1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
|
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr>
// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
#ifndef EIGEN_DENSESTORAGEBASE_H
#define EIGEN_DENSESTORAGEBASE_H
#ifdef EIGEN_INITIALIZE_MATRICES_BY_ZERO
# define EIGEN_INITIALIZE_BY_ZERO_IF_THAT_OPTION_IS_ENABLED for(int i=0;i<base().size();++i) coeffRef(i)=Scalar(0);
#else
# define EIGEN_INITIALIZE_BY_ZERO_IF_THAT_OPTION_IS_ENABLED
#endif
namespace internal {
template<typename Index>
inline void check_rows_cols_for_overflow(Index rows, Index cols)
{
// http://hg.mozilla.org/mozilla-central/file/6c8a909977d3/xpcom/ds/CheckedInt.h#l242
// we assume Index is signed
Index max_index = (size_t(1) << (8 * sizeof(Index) - 1)) - 1; // assume Index is signed
bool error = (rows < 0 || cols < 0) ? true
: (rows == 0 || cols == 0) ? false
: (rows > max_index / cols);
if (error)
throw_std_bad_alloc();
}
template <typename Derived, typename OtherDerived = Derived, bool IsVector = static_cast<bool>(Derived::IsVectorAtCompileTime)> struct conservative_resize_like_impl;
template<typename MatrixTypeA, typename MatrixTypeB, bool SwapPointers> struct matrix_swap_impl;
} // end namespace internal
/**
* \brief %Dense storage base class for matrices and arrays.
*
* This class can be extended with the help of the plugin mechanism described on the page
* \ref TopicCustomizingEigen by defining the preprocessor symbol \c EIGEN_PLAINOBJECTBASE_PLUGIN.
*
* \sa \ref TopicClassHierarchy
*/
template<typename Derived>
class PlainObjectBase : public internal::dense_xpr_base<Derived>::type
{
public:
enum { Options = internal::traits<Derived>::Options };
typedef typename internal::dense_xpr_base<Derived>::type Base;
typedef typename internal::traits<Derived>::StorageKind StorageKind;
typedef typename internal::traits<Derived>::Index Index;
typedef typename internal::traits<Derived>::Scalar Scalar;
typedef typename internal::packet_traits<Scalar>::type PacketScalar;
typedef typename NumTraits<Scalar>::Real RealScalar;
typedef Derived DenseType;
using Base::RowsAtCompileTime;
using Base::ColsAtCompileTime;
using Base::SizeAtCompileTime;
using Base::MaxRowsAtCompileTime;
using Base::MaxColsAtCompileTime;
using Base::MaxSizeAtCompileTime;
using Base::IsVectorAtCompileTime;
using Base::Flags;
template<typename PlainObjectType, int MapOptions, typename StrideType> friend class Eigen::Map;
friend class Eigen::Map<Derived, Unaligned>;
typedef Eigen::Map<Derived, Unaligned> MapType;
friend class Eigen::Map<const Derived, Unaligned>;
typedef const Eigen::Map<const Derived, Unaligned> ConstMapType;
friend class Eigen::Map<Derived, Aligned>;
typedef Eigen::Map<Derived, Aligned> AlignedMapType;
friend class Eigen::Map<const Derived, Aligned>;
typedef const Eigen::Map<const Derived, Aligned> ConstAlignedMapType;
template<typename StrideType> struct StridedMapType { typedef Eigen::Map<Derived, Unaligned, StrideType> type; };
template<typename StrideType> struct StridedConstMapType { typedef Eigen::Map<const Derived, Unaligned, StrideType> type; };
template<typename StrideType> struct StridedAlignedMapType { typedef Eigen::Map<Derived, Aligned, StrideType> type; };
template<typename StrideType> struct StridedConstAlignedMapType { typedef Eigen::Map<const Derived, Aligned, StrideType> type; };
protected:
DenseStorage<Scalar, Base::MaxSizeAtCompileTime, Base::RowsAtCompileTime, Base::ColsAtCompileTime, Options> m_storage;
public:
enum { NeedsToAlign = (!(Options&DontAlign))
&& SizeAtCompileTime!=Dynamic && ((static_cast<int>(sizeof(Scalar))*SizeAtCompileTime)%16)==0 };
EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF(NeedsToAlign)
Base& base() { return *static_cast<Base*>(this); }
const Base& base() const { return *static_cast<const Base*>(this); }
