aboutsummaryrefslogtreecommitdiffhomepage
path: root/Eigen/src/Core/GenericPacketMath.h
blob: 53800a005771016cac01660ede7d818e4cbe1608 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.

#ifndef EIGEN_GENERIC_PACKET_MATH_H
#define EIGEN_GENERIC_PACKET_MATH_H

namespace Eigen {

namespace internal {

/** \internal
  * \file GenericPacketMath.h
  *
  * Default implementation for types not supported by the vectorization.
  * In practice these functions are provided to make easier the writing
  * of generic vectorized code.
  */

#ifndef EIGEN_DEBUG_ALIGNED_LOAD
#define EIGEN_DEBUG_ALIGNED_LOAD
#endif

#ifndef EIGEN_DEBUG_UNALIGNED_LOAD
#define EIGEN_DEBUG_UNALIGNED_LOAD
#endif

#ifndef EIGEN_DEBUG_ALIGNED_STORE
#define EIGEN_DEBUG_ALIGNED_STORE
#endif

#ifndef EIGEN_DEBUG_UNALIGNED_STORE
#define EIGEN_DEBUG_UNALIGNED_STORE
#endif

struct default_packet_traits
{
  enum {
    HasHalfPacket = 0,

    HasAdd       = 1,
    HasSub       = 1,
    HasShift     = 1,
    HasMul       = 1,
    HasNegate    = 1,
    HasAbs       = 1,
    HasArg       = 0,
    HasAbs2      = 1,
    HasAbsDiff   = 0,
    HasMin       = 1,
    HasMax       = 1,
    HasConj      = 1,
    HasSetLinear = 1,
    HasBlend     = 0,
    // This flag is used to indicate whether packet comparison is supported.
    // pcmp_eq, pcmp_lt and pcmp_le should be defined for it to be true.
    HasCmp       = 0,

    HasDiv    = 0,
    HasSqrt   = 0,
    HasRsqrt  = 0,
    HasExp    = 0,
    HasExpm1  = 0,
    HasLog    = 0,
    HasLog1p  = 0,
    HasLog10  = 0,
    HasPow    = 0,

    HasSin    = 0,
    HasCos    = 0,
    HasTan    = 0,
    HasASin   = 0,
    HasACos   = 0,
    HasATan   = 0,
    HasSinh   = 0,
    HasCosh   = 0,
    HasTanh   = 0,
    HasLGamma = 0,
    HasDiGamma = 0,
    HasZeta = 0,
    HasPolygamma = 0,
    HasErf = 0,
    HasErfc = 0,
    HasNdtri = 0,
    HasBessel = 0,
    HasIGamma = 0,
    HasIGammaDerA = 0,
    HasGammaSampleDerAlpha = 0,
    HasIGammac = 0,
    HasBetaInc = 0,

    HasRound  = 0,
    HasRint   = 0,
    HasFloor  = 0,
    HasCeil   = 0,
    HasSign   = 0
  };
};

template<typename T> struct packet_traits : default_packet_traits
{
  typedef T type;
  typedef T half;
  enum {
    Vectorizable = 0,
    size = 1,
    AlignedOnScalar = 0,
    HasHalfPacket = 0
  };
  enum {
    HasAdd    = 0,
    HasSub    = 0,
    HasMul    = 0,
    HasNegate = 0,
    HasAbs    = 0,
    HasAbs2   = 0,
    HasMin    = 0,
    HasMax    = 0,
    HasConj   = 0,
    HasSetLinear = 0
  };
};

template<typename T> struct packet_traits<const T> : packet_traits<T> { };

template <typename Src, typename Tgt> struct type_casting_traits {
  enum {
    VectorizedCast = 0,
    SrcCoeffRatio = 1,
    TgtCoeffRatio = 1
  };
};

