// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2008-2009 Gael Guennebaud // Copyright (C) 2006-2008 Benoit Jacob // // Eigen is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 3 of the License, or (at your option) any later version. // // Alternatively, you can redistribute it and/or // modify it under the terms of the GNU General Public License as // published by the Free Software Foundation; either version 2 of // the License, or (at your option) any later version. // // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the // GNU General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License and a copy of the GNU General Public License along with // Eigen. If not, see . #ifndef EIGEN_DENSESTORAGEBASE_H #define EIGEN_DENSESTORAGEBASE_H #ifdef EIGEN_INITIALIZE_MATRICES_BY_ZERO # define EIGEN_INITIALIZE_BY_ZERO_IF_THAT_OPTION_IS_ENABLED for(int i=0;i inline void check_rows_cols_for_overflow(Index rows, Index cols) { // http://hg.mozilla.org/mozilla-central/file/6c8a909977d3/xpcom/ds/CheckedInt.h#l242 // we assume Index is signed Index max_index = (size_t(1) << (8 * sizeof(Index) - 1)) - 1; // assume Index is signed bool error = (rows < 0 || cols < 0) ? true : (rows == 0 || cols == 0) ? false : (rows > max_index / cols); if (error) throw_std_bad_alloc(); } template (Derived::IsVectorAtCompileTime)> struct conservative_resize_like_impl; template struct matrix_swap_impl; } // end namespace internal /** * \brief %Dense storage base class for matrices and arrays. * * This class can be extended with the help of the plugin mechanism described on the page * \ref TopicCustomizingEigen by defining the preprocessor symbol \c EIGEN_PLAINOBJECTBASE_PLUGIN. * * \sa \ref TopicClassHierarchy */ template class PlainObjectBase : public internal::dense_xpr_base::type { public: enum { Options = internal::traits::Options }; typedef typename internal::dense_xpr_base::type Base; typedef typename internal::traits::StorageKind StorageKind; typedef typename internal::traits::Index Index; typedef typename internal::traits::Scalar Scalar; typedef typename internal::packet_traits::type PacketScalar; typedef typename NumTraits::Real RealScalar; typedef Derived DenseType; using Base::RowsAtCompileTime; using Base::ColsAtCompileTime; using Base::SizeAtCompileTime; using Base::MaxRowsAtCompileTime; using Base::MaxColsAtCompileTime; using Base::MaxSizeAtCompileTime; using Base::IsVectorAtCompileTime; using Base::Flags; template friend class Eigen::Map; friend class Eigen::Map; typedef Eigen::Map MapType; friend class Eigen::Map; typedef const Eigen::Map ConstMapType; friend class Eigen::Map; typedef Eigen::Map AlignedMapType; friend class Eigen::Map; typedef const Eigen::Map ConstAlignedMapType; template struct StridedMapType { typedef Eigen::Map type; }; template struct StridedConstMapType { typedef Eigen::Map type; }; template struct StridedAlignedMapType { typedef Eigen::Map type; }; template struct StridedConstAlignedMapType { typedef Eigen::Map type; }; protected: DenseStorage m_storage; public: enum { NeedsToAlign = (!(Options&DontAlign)) && SizeAtCompileTime!=Dynamic && ((static_cast(sizeof(Scalar))*SizeAtCompileTime)%16)==0 }; EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF(NeedsToAlign) Base& base() { return *static_cast(this); } const Base& base() const { return *static_cast(this); } EIGEN_STRONG_INLINE Index rows() const { return m_storage.rows(); } EIGEN_STRONG_INLINE Index cols() const { return m_storage.cols(); } EIGEN_STRONG_INLINE const Scalar& coeff(Index row, Index col) const { if(Flags & RowMajorBit) return m_storage.data()[col + row * m_storage.cols()]; else // column-major return m_storage.data()[row + col * m_storage.rows()]; } EIGEN_STRONG_INLINE const Scalar& coeff(Index index) const { return m_storage.data()[index]; } EIGEN_STRONG_INLINE Scalar& coeffRef(Index row, Index col) { if(Flags & RowMajorBit) return m_storage.data()[col + row * m_storage.cols()]; else // column-major return m_storage.data()[row + col * m_storage.rows()]; } EIGEN_STRONG_INLINE Scalar& coeffRef(Index index) { return m_storage.data()[index]; } EIGEN_STRONG_INLINE const Scalar& coeffRef(Index row, Index col) const { if(Flags & RowMajorBit) return m_storage.data()[col + row * m_storage.cols()]; else // column-major return m_storage.data()[row + col * m_storage.rows()]; } EIGEN_STRONG_INLINE const Scalar& coeffRef(Index index) const { return m_storage.data()[index]; } /** \internal */ template EIGEN_STRONG_INLINE PacketScalar packet(Index row, Index col) const { return internal::ploadt (m_storage.data() + (Flags & RowMajorBit ? col + row * m_storage.cols() : row + col * m_storage.rows())); } /** \internal */ template EIGEN_STRONG_INLINE PacketScalar packet(Index index) const { return internal::ploadt(m_storage.data() + index); } /** \internal */ template EIGEN_STRONG_INLINE void writePacket(Index row, Index col, const PacketScalar& x) { internal::pstoret (m_storage.data() + (Flags & RowMajorBit ? col + row * m_storage.cols() : row + col * m_storage.rows()), x); } /** \internal */ template EIGEN_STRONG_INLINE void writePacket(Index index, const PacketScalar& x) { internal::pstoret(m_storage.data() + index, x); } /** \returns a const pointer to the data array of this matrix */ EIGEN_STRONG_INLINE const Scalar *data() const { return m_storage.data(); } /** \returns a pointer to the data array of this matrix */ EIGEN_STRONG_INLINE Scalar *data() { return m_storage.data(); } /** Resizes \c *this to a \a rows x \a cols matrix. * * This method is intended for dynamic-size matrices, although it is legal to call it on any * matrix as long as fixed dimensions are left unchanged. If you only want to change the number * of rows and/or of columns, you can use resize(NoChange_t, Index), resize(Index, NoChange_t). * * If the current number of coefficients of \c *this exactly matches the * product \a rows * \a cols, then no memory allocation is performed and * the current values are left unchanged. In all other cases, including * shrinking, the data is reallocated and all previous values are lost. * * Example: \include Matrix_resize_int_int.cpp * Output: \verbinclude Matrix_resize_int_int.out * * \sa resize(Index) for vectors, resize(NoChange_t, Index), resize(Index, NoChange_t) */ EIGEN_STRONG_INLINE void resize(Index rows, Index cols) { #ifdef EIGEN_INITIALIZE_MATRICES_BY_ZERO internal::check_rows_cols_for_overflow(rows, cols); Index size = rows*cols; bool size_changed = size != this->size(); m_storage.resize(size, rows, cols); if(size_changed) EIGEN_INITIALIZE_BY_ZERO_IF_THAT_OPTION_IS_ENABLED #else internal::check_rows_cols_for_overflow(rows, cols); m_storage.resize(rows*cols, rows, cols); #endif } /** Resizes \c *this to a vector of length \a size * * \only_for_vectors. This method does not work for * partially dynamic matrices when the static dimension is anything other * than 1. For example it will not work with Matrix. * * Example: \include Matrix_resize_int.cpp * Output: \verbinclude Matrix_resize_int.out * * \sa resize(Index,Index), resize(NoChange_t, Index), resize(Index, NoChange_t) */ inline void resize(Index size) { EIGEN_STATIC_ASSERT_VECTOR_ONLY(PlainObjectBase) eigen_assert(SizeAtCompileTime == Dynamic || SizeAtCompileTime == size); #ifdef EIGEN_INITIALIZE_MATRICES_BY_ZERO bool size_changed = size != this->size(); #endif if(RowsAtCompileTime == 1) m_storage.resize(size, 