EIGEN_STRONG_INLINE Index rows() const { return m_storage.rows(); }
EIGEN_STRONG_INLINE Index cols() const { return m_storage.cols(); }
EIGEN_STRONG_INLINE const Scalar& coeff(Index row, Index col) const
{
if(Flags & RowMajorBit)
return m_storage.data()[col + row * m_storage.cols()];
else // column-major
return m_storage.data()[row + col * m_storage.rows()];
}
EIGEN_STRONG_INLINE const Scalar& coeff(Index index) const
{
return m_storage.data()[index];
}
EIGEN_STRONG_INLINE Scalar& coeffRef(Index row, Index col)
{
if(Flags & RowMajorBit)
return m_storage.data()[col + row * m_storage.cols()];
else // column-major
return m_storage.data()[row + col * m_storage.rows()];
}
EIGEN_STRONG_INLINE Scalar& coeffRef(Index index)
{
return m_storage.data()[index];
}
EIGEN_STRONG_INLINE const Scalar& coeffRef(Index row, Index col) const
{
if(Flags & RowMajorBit)
return m_storage.data()[col + row * m_storage.cols()];
else // column-major
return m_storage.data()[row + col * m_storage.rows()];
}
EIGEN_STRONG_INLINE const Scalar& coeffRef(Index index) const
{
return m_storage.data()[index];
}
/** \internal */
template<int LoadMode>
EIGEN_STRONG_INLINE PacketScalar packet(Index row, Index col) const
{
return internal::ploadt<PacketScalar, LoadMode>
(m_storage.data() + (Flags & RowMajorBit
? col + row * m_storage.cols()
: row + col * m_storage.rows()));
}
/** \internal */
template<int LoadMode>
EIGEN_STRONG_INLINE PacketScalar packet(Index index) const
{
return internal::ploadt<PacketScalar, LoadMode>(m_storage.data() + index);
}
/** \internal */
template<int StoreMode>
EIGEN_STRONG_INLINE void writePacket(Index row, Index col, const PacketScalar& x)
{
internal::pstoret<Scalar, PacketScalar, StoreMode>
(m_storage.data() + (Flags & RowMajorBit
? col + row * m_storage.cols()
: row + col * m_storage.rows()), x);
}
/** \internal */
template<int StoreMode>
EIGEN_STRONG_INLINE void writePacket(Index index, const PacketScalar& x)
{
internal::pstoret<Scalar, PacketScalar, StoreMode>(m_storage.data() + index, x);
}
/** \returns a const pointer to the data array of this matrix */
EIGEN_STRONG_INLINE const Scalar *data() const
{ return m_storage.data(); }
/** \returns a pointer to the data array of this matrix */
EIGEN_STRONG_INLINE Scalar *data()
{ return m_storage.data(); }
/** Resizes \c *this to a \a rows x \a cols matrix.
*
* This method is intended for dynamic-size matrices, although it is legal to call it on any
* matrix as long as fixed dimensions are left unchanged. If you only want to change the number
* of rows and/or of columns, you can use resize(NoChange_t, Index), resize(Index, NoChange_t).
*
* If the current number of coefficients of \c *this exactly matches the
* product \a rows * \a cols, then no memory allocation is performed and
* the current values are left unchanged. In all other cases, including
* shrinking, the data is reallocated and all previous values are lost.
*
* Example: \include Matrix_resize_int_int.cpp
* Output: \verbinclude Matrix_resize_int_int.out
*
* \sa resize(Index) for vectors, resize(NoChange_t, Index), resize(Index, NoChange_t)
*/
EIGEN_STRONG_INLINE void resize(Index rows, Index cols)
{
#ifdef EIGEN_INITIALIZE_MATRICES_BY_ZERO
internal::check_rows_cols_for_overflow(rows, cols);
Index size = rows*cols;
bool size_changed = size != this->size();
m_storage.resize(size, rows, cols);
if(size_changed) EIGEN_INITIALIZE_BY_ZERO_IF_THAT_OPTION_IS_ENABLED
#else
internal::check_rows_cols_for_overflow(rows, cols);
m_storage.resize(rows*cols, rows, cols);
#endif
}
/** Resizes \c *this to a vector of length \a size
*
* \only_for_vectors. This method does not work for
* partially dynamic matrices when the static dimension is anything other
* than 1. For example it will not work with Matrix<double, 2, Dynamic>.