/** \internal Wrapper to ensure that multiple packet types can map to the same
    same underlying vector type. */
template<typename T, int unique_id = 0>
struct eigen_packet_wrapper
{
  EIGEN_ALWAYS_INLINE operator T&() { return m_val; }
  EIGEN_ALWAYS_INLINE operator const T&() const { return m_val; }
  EIGEN_ALWAYS_INLINE eigen_packet_wrapper() {}
  EIGEN_ALWAYS_INLINE eigen_packet_wrapper(const T &v) : m_val(v) {}
  EIGEN_ALWAYS_INLINE eigen_packet_wrapper& operator=(const T &v) {
    m_val = v;
    return *this;
  }

  T m_val;
};

/** \internal \returns static_cast<TgtType>(a) (coeff-wise) */
template <typename SrcPacket, typename TgtPacket>
EIGEN_DEVICE_FUNC inline TgtPacket
pcast(const SrcPacket& a) {
  return static_cast<TgtPacket>(a);
}
template <typename SrcPacket, typename TgtPacket>
EIGEN_DEVICE_FUNC inline TgtPacket
pcast(const SrcPacket& a, const SrcPacket& /*b*/) {
  return static_cast<TgtPacket>(a);
}
template <typename SrcPacket, typename TgtPacket>
EIGEN_DEVICE_FUNC inline TgtPacket
pcast(const SrcPacket& a, const SrcPacket& /*b*/, const SrcPacket& /*c*/, const SrcPacket& /*d*/) {
  return static_cast<TgtPacket>(a);
}
template <typename SrcPacket, typename TgtPacket>
EIGEN_DEVICE_FUNC inline TgtPacket
pcast(const SrcPacket& a, const SrcPacket& /*b*/, const SrcPacket& /*c*/, const SrcPacket& /*d*/,
      const SrcPacket& /*e*/, const SrcPacket& /*f*/, const SrcPacket& /*g*/, const SrcPacket& /*h*/) {
  return static_cast<TgtPacket>(a);
}

/** \internal \returns reinterpret_cast<Target>(a) */
template <typename Target, typename Packet>
EIGEN_DEVICE_FUNC inline Target
preinterpret(const Packet& a); /* { return reinterpret_cast<const Target&>(a); } */

/** \internal \returns a + b (coeff-wise) */
template<typename Packet> EIGEN_DEVICE_FUNC inline Packet
padd(const Packet& a, const Packet& b) { return a+b; }
// Avoid compiler warning for boolean algebra.
template<> EIGEN_DEVICE_FUNC inline bool
padd(const bool& a, const bool& b) { return a || b; }

/** \internal \returns a - b (coeff-wise) */
template<typename Packet> EIGEN_DEVICE_FUNC inline Packet
psub(const Packet& a, const Packet& b) { return a-b; }

/** \internal \returns -a (coeff-wise) */
template<typename Packet> EIGEN_DEVICE_FUNC inline Packet
pnegate(const Packet& a) { return -a; }

template<> EIGEN_DEVICE_FUNC inline bool
pnegate(const bool& a) { return !a; }

/** \internal \returns conj(a) (coeff-wise) */
template<typename Packet> EIGEN_DEVICE_FUNC inline Packet
pconj(const Packet& a) { return numext::conj(a); }

/** \internal \returns a * b (coeff-wise) */
template<typename Packet> EIGEN_DEVICE_FUNC inline Packet
pmul(const Packet& a, const Packet& b) { return a*b; }
// Avoid compiler warning for boolean algebra.
template<> EIGEN_DEVICE_FUNC inline bool
pmul(const bool& a, const bool& b) { return a && b; }

/** \internal \returns a / b (coeff-wise) */
template<typename Packet> EIGEN_DEVICE_FUNC inline Packet
pdiv(const Packet& a, const Packet& b) { return a/b; }

/** \internal \returns one bits */
template<typename Packet> EIGEN_DEVICE_FUNC inline Packet
ptrue(const Packet& /*a*/) { Packet b; memset((void*)&b, 0xff, sizeof(b)); return b;}

/** \internal \returns zero bits */
template<typename Packet> EIGEN_DEVICE_FUNC inline Packet
pzero(const Packet& /*a*/) { Packet b; memset((void*)&b, 0, sizeof(b)); return b;}