1, size); else m_storage.resize(size, size, 1); #ifdef EIGEN_INITIALIZE_MATRICES_BY_ZERO if(size_changed) EIGEN_INITIALIZE_BY_ZERO_IF_THAT_OPTION_IS_ENABLED #endif } /** Resizes the matrix, changing only the number of columns. For the parameter of type NoChange_t, just pass the special value \c NoChange * as in the example below. * * Example: \include Matrix_resize_NoChange_int.cpp * Output: \verbinclude Matrix_resize_NoChange_int.out * * \sa resize(Index,Index) */ inline void resize(NoChange_t, Index cols) { resize(rows(), cols); } /** Resizes the matrix, changing only the number of rows. For the parameter of type NoChange_t, just pass the special value \c NoChange * as in the example below. * * Example: \include Matrix_resize_int_NoChange.cpp * Output: \verbinclude Matrix_resize_int_NoChange.out * * \sa resize(Index,Index) */ inline void resize(Index rows, NoChange_t) { resize(rows, cols()); } /** Resizes \c *this to have the same dimensions as \a other. * Takes care of doing all the checking that's needed. * * Note that copying a row-vector into a vector (and conversely) is allowed. * The resizing, if any, is then done in the appropriate way so that row-vectors * remain row-vectors and vectors remain vectors. */ template EIGEN_STRONG_INLINE void resizeLike(const EigenBase& _other) { const OtherDerived& other = _other.derived(); internal::check_rows_cols_for_overflow(other.rows(), other.cols()); const Index othersize = other.rows()*other.cols(); if(RowsAtCompileTime == 1) { eigen_assert(other.rows() == 1 || other.cols() == 1); resize(1, othersize); } else if(ColsAtCompileTime == 1) { eigen_assert(other.rows() == 1 || other.cols() == 1); resize(othersize, 1); } else resize(other.rows(), other.cols()); } /** Resizes the matrix to \a rows x \a cols while leaving old values untouched. * * The method is intended for matrices of dynamic size. If you only want to change the number * of rows and/or of columns, you can use conservativeResize(NoChange_t, Index) or * conservativeResize(Index, NoChange_t). * * Matrices are resized relative to the top-left element. In case values need to be * appended to the matrix they will be uninitialized. */ EIGEN_STRONG_INLINE void conservativeResize(Index rows, Index cols) { internal::conservative_resize_like_impl::run(*this, rows, cols); } /** Resizes the matrix to \a rows x \a cols while leaving old values untouched. * * As opposed to conservativeResize(Index rows, Index cols), this version leaves * the number of columns unchanged. * * In case the matrix is growing, new rows will be uninitialized. */ EIGEN_STRONG_INLINE void conservativeResize(Index rows, NoChange_t) { // Note: see the comment in conservativeResize(Index,Index) conservativeResize(rows, cols()); } /** Resizes the matrix to \a rows x \a cols while leaving old values untouched. * * As opposed to conservativeResize(Index rows, Index cols), this version leaves * the number of rows unchanged. * * In case the matrix is growing, new columns will be uninitialized. */ EIGEN_STRONG_INLINE void conservativeResize(NoChange_t, Index cols) { // Note: see the comment in conservativeResize(Index,Index) conservativeResize(rows(), cols); } /** Resizes the vector to \a size while retaining old values. * * \only_for_vectors. This method does not work for * partially dynamic matrices when the static dimension is anything other * than 1. For example it will not work with Matrix. * * When values are appended, they will be uninitialized. */ EIGEN_STRONG_INLINE void conservativeResize(Index size) { internal::conservative_resize_like_impl::run(*this, size); } /** Resizes the matrix to \a rows x \a cols of \c other, while leaving old values untouched. * * The method is