*
* Example: \include Matrix_resize_int.cpp
* Output: \verbinclude Matrix_resize_int.out
*
* \sa resize(Index,Index), resize(NoChange_t, Index), resize(Index, NoChange_t)
*/
inline void resize(Index size)
{
EIGEN_STATIC_ASSERT_VECTOR_ONLY(PlainObjectBase)
eigen_assert(SizeAtCompileTime == Dynamic || SizeAtCompileTime == size);
#ifdef EIGEN_INITIALIZE_MATRICES_BY_ZERO
bool size_changed = size != this->size();
#endif
if(RowsAtCompileTime == 1)
m_storage.resize(size, 1, size);
else
m_storage.resize(size, size, 1);
#ifdef EIGEN_INITIALIZE_MATRICES_BY_ZERO
if(size_changed) EIGEN_INITIALIZE_BY_ZERO_IF_THAT_OPTION_IS_ENABLED
#endif
}
/** Resizes the matrix, changing only the number of columns. For the parameter of type NoChange_t, just pass the special value \c NoChange
* as in the example below.
*
* Example: \include Matrix_resize_NoChange_int.cpp
* Output: \verbinclude Matrix_resize_NoChange_int.out
*
* \sa resize(Index,Index)
*/
inline void resize(NoChange_t, Index cols)
{
resize(rows(), cols);
}
/** Resizes the matrix, changing only the number of rows. For the parameter of type NoChange_t, just pass the special value \c NoChange
* as in the example below.
*
* Example: \include Matrix_resize_int_NoChange.cpp
* Output: \verbinclude Matrix_resize_int_NoChange.out
*
* \sa resize(Index,Index)
*/
inline void resize(Index rows, NoChange_t)
{
resize(rows, cols());
}
/** Resizes \c *this to have the same dimensions as \a other.
* Takes care of doing all the checking that's needed.
*
* Note that copying a row-vector into a vector (and conversely) is allowed.
* The resizing, if any, is then done in the appropriate way so that row-vectors
* remain row-vectors and vectors remain vectors.
*/
template<typename OtherDerived>
EIGEN_STRONG_INLINE void resizeLike(const EigenBase<OtherDerived>& _other)
{
const OtherDerived& other = _other.derived();
internal::check_rows_cols_for_overflow(other.rows(), other.cols());
const Index othersize = other.rows()*other.cols();
if(RowsAtCompileTime == 1)
{
eigen_assert(other.rows() == 1 || other.cols() == 1);
resize(1, othersize);
}
else if(ColsAtCompileTime == 1)
{
eigen_assert(other.rows() == 1 || other.cols() == 1);
resize(othersize, 1);
}
else resize(other.rows(), other.cols());
}
/** Resizes the matrix to \a rows x \a cols while leaving old values untouched.
*
* The method is intended for matrices of dynamic size. If you only want to change the number
* of rows and/or of columns, you can use conservativeResize(NoChange_t, Index) or
* conservativeResize(Index, NoChange_t).
*
* Matrices are resized relative to the top-left element. In case values need to be
* appended to the matrix they will be uninitialized.
*/
EIGEN_STRONG_INLINE void conservativeResize(Index rows, Index cols)
{
internal::conservative_resize_like_impl<Derived>::run(*this, rows, cols);
}
/** Resizes the matrix to \a rows x \a cols while leaving old values untouched.
*
* As opposed to conservativeResize(Index rows, Index cols), this version leaves
* the number of columns unchanged.
*
* In case the matrix is growing, new rows will be uninitialized.