/** \internal \returns a <= b as a bit mask */
template<typename Packet> EIGEN_DEVICE_FUNC inline Packet
pcmp_le(const Packet& a, const Packet& b)  { return a<=b ? ptrue(a) : pzero(a); }

/** \internal \returns a < b as a bit mask */
template<typename Packet> EIGEN_DEVICE_FUNC inline Packet
pcmp_lt(const Packet& a, const Packet& b)  { return a<b ? ptrue(a) : pzero(a); }

/** \internal \returns a == b as a bit mask */
template<typename Packet> EIGEN_DEVICE_FUNC inline Packet
pcmp_eq(const Packet& a, const Packet& b) { return a==b ? ptrue(a) : pzero(a); }

/** \internal \returns a < b or a==NaN or b==NaN as a bit mask */
template<typename Packet> EIGEN_DEVICE_FUNC inline Packet
pcmp_lt_or_nan(const Packet& a, const Packet& b) { return a>=b ? pzero(a) : ptrue(a); }
template<> EIGEN_DEVICE_FUNC inline float pzero<float>(const float& a) {
  EIGEN_UNUSED_VARIABLE(a)
  return 0.f;
}

template<> EIGEN_DEVICE_FUNC inline double pzero<double>(const double& a) {
  EIGEN_UNUSED_VARIABLE(a)
  return 0.;
}

template <typename RealScalar>
EIGEN_DEVICE_FUNC inline std::complex<RealScalar> ptrue(const std::complex<RealScalar>& /*a*/) {
  RealScalar b = ptrue(RealScalar(0));
  return std::complex<RealScalar>(b, b);
}

template <typename Packet, typename Op>
EIGEN_DEVICE_FUNC inline Packet bitwise_helper(const Packet& a, const Packet& b, Op op) {
  const unsigned char* a_ptr = reinterpret_cast<const unsigned char*>(&a);
  const unsigned char* b_ptr = reinterpret_cast<const unsigned char*>(&b);
  Packet c;
  unsigned char* c_ptr = reinterpret_cast<unsigned char*>(&c);
  for (size_t i = 0; i < sizeof(Packet); ++i) {
    *c_ptr++ = op(*a_ptr++, *b_ptr++);
  }
  return c;
}

template<typename T>
struct bit_and {
  EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR EIGEN_ALWAYS_INLINE T operator()(const T& a, const T& b) const {
    return a & b;
  }
};

template<typename T>
struct bit_or {
  EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR EIGEN_ALWAYS_INLINE T operator()(const T& a, const T& b) const {
    return a | b;
  }
};

template<typename T>
struct bit_xor {
  EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR EIGEN_ALWAYS_INLINE T operator()(const T& a, const T& b) const {
    return a ^ b;
  }
};

/** \internal \returns the bitwise and of \a a and \a b */
template<typename Packet> EIGEN_DEVICE_FUNC inline Packet
pand(const Packet& a, const Packet& b) {
  return bitwise_helper(a, b, bit_and<unsigned char>());
}

/** \internal \returns the bitwise or of \a a and \a b */
template<typename Packet> EIGEN_DEVICE_FUNC inline Packet
por(const Packet& a, const Packet& b) {
  return bitwise_helper(a ,b, bit_or<unsigned char>());
}

/** \internal \returns the bitwise xor of \a a and \a b */
template<typename Packet> EIGEN_DEVICE_FUNC inline Packet
pxor(const Packet& a, const Packet& b) {
  return bitwise_helper(a ,b, bit_xor<unsigned char>());
}

/** \internal \returns the bitwise and of \a a and not \a b */
template<typename Packet> EIGEN_DEVICE_FUNC inline Packet
pandnot(const Packet& a, const Packet& b) { return pand(a, pxor(ptrue(b), b)); }

