aboutsummaryrefslogtreecommitdiffhomepage
path: root/Eigen/src/Core/Reverse.h
blob: abc44bde615685e37f2b1069f36b864668d0b77d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
// Copyright (C) 2009 Ricard Marxer <email@ricardmarxer.com>
// Copyright (C) 2009-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.

#ifndef EIGEN_REVERSE_H
#define EIGEN_REVERSE_H

/** \class Reverse
  * \ingroup Core_Module
  *
  * \brief Expression of the reverse of a vector or matrix
  *
  * \param MatrixType the type of the object of which we are taking the reverse
  *
  * This class represents an expression of the reverse of a vector.
  * It is the return type of MatrixBase::reverse() and VectorwiseOp::reverse()
  * and most of the time this is the only way it is used.
  *
  * \sa MatrixBase::reverse(), VectorwiseOp::reverse()
  */
template<typename MatrixType, int Direction>
struct ei_traits<Reverse<MatrixType, Direction> >
 : ei_traits<MatrixType>
{
  typedef typename MatrixType::Scalar Scalar;
  typedef typename ei_traits<MatrixType>::StorageKind StorageKind;
  typedef typename ei_traits<MatrixType>::XprKind XprKind;
  typedef typename ei_nested<MatrixType>::type MatrixTypeNested;
  typedef typename ei_unref<MatrixTypeNested>::type _MatrixTypeNested;
  enum {
    RowsAtCompileTime = MatrixType::RowsAtCompileTime,
    ColsAtCompileTime = MatrixType::ColsAtCompileTime,
    MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
    MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime,

    // let's enable LinearAccess only with vectorization because of the product overhead
    LinearAccess = ( (Direction==BothDirections) && (int(_MatrixTypeNested::Flags)&PacketAccessBit) )
                 ? LinearAccessBit : 0,

    Flags = int(_MatrixTypeNested::Flags) & (HereditaryBits | LvalueBit | PacketAccessBit | LinearAccess),

    CoeffReadCost = _MatrixTypeNested::CoeffReadCost
  };
};

template<typename PacketScalar, bool ReversePacket> struct ei_reverse_packet_cond
{
  static inline PacketScalar run(const PacketScalar& x) { return ei_preverse(x); }
};
template<typename PacketScalar> struct ei_reverse_packet_cond<PacketScalar,false>
{
  static inline PacketScalar run(const PacketScalar& x) { return x; }
};

template<typename MatrixType, int Direction> class Reverse
  : public ei_dense_xpr_base< Reverse<MatrixType, Direction> >::type
{
  public:

    typedef typename ei_dense_xpr_base<Reverse>::type Base;
    EIGEN_DENSE_PUBLIC_INTERFACE(Reverse)
    using Base::IsRowMajor;

    // next line is necessary because otherwise const version of operator()
    // is hidden by non-const version defined in this file
    using Base::operator(); 

  protected:
    enum {
      PacketSize = ei_packet_traits<Scalar>::size,
      IsColMajor = !IsRowMajor,
      ReverseRow = (Direction == Vertical)   || (Direction == BothDirections),
      ReverseCol = (Direction == Horizontal) || (Direction == BothDirections),
      OffsetRow  = ReverseRow && IsColMajor ? PacketSize : 1,
      OffsetCol  = ReverseCol && IsRowMajor ? PacketSize : 1,
      ReversePacket = (Direction == BothDirections)
                    || ((Direction == Vertical)   && IsColMajor)
                    || ((Direction == Horizontal) && IsRowMajor)
    };
    typedef ei_reverse_packet_cond<PacketScalar,ReversePacket> reverse_packet;
  public:

    inline Reverse(const MatrixType& matrix) : m_matrix(matrix) { }

    EIGEN_INHERIT_ASSIGNMENT_OPERATORS(Reverse)

    inline Index rows() const { return m_matrix.rows(); }
    inline Index cols() const { return m_matrix.cols(); }

    inline Index innerStride() const
    {
      return -m_matrix.innerStride();
    }

    inline Scalar& operator()(Index row, Index col)
    {
      ei_assert(row >= 0 && row < rows() && col >= 0 && col < cols());
      return coeffRef(row, col);
    }

    inline Scalar& coeffRef(Index row, Index col)
    {
      return m_matrix.const_cast_derived().coeffRef(ReverseRow ? m_matrix.rows() - row - 1 : row,
                                                    ReverseCol ? m_matrix.cols() - col - 1 : col);
    }

    inline CoeffReturnType coeff(Index row, Index col) const
    {
      return m_matrix.coeff(ReverseRow ? m_matrix.rows() - row - 1 : row,
                            ReverseCol ? m_matrix.cols() - col - 1 : col);
    }

    inline CoeffReturnType coeff(Index index) const
    {
      return m_matrix.coeff(m_matrix.size() - index - 1);
    }

    inline Scalar& coeffRef(Index index)
    {
      return m_matrix.const_cast_derived().coeffRef(m_matrix.size() - index - 1);
    }

    inline Scalar& operator()(Index index)
    {
      ei_assert(index >= 0 && index < m_matrix.size());
      return coeffRef(index);
    }

    template<int LoadMode>
    inline const PacketScalar packet(Index row, Index col) const
    {
      return reverse_packet::run(m_matrix.template packet<LoadMode>(
                                    ReverseRow ? m_matrix.rows() - row - OffsetRow : row,
                                    ReverseCol ? m_matrix.cols() - col - OffsetCol : col));
    }

    template<int LoadMode>
    inline void writePacket(Index row, Index col, const PacketScalar& x)
    {
      m_matrix.const_cast_derived().template writePacket<LoadMode>(
                                      ReverseRow ? m_matrix.rows() - row - OffsetRow : row,
                                      ReverseCol ? m_matrix.cols() - col - OffsetCol : col,
                                      reverse_packet::run(x));
    }

    template<int LoadMode>
    inline const PacketScalar packet(Index index) const
    {
      return ei_preverse(m_matrix.template packet<LoadMode>( m_matrix.size() - index - PacketSize ));
    }

    template<int LoadMode>
    inline void writePacket(Index index, const PacketScalar& x)
    {
      m_matrix.const_cast_derived().template writePacket<LoadMode>(m_matrix.size() - index - PacketSize, ei_preverse(x));
    }

  protected:
    const typename MatrixType::Nested m_matrix;
};

/** \returns an expression of the reverse of *this.
  *
  * Example: \include MatrixBase_reverse.cpp
  * Output: \verbinclude MatrixBase_reverse.out
  *
  */
template<typename Derived>
inline Reverse<Derived, BothDirections>
DenseBase<Derived>::reverse()
{
  return derived();
}

/** This is the const version of reverse(). */
template<typename Derived>
inline const Reverse<Derived, BothDirections>
DenseBase<Derived>::reverse() const
{
  return derived();
}

/** This is the "in place" version of reverse: it reverses \c *this.
  *
  * In most cases it is probably better to simply use the reversed expression
  * of a matrix. However, when reversing the matrix data itself is really needed,
  * then this "in-place" version is probably the right choice because it provides
  * the following additional features:
  *  - less error prone: doing the same operation with .reverse() requires special care:
  *    \code m = m.reverse().eval(); \endcode
  *  - no temporary object is created (currently there is one created but could be avoided using swap)
  *  - it allows future optimizations (cache friendliness, etc.)
  *
  * \sa reverse() */
template<typename Derived>
inline void DenseBase<Derived>::reverseInPlace()
{
  derived() = derived().reverse().eval();
}


#endif // EIGEN_REVERSE_H