*/
EIGEN_STRONG_INLINE void conservativeResize(Index rows, NoChange_t)
{
// Note: see the comment in conservativeResize(Index,Index)
conservativeResize(rows, cols());
}
/** Resizes the matrix to \a rows x \a cols while leaving old values untouched.
*
* As opposed to conservativeResize(Index rows, Index cols), this version leaves
* the number of rows unchanged.
*
* In case the matrix is growing, new columns will be uninitialized.
*/
EIGEN_STRONG_INLINE void conservativeResize(NoChange_t, Index cols)
{
// Note: see the comment in conservativeResize(Index,Index)
conservativeResize(rows(), cols);
}
/** Resizes the vector to \a size while retaining old values.
*
* \only_for_vectors. This method does not work for
* partially dynamic matrices when the static dimension is anything other
* than 1. For example it will not work with Matrix<double, 2, Dynamic>.
*
* When values are appended, they will be uninitialized.
*/
EIGEN_STRONG_INLINE void conservativeResize(Index size)
{
internal::conservative_resize_like_impl<Derived>::run(*this, size);
}
/** Resizes the matrix to \a rows x \a cols of \c other, while leaving old values untouched.
*
* The method is intended for matrices of dynamic size. If you only want to change the number
* of rows and/or of columns, you can use conservativeResize(NoChange_t, Index) or
* conservativeResize(Index, NoChange_t).
*
* Matrices are resized relative to the top-left element. In case values need to be
* appended to the matrix they will copied from \c other.
*/
template<typename OtherDerived>
EIGEN_STRONG_INLINE void conservativeResizeLike(const DenseBase<OtherDerived>& other)
{
internal::conservative_resize_like_impl<Derived,OtherDerived>::run(*this, other);
}
/** This is a special case of the templated operator=. Its purpose is to
* prevent a default operator= from hiding the templated operator=.
*/
EIGEN_STRONG_INLINE Derived& operator=(const PlainObjectBase& other)
{
return _set(other);
}
/** \sa MatrixBase::lazyAssign() */
template<typename OtherDerived>
EIGEN_STRONG_INLINE Derived& lazyAssign(const DenseBase<OtherDerived>& other)
{
_resize_to_match(other);
return Base::lazyAssign(other.derived());
}
template<typename OtherDerived>
EIGEN_STRONG_INLINE Derived& operator=(const ReturnByValue<OtherDerived>& func)
{
resize(func.rows(), func.cols());
return Base::operator=(func);
}
EIGEN_STRONG_INLINE explicit PlainObjectBase() : m_storage()
{
// _check_template_params();
// EIGEN_INITIALIZE_BY_ZERO_IF_THAT_OPTION_IS_ENABLED
}
#ifndef EIGEN_PARSED_BY_DOXYGEN
// FIXME is it still needed ?
/** \internal */
PlainObjectBase(internal::constructor_without_unaligned_array_assert)
: m_storage(internal::constructor_without_unaligned_array_assert())
{
// _check_template_params(); EIGEN_INITIALIZE_BY_ZERO_IF_THAT_OPTION_IS_ENABLED
}
#endif
EIGEN_STRONG_INLINE PlainObjectBase(Index size, Index rows, Index cols)
: m_storage(size, rows, cols)
{
// _check_template_params();
// EIGEN_INITIALIZE_BY_ZERO_IF_THAT_OPTION_IS_ENABLED
}
/** \copydoc MatrixBase::operator=(const EigenBase<OtherDerived>&)
*/
template<typename OtherDerived>
EIGEN_STRONG_INLINE Derived& operator=(const EigenBase<OtherDerived> &other)
{
_resize_to_match(other);
Base::operator=(other.derived());
return this->derived();
}
/** \sa MatrixBase::operator=(const EigenBase<OtherDerived>&) */
template<typename OtherDerived>
EIGEN_STRONG_INLINE PlainObjectBase(const EigenBase<OtherDerived> &other)
: m_storage(other.derived().rows() * other.derived().cols(), other.derived().rows(), other.derived().cols())
{
_check_template_params();
internal::check_rows_cols_for_overflow(other.derived().rows(), other.derived().cols());
Base::operator=(other.derived());
}
/** \name Map
* These are convenience functions returning Map objects. The Map() static functions return unaligned Map objects,
* while the AlignedMap() functions return aligned Map objects and thus should be called only with 16-byte-aligned
* \a data pointers.