/** \internal \returns \a or \b for each field in packet according to \mask */
template<typename Packet> EIGEN_DEVICE_FUNC inline Packet
pselect(const Packet& mask, const Packet& a, const Packet& b) {
  return por(pand(a,mask),pandnot(b,mask));
}

template<> EIGEN_DEVICE_FUNC inline float pselect<float>(
    const float& cond, const float& a, const float&b) {
  return numext::equal_strict(cond,0.f) ? b : a;
}

template<> EIGEN_DEVICE_FUNC inline double pselect<double>(
    const double& cond, const double& a, const double& b) {
  return numext::equal_strict(cond,0.) ? b : a;
}

template<> EIGEN_DEVICE_FUNC inline bool pselect<bool>(
    const bool& cond, const bool& a, const bool& b) {
  return cond ? a : b;
}

/** \internal \returns the min or of \a a and \a b (coeff-wise)
    If either \a a or \a b are NaN, the result is implementation defined. */
template<int NaNPropagation>
struct pminmax_impl {
  template <typename Packet, typename Op>
  static EIGEN_DEVICE_FUNC inline Packet run(const Packet& a, const Packet& b, Op op) {
    return op(a,b);
  }
};

/** \internal \returns the min or max of \a a and \a b (coeff-wise)
    If either \a a or \a b are NaN, NaN is returned. */
template<>
struct pminmax_impl<PropagateNaN> {
  template <typename Packet, typename Op>
  static EIGEN_DEVICE_FUNC inline Packet run(const Packet& a, const Packet& b, Op op) {
  Packet not_nan_mask_a = pcmp_eq(a, a);
  Packet not_nan_mask_b = pcmp_eq(b, b);
  return pselect(not_nan_mask_a,
                 pselect(not_nan_mask_b, op(a, b), b),
                 a);
  }
};

/** \internal \returns the min or max of \a a and \a b (coeff-wise)
    If both \a a and \a b are NaN, NaN is returned.
    Equivalent to std::fmin(a, b).  */
template<>
struct pminmax_impl<PropagateNumbers> {
  template <typename Packet, typename Op>
  static EIGEN_DEVICE_FUNC inline Packet run(const Packet& a, const Packet& b, Op op) {
  Packet not_nan_mask_a = pcmp_eq(a, a);
  Packet not_nan_mask_b = pcmp_eq(b, b);
  return pselect(not_nan_mask_a,
                 pselect(not_nan_mask_b, op(a, b), a),
                 b);
  }
};


#ifndef SYCL_DEVICE_ONLY
#define EIGEN_BINARY_OP_NAN_PROPAGATION(Type, Func) Func
#else
#define EIGEN_BINARY_OP_NAN_PROPAGATION(Type, Func) \
[](const Type& a, const Type& b) { \
        return Func(a, b);}
#endif

/** \internal \returns the min of \a a and \a b  (coeff-wise).
    If \a a or \b b is NaN, the return value is implementation defined. */
template<typename Packet> EIGEN_DEVICE_FUNC inline Packet
pmin(const Packet& a, const Packet& b) { return numext::mini(a,b); }

/** \internal \returns the min of \a a and \a b  (coeff-wise).
    NaNPropagation determines the NaN propagation semantics. */
template <int NaNPropagation, typename Packet>
EIGEN_DEVICE_FUNC inline Packet pmin(const Packet& a, const Packet& b) {
  return pminmax_impl<NaNPropagation>::run(a, b, EIGEN_BINARY_OP_NAN_PROPAGATION(Packet, (pmin<Packet>)));
}

/** \internal \returns the max of \a a and \a b  (coeff-wise)
    If \a a or \b b is NaN, the return value is implementation defined. */
template<typename Packet> EIGEN_DEVICE_FUNC inline Packet
pmax(const Packet& a, const Packet& b) { return numext::maxi(a, b); }

/** \internal \returns the max of \a a and \a b  (coeff-wise).
    NaNPropagation determines the NaN propagation semantics. */
template <int NaNPropagation, typename Packet>
EIGEN_DEVICE_FUNC inline Packet pmax(const Packet& a, const Packet& b) {
  return pminmax_impl<NaNPropagation>::run(a, b, EIGEN_BINARY_OP_NAN_PROPAGATION(Packet,(pmax<Packet>)));
}