intended for matrices of dynamic size. If you only want to change the number * of rows and/or of columns, you can use conservativeResize(NoChange_t, Index) or * conservativeResize(Index, NoChange_t). * * Matrices are resized relative to the top-left element. In case values need to be * appended to the matrix they will copied from \c other. */ template EIGEN_STRONG_INLINE void conservativeResizeLike(const DenseBase& other) { internal::conservative_resize_like_impl::run(*this, other); } /** This is a special case of the templated operator=. Its purpose is to * prevent a default operator= from hiding the templated operator=. */ EIGEN_STRONG_INLINE Derived& operator=(const PlainObjectBase& other) { return _set(other); } /** \sa MatrixBase::lazyAssign() */ template EIGEN_STRONG_INLINE Derived& lazyAssign(const DenseBase& other) { _resize_to_match(other); return Base::lazyAssign(other.derived()); } template EIGEN_STRONG_INLINE Derived& operator=(const ReturnByValue& func) { resize(func.rows(), func.cols()); return Base::operator=(func); } EIGEN_STRONG_INLINE explicit PlainObjectBase() : m_storage() { // _check_template_params(); // EIGEN_INITIALIZE_BY_ZERO_IF_THAT_OPTION_IS_ENABLED } #ifndef EIGEN_PARSED_BY_DOXYGEN // FIXME is it still needed ? /** \internal */ PlainObjectBase(internal::constructor_without_unaligned_array_assert) : m_storage(internal::constructor_without_unaligned_array_assert()) { // _check_template_params(); EIGEN_INITIALIZE_BY_ZERO_IF_THAT_OPTION_IS_ENABLED } #endif EIGEN_STRONG_INLINE PlainObjectBase(Index size, Index rows, Index cols) : m_storage(size, rows, cols) { // _check_template_params(); // EIGEN_INITIALIZE_BY_ZERO_IF_THAT_OPTION_IS_ENABLED } /** \copydoc MatrixBase::operator=(const EigenBase&) */ template EIGEN_STRONG_INLINE Derived& operator=(const EigenBase &other) { _resize_to_match(other); Base::operator=(other.derived()); return this->derived(); } /** \sa MatrixBase::operator=(const EigenBase&) */ template EIGEN_STRONG_INLINE PlainObjectBase(const EigenBase &other) : m_storage(other.derived().rows() * other.derived().cols(), other.derived().rows(), other.derived().cols()) { _check_template_params(); internal::check_rows_cols_for_overflow(other.derived().rows(), other.derived().cols()); Base::operator=(other.derived()); } /** \name Map * These are convenience functions returning Map objects. The Map() static functions return unaligned Map objects, * while the AlignedMap() functions return aligned Map objects and thus should be called only with 16-byte-aligned * \a data pointers. * * \see class Map */ //@{ inline static ConstMapType Map(const Scalar* data) { return ConstMapType(data); } inline static MapType Map(Scalar* data) { return MapType(data); } inline static ConstMapType Map(const Scalar* data, Index size) { return ConstMapType(data, size); } inline static MapType Map(Scalar* data, Index size) { return MapType(data, size); } inline static ConstMapType Map(const Scalar* data, Index rows, Index cols) { return ConstMapType(data, rows, cols); } inline static MapType Map(Scalar* data, Index rows, Index cols) { return MapType(data, rows, cols); } inline static ConstAlignedMapType MapAligned(const Scalar* data) { return ConstAlignedMapType(data); } inline static AlignedMapType MapAligned(Scalar* data) { return AlignedMapType(data); } inline static ConstAlignedMapType MapAligned(const Scalar* data, Index size) { return ConstAlignedMapType(data, size); } inline static AlignedMapType MapAligned(Scalar* data, Index size) { return AlignedMapType(data, size); } inline static ConstAlignedMapType MapAligned(const Scalar* data, Index rows, Index cols) { return ConstAlignedMapType(data, rows, cols); } inline static AlignedMapType