*
* \see class Map
*/
//@{
inline static ConstMapType Map(const Scalar* data)
{ return ConstMapType(data); }
inline static MapType Map(Scalar* data)
{ return MapType(data); }
inline static ConstMapType Map(const Scalar* data, Index size)
{ return ConstMapType(data, size); }
inline static MapType Map(Scalar* data, Index size)
{ return MapType(data, size); }
inline static ConstMapType Map(const Scalar* data, Index rows, Index cols)
{ return ConstMapType(data, rows, cols); }
inline static MapType Map(Scalar* data, Index rows, Index cols)
{ return MapType(data, rows, cols); }
inline static ConstAlignedMapType MapAligned(const Scalar* data)
{ return ConstAlignedMapType(data); }
inline static AlignedMapType MapAligned(Scalar* data)
{ return AlignedMapType(data); }
inline static ConstAlignedMapType MapAligned(const Scalar* data, Index size)
{ return ConstAlignedMapType(data, size); }
inline static AlignedMapType MapAligned(Scalar* data, Index size)
{ return AlignedMapType(data, size); }
inline static ConstAlignedMapType MapAligned(const Scalar* data, Index rows, Index cols)
{ return ConstAlignedMapType(data, rows, cols); }
inline static AlignedMapType MapAligned(Scalar* data, Index rows, Index cols)
{ return AlignedMapType(data, rows, cols); }
template<int Outer, int Inner>
inline static typename StridedConstMapType<Stride<Outer, Inner> >::type Map(const Scalar* data, const Stride<Outer, Inner>& stride)
{ return typename StridedConstMapType<Stride<Outer, Inner> >::type(data, stride); }
template<int Outer, int Inner>
inline static typename StridedMapType<Stride<Outer, Inner> >::type Map(Scalar* data, const Stride<Outer, Inner>& stride)
{ return typename StridedMapType<Stride<Outer, Inner> >::type(data, stride); }
template<int Outer, int Inner>
inline static typename StridedConstMapType<Stride<Outer, Inner> >::type Map(const Scalar* data, Index size, const Stride<Outer, Inner>& stride)
{ return typename StridedConstMapType<Stride<Outer, Inner> >::type(data, size, stride); }
template<int Outer, int Inner>
inline static typename StridedMapType<Stride<Outer, Inner> >::type Map(Scalar* data, Index size, const Stride<Outer, Inner>& stride)
{ return typename StridedMapType<Stride<Outer, Inner> >::type(data, size, stride); }
template<int Outer, int Inner>
inline static typename StridedConstMapType<Stride<Outer, Inner> >::type Map(const Scalar* data, Index rows, Index cols, const Stride<Outer, Inner>& stride)
{ return typename StridedConstMapType<Stride<Outer, Inner> >::type(data, rows, cols, stride); }
template<int Outer, int Inner>
inline static typename StridedMapType<Stride<Outer, Inner> >::type Map(Scalar* data, Index rows, Index cols, const Stride<Outer, Inner>& stride)
{ return typename StridedMapType<Stride<Outer, Inner> >::type(data, rows, cols, stride); }
template<int Outer, int Inner>
inline static typename StridedConstAlignedMapType<Stride<Outer, Inner> >::type MapAligned(const Scalar* data, const Stride<Outer, Inner>& stride)
{ return typename StridedConstAlignedMapType<Stride<Outer, Inner> >::type(data, stride); }
template<int Outer, int Inner>
inline static typename StridedAlignedMapType<Stride<Outer, Inner> >::type MapAligned(Scalar* data, const Stride<Outer, Inner>& stride)
{ return typename StridedAlignedMapType<Stride<Outer, Inner> >::type(data, stride); }
template<int Outer, int Inner>
inline static typename StridedConstAlignedMapType<Stride<Outer, Inner> >::type MapAligned(const Scalar* data, Index size, const Stride<Outer, Inner>& stride)
{ return typename StridedConstAlignedMapType<Stride<Outer, Inner> >::type(data, size, stride); }
template<int Outer, int Inner>