/** \internal \returns the absolute value of \a a */
template<typename Packet> EIGEN_DEVICE_FUNC inline Packet
pabs(const Packet& a) { return numext::abs(a); }
template<> EIGEN_DEVICE_FUNC inline unsigned int
pabs(const unsigned int& a) { return a; }
template<> EIGEN_DEVICE_FUNC inline unsigned long
pabs(const unsigned long& a) { return a; }
template<> EIGEN_DEVICE_FUNC inline unsigned long long
pabs(const unsigned long long& a) { return a; }

/** \internal \returns the addsub value of \a a,b */
template<typename Packet> EIGEN_DEVICE_FUNC inline Packet
paddsub(const Packet& a, const Packet& b) {
  return pselect(peven_mask(a), padd(a, b), psub(a, b));
 }

/** \internal \returns the phase angle of \a a */
template<typename Packet> EIGEN_DEVICE_FUNC inline Packet
parg(const Packet& a) { using numext::arg; return arg(a); }


/** \internal \returns \a a logically shifted by N bits to the right */
template<int N> EIGEN_DEVICE_FUNC inline int
parithmetic_shift_right(const int& a) { return a >> N; }
template<int N> EIGEN_DEVICE_FUNC inline long int
parithmetic_shift_right(const long int& a) { return a >> N; }

/** \internal \returns \a a arithmetically shifted by N bits to the right */
template<int N> EIGEN_DEVICE_FUNC inline int
plogical_shift_right(const int& a) { return static_cast<int>(static_cast<unsigned int>(a) >> N); }
template<int N> EIGEN_DEVICE_FUNC inline long int
plogical_shift_right(const long int& a) { return static_cast<long>(static_cast<unsigned long>(a) >> N); }

/** \internal \returns \a a shifted by N bits to the left */
template<int N> EIGEN_DEVICE_FUNC inline int
plogical_shift_left(const int& a) { return a << N; }
template<int N> EIGEN_DEVICE_FUNC inline long int
plogical_shift_left(const long int& a) { return a << N; }

/** \internal \returns the significant and exponent of the underlying floating point numbers
  * See https://en.cppreference.com/w/cpp/numeric/math/frexp
  */
template <typename Packet>
EIGEN_DEVICE_FUNC inline Packet pfrexp(const Packet& a, Packet& exponent) {
  int exp;
  EIGEN_USING_STD(frexp);
  Packet result = static_cast<Packet>(frexp(a, &exp));
  exponent = static_cast<Packet>(exp);
  return result;
}

/** \internal \returns a * 2^((int)exponent)
  * See https://en.cppreference.com/w/cpp/numeric/math/ldexp
  */
template<typename Packet> EIGEN_DEVICE_FUNC inline Packet
pldexp(const Packet &a, const Packet &exponent) {
  EIGEN_USING_STD(ldexp)
  return static_cast<Packet>(ldexp(a, static_cast<int>(exponent)));
}

/** \internal \returns the min of \a a and \a b  (coeff-wise) */
template<typename Packet> EIGEN_DEVICE_FUNC inline Packet
pabsdiff(const Packet& a, const Packet& b) { return pselect(pcmp_lt(a, b), psub(b, a), psub(a, b)); }

/** \internal \returns a packet version of \a *from, from must be 16 bytes aligned */
template<typename Packet> EIGEN_DEVICE_FUNC inline Packet
pload(const typename unpacket_traits<Packet>::type* from) { return *from; }

/** \internal \returns a packet version of \a *from, (un-aligned load) */
template<typename Packet> EIGEN_DEVICE_FUNC inline Packet
ploadu(const typename unpacket_traits<Packet>::type* from) { return *from; }