MapAligned(Scalar* data, Index rows, Index cols) { return AlignedMapType(data, rows, cols); } template inline static typename StridedConstMapType >::type Map(const Scalar* data, const Stride& stride) { return typename StridedConstMapType >::type(data, stride); } template inline static typename StridedMapType >::type Map(Scalar* data, const Stride& stride) { return typename StridedMapType >::type(data, stride); } template inline static typename StridedConstMapType >::type Map(const Scalar* data, Index size, const Stride& stride) { return typename StridedConstMapType >::type(data, size, stride); } template inline static typename StridedMapType >::type Map(Scalar* data, Index size, const Stride& stride) { return typename StridedMapType >::type(data, size, stride); } template inline static typename StridedConstMapType >::type Map(const Scalar* data, Index rows, Index cols, const Stride& stride) { return typename StridedConstMapType >::type(data, rows, cols, stride); } template inline static typename StridedMapType >::type Map(Scalar* data, Index rows, Index cols, const Stride& stride) { return typename StridedMapType >::type(data, rows, cols, stride); } template inline static typename StridedConstAlignedMapType >::type MapAligned(const Scalar* data, const Stride& stride) { return typename StridedConstAlignedMapType >::type(data, stride); } template inline static typename StridedAlignedMapType >::type MapAligned(Scalar* data, const Stride& stride) { return typename StridedAlignedMapType >::type(data, stride); } template inline static typename StridedConstAlignedMapType >::type MapAligned(const Scalar* data, Index size, const Stride& stride) { return typename StridedConstAlignedMapType >::type(data, size, stride); } template inline static typename StridedAlignedMapType >::type MapAligned(Scalar* data, Index size, const Stride& stride) { return typename StridedAlignedMapType >::type(data, size, stride); } template inline static typename StridedConstAlignedMapType >::type MapAligned(const Scalar* data, Index rows, Index cols, const Stride& stride) { return typename StridedConstAlignedMapType >::type(data, rows, cols, stride); } template inline static typename StridedAlignedMapType >::type MapAligned(Scalar* data, Index rows, Index cols, const Stride& stride) { return typename StridedAlignedMapType >::type(data, rows, cols, stride); } //@} using Base::setConstant; Derived& setConstant(Index size, const Scalar& value); Derived& setConstant(Index rows, Index cols, const Scalar& value); using Base::setZero; Derived& setZero(Index size); Derived& setZero(Index rows, Index cols); using Base::setOnes; Derived& setOnes(Index size); Derived& setOnes(Index rows, Index cols); using Base::setRandom; Derived& setRandom(Index size); Derived& setRandom(Index rows, Index cols); #ifdef EIGEN_PLAINOBJECTBASE_PLUGIN #include EIGEN_PLAINOBJECTBASE_PLUGIN #endif protected: /** \internal Resizes *this in preparation for assigning \a other to it. * Takes care of doing all the checking that's needed. * * Note that copying a row-vector into a vector (and conversely) is allowed. * The resizing, if any, is then done in the appropriate way so that row-vectors * remain row-vectors and vectors remain vectors. */ template EIGEN_STRONG_INLINE void _resize_to_match(const EigenBase& other) { #ifdef EIGEN_NO_AUTOMATIC_RESIZING eigen_assert((this->size()==0 || (IsVectorAtCompileTime ? (this->size() == other.size()) : (rows() == other.rows() && cols() == other.cols()))) && "Size mismatch. Automatic resizing is disabled because EIGEN_NO_AUTOMATIC_RESIZING is defined"); #else resizeLike(other); #endif } /** * \brief Copies the value of the expression \a other into \c *this