inline static typename StridedAlignedMapType<Stride<Outer, Inner> >::type MapAligned(Scalar* data, Index size, const Stride<Outer, Inner>& stride)
{ return typename StridedAlignedMapType<Stride<Outer, Inner> >::type(data, size, stride); }
template<int Outer, int Inner>
inline static typename StridedConstAlignedMapType<Stride<Outer, Inner> >::type MapAligned(const Scalar* data, Index rows, Index cols, const Stride<Outer, Inner>& stride)
{ return typename StridedConstAlignedMapType<Stride<Outer, Inner> >::type(data, rows, cols, stride); }
template<int Outer, int Inner>
inline static typename StridedAlignedMapType<Stride<Outer, Inner> >::type MapAligned(Scalar* data, Index rows, Index cols, const Stride<Outer, Inner>& stride)
{ return typename StridedAlignedMapType<Stride<Outer, Inner> >::type(data, rows, cols, stride); }
//@}
using Base::setConstant;
Derived& setConstant(Index size, const Scalar& value);
Derived& setConstant(Index rows, Index cols, const Scalar& value);
using Base::setZero;
Derived& setZero(Index size);
Derived& setZero(Index rows, Index cols);
using Base::setOnes;
Derived& setOnes(Index size);
Derived& setOnes(Index rows, Index cols);
using Base::setRandom;
Derived& setRandom(Index size);
Derived& setRandom(Index rows, Index cols);
#ifdef EIGEN_PLAINOBJECTBASE_PLUGIN
#include EIGEN_PLAINOBJECTBASE_PLUGIN
#endif
protected:
/** \internal Resizes *this in preparation for assigning \a other to it.
* Takes care of doing all the checking that's needed.
*
* Note that copying a row-vector into a vector (and conversely) is allowed.
* The resizing, if any, is then done in the appropriate way so that row-vectors
* remain row-vectors and vectors remain vectors.
*/
template<typename OtherDerived>
EIGEN_STRONG_INLINE void _resize_to_match(const EigenBase<OtherDerived>& other)
{
#ifdef EIGEN_NO_AUTOMATIC_RESIZING
eigen_assert((this->size()==0 || (IsVectorAtCompileTime ? (this->size() == other.size())
: (rows() == other.rows() && cols() == other.cols())))
&& "Size mismatch. Automatic resizing is disabled because EIGEN_NO_AUTOMATIC_RESIZING is defined");
#else
resizeLike(other);
#endif
}
/**
* \brief Copies the value of the expression \a other into \c *this with automatic resizing.
*
* *this might be resized to match the dimensions of \a other. If *this was a null matrix (not already initialized),
* it will be initialized.
*
* Note that copying a row-vector into a vector (and conversely) is allowed.
* The resizing, if any, is then done in the appropriate way so that row-vectors
* remain row-vectors and vectors remain vectors.
*
* \sa operator=(const MatrixBase<OtherDerived>&), _set_noalias()
*
* \internal
*/
template<typename OtherDerived>
EIGEN_STRONG_INLINE Derived& _set(const DenseBase<OtherDerived>& other)
{
_set_selector(other.derived(), typename internal::conditional<static_cast<bool>(int(OtherDerived::Flags) & EvalBeforeAssigningBit), internal::true_type, internal::false_type>::type());
return this->derived();
}
template<typename OtherDerived>
EIGEN_STRONG_INLINE void _set_selector(const OtherDerived& other, const internal::true_type&) { _set_noalias(other.eval()); }
template<typename OtherDerived>
EIGEN_STRONG_INLINE void _set_selector(const OtherDerived& other, const internal::false_type&) { _set_noalias(other); }
/** \internal Like _set() but additionally makes the assumption that no aliasing effect can happen (which
* is the case when creating a new matrix) so one can enforce lazy evaluation.
*
* \sa operator=(const MatrixBase<OtherDerived>&), _set()
*/
template<typename OtherDerived>
EIGEN_STRONG_INLINE Derived& _set_noalias(const DenseBase<OtherDerived>& other)
{
// I don't think we need this resize call since the lazyAssign will anyways resize
// and lazyAssign will be called by the assign selector.
