float half_to_float(__half_raw h) { #if defined(EIGEN_HAS_CUDA_FP16) && defined(EIGEN_CUDA_ARCH) && EIGEN_CUDA_ARCH >= 300 return __half2float(h); #elif defined(EIGEN_HAS_FP16_C) return _cvtsh_ss(h.x); #else const FP32 magic = { 113 << 23 }; const unsigned int shifted_exp = 0x7c00 << 13; // exponent mask after shift FP32 o; o.u = (h.x & 0x7fff) << 13; // exponent/mantissa bits unsigned int exp = shifted_exp & o.u; // just the exponent o.u += (127 - 15) << 23; // exponent adjust // handle exponent special cases if (exp == shifted_exp) { // Inf/NaN? o.u += (128 - 16) << 23; // extra exp adjust } else if (exp == 0) { // Zero/Denormal? o.u += 1 << 23; // extra exp adjust o.f -= magic.f; // renormalize } o.u |= (h.x & 0x8000) << 16; // sign bit return o.f; #endif } // --- standard functions --- EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bool (isinf)(const half& a) { return (a.x & 0x7fff) == 0x7c00; } EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bool (isnan)(const half& a) { #if defined(EIGEN_HAS_CUDA_FP16) && defined(EIGEN_CUDA_ARCH) && EIGEN_CUDA_ARCH >= 530 return __hisnan(a); #else return (a.x & 0x7fff) > 0x7c00; #endif } EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bool (isfinite)(const half& a) { return !(isinf EIGEN_NOT_A_MACRO (a)) && !(isnan EIGEN_NOT_A_MACRO (a)); } EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half abs(const half& a) { half result; result.x = a.x & 0x7FFF; return result; } EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half exp(const half& a) { #if EIGEN_CUDACC_VER >= 80000 && defined EIGEN_CUDA_ARCH && EIGEN_CUDA_ARCH >= 530 return half(hexp(a)); #else return half(::expf(float(a))); #endif } EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half expm1(const half& a) { return half(numext::expm1(float(a))); } EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half log(const half& a) { #if defined(EIGEN_HAS_CUDA_FP16) && EIGEN_CUDACC_VER >= 80000 && defined(EIGEN_CUDA_ARCH) && EIGEN_CUDA_ARCH >= 530 return half(::hlog(a)); #else return half(::logf(float(a))); #endif } EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half log1p(const half& a) { return half(numext::log1p(float(a))); } EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half log10(const half& a) { return half(::log10f(float(a))); } EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half sqrt(const half& a) { #if EIGEN_CUDACC_VER >= 80000 && defined EIGEN_CUDA_ARCH && EIGEN_CUDA_ARCH >= 530 return half(hsqrt(a)); #else return half(::sqrtf(float(a))); #endif } EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half pow(const half& a, const half& b) { return half(::powf(float(a), float(b))); } EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half sin(const half& a) { return half(::sinf(float(a))); } EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half cos(const half& a) { return half(::cosf(float(a))); } EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half tan(const half& a) { return half(::tanf(float(a))); } EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half tanh(const half& a) { return half(::tanhf(float(a))); } EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half floor(const half& a) { #if EIGEN_CUDACC_VER >= 80000 && defined EIGEN_CUDA_ARCH && EIGEN_CUDA_ARCH >= 300 return half(hfloor(a)); #else return half(::floorf(float(a))); #endif } EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half ceil(const half& a) { #if EIGEN_CUDACC_VER >= 80000 && defined EIGEN_CUDA_ARCH && EIGEN_CUDA_ARCH >= 300 return half(hceil(a)); #else return half(::ceilf(float(a))); #endif } EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half (min)(const half& a, const half& b) { #if defined(EIGEN_HAS_CUDA_FP16) && defined(EIGEN_CUDA_ARCH) && EIGEN_CUDA_ARCH >= 530 return __hlt(b, a) ? b : a; #else const float f1 = static_cast(a); const float f2 = static_cast(b); return f2 < f1 ? b : a; #endif } EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half (max)(const half& a, const half& b) { #if defined(EIGEN_HAS_CUDA_FP16) && defined(EIGEN_CUDA_ARCH) && EIGEN_CUDA_ARCH >= 530 return __hlt(a, b) ? b : a; #else const float f1 = static_cast(a); const float f2 = static_cast(b); return f1 < f2 ? b : a; #endif } EIGEN_ALWAYS_INLINE std::ostream& operator << (std::ostream& os, const half& v) { os << static_cast(v); return os; } } // end namespace half_impl // import Eigen::half_impl::half into Eigen namespace // using half_impl::half; namespace internal { template<> struct random_default_impl { static inline half run(const half& x, const half& y) { return x + (y-x) * half(float(std::rand()) / float(RAND_MAX)); } static inline half run() { return run(half(-1.f), half(1.f)); } }; template<> struct is_arithmetic { enum { value = true }; }; } // end namespace internal } // end namespace Eigen namespace std { template<> struct numeric_limits { static const bool is_specialized = true; static const bool is_signed = true; static const bool is_integer = false; static const bool is_exact = false; static const bool has_infinity = true; static const bool has_quiet_NaN = true; static const bool has_signaling_NaN = true; static const float_denorm_style has_denorm = denorm_present; static const bool has_denorm_loss = false; static const std::float_round_style round_style = std::round_to_nearest; static const bool is_iec559 = false; static const bool is_bounded = false; static const bool is_modulo = false; static const int digits = 11; static const int digits10 = 3; // according to http://half.sourceforge.net/structstd_1_1numeric__limits_3_01half__float_1_1half_01_4.html static const int max_digits10 = 5; // according to http://half.sourceforge.net/structstd_1_1numeric__limits_3_01half__float_1_1half_01_4.html static const int radix = 2; static const int min_exponent = -13; static const int min_exponent10 = -4; static const int max_exponent = 16; static const int max_exponent10 = 4; static const bool traps = true; static const bool tinyness_before = false; static Eigen::half (min)() { return Eigen::half_impl::raw_uint16_to_half(0x400); } static Eigen::half lowest() { return Eigen::half_impl::raw_uint16_to_half(0xfbff); } static Eigen::half (max)() { return Eigen::half_impl::raw_uint16_to_half(0x7bff); } static Eigen::half epsilon() { return Eigen::half_impl::raw_uint16_to_half(0x0800); } static Eigen::half round_error() { return Eigen::half(0.5); } static Eigen::half infinity() { return Eigen::half_impl::raw_uint16_to_half(0x7c00); } static Eigen::half quiet_NaN() { return Eigen::half_impl::raw_uint16_to_half(0x7e00); } static Eigen::half signaling_NaN() { return Eigen::half_impl::raw_uint16_to_half(0x7e00); } static Eigen::half denorm_min() { return Eigen::half_impl::raw_uint16_to_half(0x1); } }; } namespace Eigen { template<> struct NumTraits : GenericNumTraits { enum { IsSigned = true, IsInteger = false, IsComplex = false, RequireInitialization = false }; EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE Eigen::half epsilon() { return half_impl::raw_uint16_to_half(0x0800); } EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE Eigen::half dummy_precision() { return Eigen::half(1e-2f); } EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE Eigen::half highest() { return half_impl::raw_uint16_to_half(0x7bff); } EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE Eigen::half lowest() { return half_impl::raw_uint16_to_half(0xfbff); } EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE Eigen::half infinity() { return half_impl::raw_uint16_to_half(0x7c00); } EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE Eigen::half quiet_NaN() { return half_impl::raw_uint16_to_half(0x7c01); } }; } // end namespace Eigen // C-like standard mathematical functions and trancendentals. EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Eigen::half fabsh(const Eigen::half& a) { Eigen::half result; result.x = a.x & 0x7FFF; return result; } EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Eigen::half exph(const Eigen::half& a) { return Eigen::half(::expf(float(a))); } EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Eigen::half logh(const Eigen::half& a) { #if EIGEN_CUDACC_VER >= 80000 && defined(EIGEN_CUDA_ARCH) && EIGEN_CUDA_ARCH >= 530 return Eigen::half(::hlog(a)); #else return Eigen::half(::logf(float(a))); #endif } EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Eigen::half sqrth(const Eigen::half& a) { return Eigen::half(::sqrtf(float(a))); } EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Eigen::half powh(const Eigen::half& a, const Eigen::half& b) { return Eigen::half(::powf(float(a), float(b))); } EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Eigen::half floorh(const Eigen::half& a) { return Eigen::half(::floorf(float(a))); } EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Eigen::half ceilh(const Eigen::half& a) { return Eigen::half(::ceilf(float(a))); } namespace std { #if __cplusplus > 199711L template <> struct hash { EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE std::size_t operator()(const Eigen::half& a) const { return static_cast(a.x); } }; #endif } // end namespace std // Add the missing shfl_xor intrinsic #if defined(EIGEN_CUDA_ARCH) && EIGEN_CUDA_ARCH >= 300 __device__ EIGEN_STRONG_INLINE Eigen::half __shfl_xor(Eigen::half var, int laneMask, int width=warpSize) { #if EIGEN_CUDACC_VER < 90000 return static_cast(__shfl_xor(static_cast(var), laneMask, width)); #else return static_cast(__shfl_xor_sync(0xFFFFFFFF, static_cast(var), laneMask, width)); #endif } #endif // ldg() has an overload for __half_raw, but we also need one for Eigen::half. #if defined(EIGEN_CUDA_ARCH) && EIGEN_CUDA_ARCH >= 350 EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Eigen::half __ldg(const Eigen::half* ptr) { return Eigen::half_impl::raw_uint16_to_half( __ldg(reinterpret_cast(ptr))); } #endif #if defined(EIGEN_CUDA_ARCH) namespace Eigen { namespace numext { template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE bool (isnan)(const Eigen::half& h) { return (half_impl::isnan)(h); } template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE bool (isinf)(const Eigen::half& h) { return (half_impl::isinf)(h); } template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE bool (isfinite)(const Eigen::half& h) { return (half_impl::isfinite)(h); } } // namespace Eigen } // namespace numext #endif #endif // EIGEN_HALF_CUDA_H