with automatic resizing. * * *this might be resized to match the dimensions of \a other. If *this was a null matrix (not already initialized), * it will be initialized. * * Note that copying a row-vector into a vector (and conversely) is allowed. * The resizing, if any, is then done in the appropriate way so that row-vectors * remain row-vectors and vectors remain vectors. * * \sa operator=(const MatrixBase&), _set_noalias() * * \internal */ template EIGEN_STRONG_INLINE Derived& _set(const DenseBase& other) { _set_selector(other.derived(), typename internal::conditional(int(OtherDerived::Flags) & EvalBeforeAssigningBit), internal::true_type, internal::false_type>::type()); return this->derived(); } template EIGEN_STRONG_INLINE void _set_selector(const OtherDerived& other, const internal::true_type&) { _set_noalias(other.eval()); } template EIGEN_STRONG_INLINE void _set_selector(const OtherDerived& other, const internal::false_type&) { _set_noalias(other); } /** \internal Like _set() but additionally makes the assumption that no aliasing effect can happen (which * is the case when creating a new matrix) so one can enforce lazy evaluation. * * \sa operator=(const MatrixBase&), _set() */ template EIGEN_STRONG_INLINE Derived& _set_noalias(const DenseBase& other) { // I don't think we need this resize call since the lazyAssign will anyways resize // and lazyAssign will be called by the assign selector. //_resize_to_match(other); // the 'false' below means to enforce lazy evaluation. We don't use lazyAssign() because // it wouldn't allow to copy a row-vector into a column-vector. return internal::assign_selector::run(this->derived(), other.derived()); } template EIGEN_STRONG_INLINE void _init2(Index rows, Index cols, typename internal::enable_if::type* = 0) { eigen_assert(rows >= 0 && (RowsAtCompileTime == Dynamic || RowsAtCompileTime == rows) && cols >= 0 && (ColsAtCompileTime == Dynamic || ColsAtCompileTime == cols)); internal::check_rows_cols_for_overflow(rows, cols); m_storage.resize(rows*cols,rows,cols); EIGEN_INITIALIZE_BY_ZERO_IF_THAT_OPTION_IS_ENABLED } template EIGEN_STRONG_INLINE void _init2(const Scalar& x, const Scalar& y, typename internal::enable_if::type* = 0) { EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(PlainObjectBase, 2) m_storage.data()[0] = x; m_storage.data()[1] = y; } template friend struct internal::matrix_swap_impl; /** \internal generic implementation of swap for dense storage since for dynamic-sized matrices of same type it is enough to swap the * data pointers. */ template void _swap(DenseBase const & other) { enum { SwapPointers = internal::is_same::value && Base::SizeAtCompileTime==Dynamic }; internal::matrix_swap_impl::run(this->derived(), other.const_cast_derived()); } public: #ifndef EIGEN_PARSED_BY_DOXYGEN EIGEN_STRONG_INLINE static void _check_template_params() { EIGEN_STATIC_ASSERT((EIGEN_IMPLIES(MaxRowsAtCompileTime==1 && MaxColsAtCompileTime!=1, (Options&RowMajor)==RowMajor) && EIGEN_IMPLIES(MaxColsAtCompileTime==1 && MaxRowsAtCompileTime!=1, (Options&RowMajor)==0) && ((RowsAtCompileTime == Dynamic) || (RowsAtCompileTime >= 0)) && ((ColsAtCompileTime == Dynamic) || (ColsAtCompileTime >= 0)) && ((MaxRowsAtCompileTime == Dynamic) || (MaxRowsAtCompileTime >= 0)) && ((MaxColsAtCompileTime == Dynamic) || (MaxColsAtCompileTime >= 0)) && (MaxRowsAtCompileTime == RowsAtCompileTime || RowsAtCompileTime==Dynamic) && (MaxColsAtCompileTime == ColsAtCompileTime || ColsAtCompileTime==Dynamic) && (Options & (DontAlign|RowMajor)) == Options), INVALID_MATRIX_TEMPLATE_PARAMETERS) } #endif private: enum { ThisConstantIsPrivateInPlainObjectBase }; }; template struct internal::conservative_resize_like_impl { typedef