/** \internal \returns a packet version of \a *from, (un-aligned masked load)
 * There is no generic implementation. We only have implementations for specialized
 * cases. Generic case should not be called.
 */
template<typename Packet> EIGEN_DEVICE_FUNC inline
typename enable_if<unpacket_traits<Packet>::masked_load_available, Packet>::type
ploadu(const typename unpacket_traits<Packet>::type* from, typename unpacket_traits<Packet>::mask_t umask);

/** \internal \returns a packet with constant coefficients \a a, e.g.: (a,a,a,a) */
template<typename Packet> EIGEN_DEVICE_FUNC inline Packet
pset1(const typename unpacket_traits<Packet>::type& a) { return a; }

/** \internal \returns a packet with constant coefficients set from bits */
template<typename Packet,typename BitsType> EIGEN_DEVICE_FUNC inline Packet
pset1frombits(BitsType a);

/** \internal \returns a packet with constant coefficients \a a[0], e.g.: (a[0],a[0],a[0],a[0]) */
template<typename Packet> EIGEN_DEVICE_FUNC inline Packet
pload1(const typename unpacket_traits<Packet>::type  *a) { return pset1<Packet>(*a); }

/** \internal \returns a packet with elements of \a *from duplicated.
  * For instance, for a packet of 8 elements, 4 scalars will be read from \a *from and
  * duplicated to form: {from[0],from[0],from[1],from[1],from[2],from[2],from[3],from[3]}
  * Currently, this function is only used for scalar * complex products.
  */
template<typename Packet> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet
ploaddup(const typename unpacket_traits<Packet>::type* from) { return *from; }

/** \internal \returns a packet with elements of \a *from quadrupled.
  * For instance, for a packet of 8 elements, 2 scalars will be read from \a *from and
  * replicated to form: {from[0],from[0],from[0],from[0],from[1],from[1],from[1],from[1]}
  * Currently, this function is only used in matrix products.
  * For packet-size smaller or equal to 4, this function is equivalent to pload1
  */
template<typename Packet> EIGEN_DEVICE_FUNC inline Packet
ploadquad(const typename unpacket_traits<Packet>::type* from)
{ return pload1<Packet>(from); }

/** \internal equivalent to
  * \code
  * a0 = pload1(a+0);
  * a1 = pload1(a+1);
  * a2 = pload1(a+2);
  * a3 = pload1(a+3);
  * \endcode
  * \sa pset1, pload1, ploaddup, pbroadcast2
  */
template<typename Packet> EIGEN_DEVICE_FUNC
inline void pbroadcast4(const typename unpacket_traits<Packet>::type *a,
                        Packet& a0, Packet& a1, Packet& a2, Packet& a3)
{
  a0 = pload1<Packet>(a+0);
  a1 = pload1<Packet>(a+1);
  a2 = pload1<Packet>(a+2);
  a3 = pload1<Packet>(a+3);
}

/** \internal equivalent to
  * \code
  * a0 = pload1(a+0);
  * a1 = pload1(a+1);
  * \endcode
  * \sa pset1, pload1, ploaddup, pbroadcast4
  */
template<typename Packet> EIGEN_DEVICE_FUNC
inline void pbroadcast2(const typename unpacket_traits<Packet>::type *a,
                        Packet& a0, Packet& a1)
{
  a0 = pload1<Packet>(a+0);
  a1 = pload1<Packet>(a+1);
}

/** \internal \brief Returns a packet with coefficients (a,a+1,...,a+packet_size-1). */
template<typename Packet> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet
plset(const typename unpacket_traits<Packet>::type& a) { return a; }

/** \internal \returns a packet with constant coefficients \a a, e.g.: (x, 0, x, 0),
     where x is the value of all 1-bits. */
template<typename Packet> EIGEN_DEVICE_FUNC inline Packet
peven_mask(const Packet& /*a*/) {
  typedef typename unpacket_traits<Packet>::type Scalar;
  const size_t n = unpacket_traits<Packet>::size;
  EIGEN_ALIGN_TO_BOUNDARY(sizeof(Packet)) Scalar elements[n];
  for(size_t i = 0; i < n; ++i) {
    memset(elements+i, ((i & 1) == 0 ? 0xff : 0), sizeof(Scalar));
  }
  return ploadu<Packet>(elements);
}


