// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2006-2008 Benoit Jacob // Copyright (C) 2009 Ricard Marxer // Copyright (C) 2009-2010 Gael Guennebaud // // Eigen is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 3 of the License, or (at your option) any later version. // // Alternatively, you can redistribute it and/or // modify it under the terms of the GNU General Public License as // published by the Free Software Foundation; either version 2 of // the License, or (at your option) any later version. // // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the // GNU General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License and a copy of the GNU General Public License along with // Eigen. If not, see . #ifndef EIGEN_REVERSE_H #define EIGEN_REVERSE_H /** \class Reverse * \ingroup Core_Module * * \brief Expression of the reverse of a vector or matrix * * \param MatrixType the type of the object of which we are taking the reverse * * This class represents an expression of the reverse of a vector. * It is the return type of MatrixBase::reverse() and VectorwiseOp::reverse() * and most of the time this is the only way it is used. * * \sa MatrixBase::reverse(), VectorwiseOp::reverse() */ template struct ei_traits > : ei_traits { typedef typename MatrixType::Scalar Scalar; typedef typename ei_traits::StorageKind StorageKind; typedef typename ei_traits::XprKind XprKind; typedef typename ei_nested::type MatrixTypeNested; typedef typename ei_unref::type _MatrixTypeNested; enum { RowsAtCompileTime = MatrixType::RowsAtCompileTime, ColsAtCompileTime = MatrixType::ColsAtCompileTime, MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime, MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime, // let's enable LinearAccess only with vectorization because of the product overhead LinearAccess = ( (Direction==BothDirections) && (int(_MatrixTypeNested::Flags)&PacketAccessBit) ) ? LinearAccessBit : 0, Flags = int(_MatrixTypeNested::Flags) & (HereditaryBits | LvalueBit | PacketAccessBit | LinearAccess), CoeffReadCost = _MatrixTypeNested::CoeffReadCost }; }; template struct ei_reverse_packet_cond { static inline PacketScalar run(const PacketScalar& x) { return ei_preverse(x); } }; template struct ei_reverse_packet_cond { static inline PacketScalar run(const PacketScalar& x) { return x; } }; template class Reverse : public ei_dense_xpr_base< Reverse >::type { public: typedef typename ei_dense_xpr_base::type Base; EIGEN_DENSE_PUBLIC_INTERFACE(Reverse) using Base::IsRowMajor; // next line is necessary because otherwise const version of operator() // is hidden by non-const version defined in this file using Base::operator(); protected: enum { PacketSize = ei_packet_traits::size, IsColMajor = !IsRowMajor, ReverseRow = (Direction == Vertical) || (Direction == BothDirections), ReverseCol = (Direction == Horizontal) || (Direction == BothDirections), OffsetRow = ReverseRow && IsColMajor ? PacketSize : 1, OffsetCol = ReverseCol && IsRowMajor ? PacketSize : 1, ReversePacket = (Direction == BothDirections) || ((Direction == Vertical) && IsColMajor) || ((Direction == Horizontal) && IsRowMajor) }; typedef ei_reverse_packet_cond reverse_packet; public: inline Reverse(const MatrixType& matrix) : m_matrix(matrix) { } EIGEN_INHERIT_ASSIGNMENT_OPERATORS(Reverse) inline Index rows() const { return m_matrix.rows(); } inline Index cols() const { return m_matrix.cols(); } inline Index innerStride() const { return -m_matrix.innerStride(); } inline Scalar& operator()(Index row, Index col) { ei_assert(row >= 0 && row < rows() && col >= 0 && col < cols()); return coeffRef(row, col); } inline Scalar& coeffRef(Index row, Index col) { return m_matrix.const_cast_derived().coeffRef(ReverseRow ? m_matrix.rows() - row - 1 : row, ReverseCol ? m_matrix.cols() - col - 1 : col); } inline CoeffReturnType coeff(Index row, Index col) const { return m_matrix.coeff(ReverseRow ? m_matrix.rows() - row - 1 : row, ReverseCol ? m_matrix.cols() - col - 1 : col); } inline CoeffReturnType coeff(Index index) const { return m_matrix.coeff(m_matrix.size() - index - 1); } inline Scalar& coeffRef(Index index) { return m_matrix.const_cast_derived().coeffRef(m_matrix.size() - index - 1); } inline Scalar& operator()(Index index) { ei_assert(index >= 0 && index < m_matrix.size()); return coeffRef(index); } template inline const PacketScalar packet(Index row, Index col) const { return reverse_packet::run(m_matrix.template packet( ReverseRow ? m_matrix.rows() - row - OffsetRow : row, ReverseCol ? m_matrix.cols() - col - OffsetCol : col)); } template inline void writePacket(Index row, Index col, const PacketScalar& x) { m_matrix.const_cast_derived().template writePacket( ReverseRow ? m_matrix.rows() - row - OffsetRow : row, ReverseCol ? m_matrix.cols() - col - OffsetCol : col, reverse_packet::run(x)); } template inline const PacketScalar packet(Index index) const { return ei_preverse(m_matrix.template packet( m_matrix.size() - index - PacketSize )); } template inline void writePacket(Index index, const PacketScalar& x) { m_matrix.const_cast_derived().template writePacket(m_matrix.size() - index - PacketSize, ei_preverse(x)); } protected: const typename MatrixType::Nested m_matrix; }; /** \returns an expression of the reverse of *this. * * Example: \include MatrixBase_reverse.cpp * Output: \verbinclude MatrixBase_reverse.out * */ template inline Reverse DenseBase::reverse() { return derived(); } /** This is the const version of reverse(). */ template inline const Reverse DenseBase::reverse() const { return derived(); } /** This is the "in place" version of reverse: it reverses \c *this. * * In most cases it is probably better to simply use the reversed expression * of a matrix. However, when reversing the matrix data itself is really needed, * then this "in-place" version is probably the right choice because it provides * the following additional features: * - less error prone: doing the same operation with .reverse() requires special care: * \code m = m.reverse().eval(); \endcode * - no temporary object is created (currently there is one created but could be avoided using swap) * - it allows future optimizations (cache friendliness, etc.) * * \sa reverse() */ template inline void DenseBase::reverseInPlace() { derived() = derived().reverse().eval(); } #endif // EIGEN_REVERSE_H