typename Derived::Index Index; static void run(DenseBase& _this, Index rows, Index cols) { if (_this.rows() == rows && _this.cols() == cols) return; EIGEN_STATIC_ASSERT_DYNAMIC_SIZE(Derived) if ( ( Derived::IsRowMajor && _this.cols() == cols) || // row-major and we change only the number of rows (!Derived::IsRowMajor && _this.rows() == rows) ) // column-major and we change only the number of columns { internal::check_rows_cols_for_overflow(rows, cols); _this.derived().m_storage.conservativeResize(rows*cols,rows,cols); } else { // The storage order does not allow us to use reallocation. typename Derived::PlainObject tmp(rows,cols); const Index common_rows = (std::min)(rows, _this.rows()); const Index common_cols = (std::min)(cols, _this.cols()); tmp.block(0,0,common_rows,common_cols) = _this.block(0,0,common_rows,common_cols); _this.derived().swap(tmp); } } static void run(DenseBase& _this, const DenseBase& other) { if (_this.rows() == other.rows() && _this.cols() == other.cols()) return; // Note: Here is space for improvement. Basically, for conservativeResize(Index,Index), // neither RowsAtCompileTime or ColsAtCompileTime must be Dynamic. If only one of the // dimensions is dynamic, one could use either conservativeResize(Index rows, NoChange_t) or // conservativeResize(NoChange_t, Index cols). For these methods new static asserts like // EIGEN_STATIC_ASSERT_DYNAMIC_ROWS and EIGEN_STATIC_ASSERT_DYNAMIC_COLS would be good. EIGEN_STATIC_ASSERT_DYNAMIC_SIZE(Derived) EIGEN_STATIC_ASSERT_DYNAMIC_SIZE(OtherDerived) if ( ( Derived::IsRowMajor && _this.cols() == other.cols()) || // row-major and we change only the number of rows (!Derived::IsRowMajor && _this.rows() == other.rows()) ) // column-major and we change only the number of columns { const Index new_rows = other.rows() - _this.rows(); const Index new_cols = other.cols() - _this.cols(); _this.derived().m_storage.conservativeResize(other.size(),other.rows(),other.cols()); if (new_rows>0) _this.bottomRightCorner(new_rows, other.cols()) = other.bottomRows(new_rows); else if (new_cols>0) _this.bottomRightCorner(other.rows(), new_cols) = other.rightCols(new_cols); } else { // The storage order does not allow us to use reallocation. typename Derived::PlainObject tmp(other); const Index common_rows = (std::min)(tmp.rows(), _this.rows()); const Index common_cols = (std::min)(tmp.cols(), _this.cols()); tmp.block(0,0,common_rows,common_cols) = _this.block(0,0,common_rows,common_cols); _this.derived().swap(tmp); } } }; namespace internal { template struct conservative_resize_like_impl { typedef typename Derived::Index Index; static void run(DenseBase& _this, Index size) { const Index new_rows = Derived::RowsAtCompileTime==1 ? 1 : size; const Index new_cols = Derived::RowsAtCompileTime==1 ? size : 1; _this.derived().m_storage.conservativeResize(size,new_rows,new_cols); } static void run(DenseBase& _this, const DenseBase& other) { if (_this.rows() == other.rows() && _this.cols() == other.cols()) return; const Index num_new_elements = other.size() - _this.size(); const Index new_rows = Derived::RowsAtCompileTime==1 ? 1 : other.rows(); const Index new_cols = Derived::RowsAtCompileTime==1 ? other.cols() : 1; _this.derived().m_storage.conservativeResize(other.size(),new_rows,new_cols); if (num_new_elements > 0) _this.tail(num_new_elements) = other.tail(num_new_elements); } }; template struct matrix_swap_impl { static inline void run(MatrixTypeA& a, MatrixTypeB& b) { a.base().swap(b); } }; template struct matrix_swap_impl { static inline void run(MatrixTypeA& a, MatrixTypeB& b) { static_cast(a).m_storage.swap(static_cast(b).m_storage); } }; } // end namespace internal #endif // EIGEN_DENSESTORAGEBASE_H