//_resize_to_match(other);
// the 'false' below means to enforce lazy evaluation. We don't use lazyAssign() because
// it wouldn't allow to copy a row-vector into a column-vector.
return internal::assign_selector<Derived,OtherDerived,false>::run(this->derived(), other.derived());
}
template<typename T0, typename T1>
EIGEN_STRONG_INLINE void _init2(Index rows, Index cols, typename internal::enable_if<Base::SizeAtCompileTime!=2,T0>::type* = 0)
{
eigen_assert(rows >= 0 && (RowsAtCompileTime == Dynamic || RowsAtCompileTime == rows)
&& cols >= 0 && (ColsAtCompileTime == Dynamic || ColsAtCompileTime == cols));
internal::check_rows_cols_for_overflow(rows, cols);
m_storage.resize(rows*cols,rows,cols);
EIGEN_INITIALIZE_BY_ZERO_IF_THAT_OPTION_IS_ENABLED
}
template<typename T0, typename T1>
EIGEN_STRONG_INLINE void _init2(const Scalar& x, const Scalar& y, typename internal::enable_if<Base::SizeAtCompileTime==2,T0>::type* = 0)
{
EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(PlainObjectBase, 2)
m_storage.data()[0] = x;
m_storage.data()[1] = y;
}
template<typename MatrixTypeA, typename MatrixTypeB, bool SwapPointers>
friend struct internal::matrix_swap_impl;
/** \internal generic implementation of swap for dense storage since for dynamic-sized matrices of same type it is enough to swap the
* data pointers.
*/
template<typename OtherDerived>
void _swap(DenseBase<OtherDerived> const & other)
{
enum { SwapPointers = internal::is_same<Derived, OtherDerived>::value && Base::SizeAtCompileTime==Dynamic };
internal::matrix_swap_impl<Derived, OtherDerived, bool(SwapPointers)>::run(this->derived(), other.const_cast_derived());
}
public:
#ifndef EIGEN_PARSED_BY_DOXYGEN
EIGEN_STRONG_INLINE static void _check_template_params()
{
EIGEN_STATIC_ASSERT((EIGEN_IMPLIES(MaxRowsAtCompileTime==1 && MaxColsAtCompileTime!=1, (Options&RowMajor)==RowMajor)
&& EIGEN_IMPLIES(MaxColsAtCompileTime==1 && MaxRowsAtCompileTime!=1, (Options&RowMajor)==0)
&& ((RowsAtCompileTime == Dynamic) || (RowsAtCompileTime >= 0))
&& ((ColsAtCompileTime == Dynamic) || (ColsAtCompileTime >= 0))
&& ((MaxRowsAtCompileTime == Dynamic) || (MaxRowsAtCompileTime >= 0))
&& ((MaxColsAtCompileTime == Dynamic) || (MaxColsAtCompileTime >= 0))
&& (MaxRowsAtCompileTime == RowsAtCompileTime || RowsAtCompileTime==Dynamic)
&& (MaxColsAtCompileTime == ColsAtCompileTime || ColsAtCompileTime==Dynamic)
&& (Options & (DontAlign|RowMajor)) == Options),
INVALID_MATRIX_TEMPLATE_PARAMETERS)
}
#endif
private:
enum { ThisConstantIsPrivateInPlainObjectBase };
};
template <typename Derived, typename OtherDerived, bool IsVector>
struct internal::conservative_resize_like_impl
{
typedef typename Derived::Index Index;
static void run(DenseBase<Derived>& _this, Index rows, Index cols)
{
if (_this.rows() == rows && _this.cols() == cols) return;
EIGEN_STATIC_ASSERT_DYNAMIC_SIZE(Derived)
if ( ( Derived::IsRowMajor && _this.cols() == cols) || // row-major and we change only the number of rows
(!Derived::IsRowMajor && _this.rows() == rows) ) // column-major and we change only the number of columns
{
internal::check_rows_cols_for_overflow(rows, cols);
_this.derived().m_storage.conservativeResize(rows*cols,rows,cols);
}
else
{
// The storage order does not allow us to use reallocation.
typename Derived::PlainObject tmp(rows,cols);
const Index common_rows = (std::min)(rows, _this.rows());
const Index common_cols = (std::min)(cols, _this.cols());
tmp.block(0,0,common_rows,common_cols) = _this.block(0,0,common_rows,common_cols);
_this.derived().swap(tmp);
}
}
static void run(DenseBase<Derived>& _this, const DenseBase<OtherDerived>& other)
{
if (_this.rows() == other.rows() && _this.cols() == other.cols()) return;
// Note: Here is space for improvement. Basically, for conservativeResize(Index,Index),
// neither RowsAtCompileTime or ColsAtCompileTime must be Dynamic. If only one of the
// dimensions is dynamic, one could use either conservativeResize(Index rows, NoChange_t) or
// conservativeResize(NoChange_t, Index cols). For these methods new static asserts like
// EIGEN_STATIC_ASSERT_DYNAMIC_ROWS and EIGEN_STATIC_ASSERT_DYNAMIC_COLS would be good.
EIGEN_STATIC_ASSERT_DYNAMIC_SIZE(Derived)
EIGEN_STATIC_ASSERT_DYNAMIC_SIZE(OtherDerived)
if ( ( Derived::IsRowMajor && _this.cols() == other.cols()) || // row-major and we change only the number of rows
(!Derived::IsRowMajor && _this.rows() == other.rows()) ) // column-major and we change only the number of columns
{
const Index new_rows = other.rows() - _this.rows();
const Index new_cols = other.cols() - _this.cols();
_this.derived().m_storage.conservativeResize(other.size(),other.rows(),other.cols());
if (new_rows>0)
_this.bottomRightCorner(new_rows, other.cols()) = other.bottomRows(new_rows);
else if (new_cols>0)
_this.bottomRightCorner(other.rows(), new_cols) = other.rightCols(new_cols);
}
else
{
// The storage order does not allow us to use reallocation.
typename Derived::PlainObject tmp(other);
const Index common_rows = (std::min)(tmp.rows(), _this.rows());
const Index common_cols = (std::min)(tmp.cols(), _this.cols());
tmp.block(0,0,common_rows,common_cols) = _this.block(0,0,common_rows,common_cols);
_this.derived().swap(tmp);
}
}
};
namespace internal {
template <typename Derived, typename OtherDerived>
struct conservative_resize_like_impl<Derived,OtherDerived,true>
{
typedef typename Derived::Index Index;
static void run(DenseBase<Derived>& _this, Index size)
{
const Index new_rows = Derived::RowsAtCompileTime==1 ? 1 : size;
const Index new_cols = Derived::RowsAtCompileTime==1 ? size : 1;
_this.derived().m_storage.conservativeResize(size,new_rows,new_cols);
}
static void run(DenseBase<Derived>& _this, const DenseBase<OtherDerived>& other)
{
if (_this.rows() == other.rows() && _this.cols() == other.cols()) return;
const Index num_new_elements = other.size() - _this.size();
const Index new_rows = Derived::RowsAtCompileTime==1 ? 1 : other.rows();
const Index new_cols = Derived::RowsAtCompileTime==1 ? other.cols() : 1;
_this.derived().m_storage.conservativeResize(other.size(),new_rows,new_cols);
if (num_new_elements > 0)
_this.tail(num_new_elements) = other.tail(num_new_elements);
}
};
template<typename MatrixTypeA, typename MatrixTypeB, bool SwapPointers>
struct matrix_swap_impl
{
static inline void run(MatrixTypeA& a, MatrixTypeB& b)
{
a.base().swap(b);
}
};
template<typename MatrixTypeA, typename MatrixTypeB>
struct matrix_swap_impl<MatrixTypeA, MatrixTypeB, true>
{
static inline void run(MatrixTypeA& a, MatrixTypeB& b)
{
static_cast<typename MatrixTypeA::Base&>(a).m_storage.swap(static_cast<typename MatrixTypeB::Base&>(b).m_storage);
}
};
} // end namespace internal
#endif // EIGEN_DENSESTORAGEBASE_H
|