/** \internal copy the packet \a from to \a *to, \a to must be 16 bytes aligned */
template<typename Scalar, typename Packet> EIGEN_DEVICE_FUNC inline void pstore(Scalar* to, const Packet& from)
{ (*to) = from; }

/** \internal copy the packet \a from to \a *to, (un-aligned store) */
template<typename Scalar, typename Packet> EIGEN_DEVICE_FUNC inline void pstoreu(Scalar* to, const Packet& from)
{  (*to) = from; }

/** \internal copy the packet \a from to \a *to, (un-aligned store with a mask)
 * There is no generic implementation. We only have implementations for specialized
 * cases. Generic case should not be called.
 */
template<typename Scalar, typename Packet>
EIGEN_DEVICE_FUNC inline
typename enable_if<unpacket_traits<Packet>::masked_store_available, void>::type
pstoreu(Scalar* to, const Packet& from, typename unpacket_traits<Packet>::mask_t umask);

 template<typename Scalar, typename Packet> EIGEN_DEVICE_FUNC inline Packet pgather(const Scalar* from, Index /*stride*/)
 { return ploadu<Packet>(from); }

 template<typename Scalar, typename Packet> EIGEN_DEVICE_FUNC inline void pscatter(Scalar* to, const Packet& from, Index /*stride*/)
 { pstore(to, from); }

/** \internal tries to do cache prefetching of \a addr */
template<typename Scalar> EIGEN_DEVICE_FUNC inline void prefetch(const Scalar* addr)
{
#if defined(EIGEN_HIP_DEVICE_COMPILE)
  // do nothing
#elif defined(EIGEN_CUDA_ARCH)
#if defined(__LP64__) || EIGEN_OS_WIN64
  // 64-bit pointer operand constraint for inlined asm
  asm(" prefetch.L1 [ %1 ];" : "=l"(addr) : "l"(addr));
#else
  // 32-bit pointer operand constraint for inlined asm
  asm(" prefetch.L1 [ %1 ];" : "=r"(addr) : "r"(addr));
#endif
#elif (!EIGEN_COMP_MSVC) && (EIGEN_COMP_GNUC || EIGEN_COMP_CLANG || EIGEN_COMP_ICC)
  __builtin_prefetch(addr);
#endif
}

/** \internal \returns the reversed elements of \a a*/
template<typename Packet> EIGEN_DEVICE_FUNC inline Packet preverse(const Packet& a)
{ return a; }

/** \internal \returns \a a with real and imaginary part flipped (for complex type only) */
template<typename Packet> EIGEN_DEVICE_FUNC inline Packet pcplxflip(const Packet& a)
{
  return Packet(numext::imag(a),numext::real(a));
}

/**************************
* Special math functions
***************************/

/** \internal \returns the sine of \a a (coeff-wise) */
template<typename Packet> EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS
Packet psin(const Packet& a) { EIGEN_USING_STD(sin); return sin(a); }

/** \internal \returns the cosine of \a a (coeff-wise) */
template<typename Packet> EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS
Packet pcos(const Packet& a) { EIGEN_USING_STD(cos); return cos(a); }

/** \internal \returns the tan of \a a (coeff-wise) */
template<typename Packet> EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS
Packet ptan(const Packet& a) { EIGEN_USING_STD(tan); return tan(a); }

/** \internal \returns the arc sine of \a a (coeff-wise) */
template<typename Packet> EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS
Packet pasin(const Packet& a) { EIGEN_USING_STD(asin); return asin(a); }

/** \internal \returns the arc cosine of \a a (coeff-wise) */
template<typename Packet> EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS
Packet pacos(const Packet& a) { EIGEN_USING_STD(acos); return acos(a); }

/** \internal \returns the arc tangent of \a a (coeff-wise) */
template<typename Packet> EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS
Packet patan(const Packet& a) { EIGEN_USING_STD(atan); return atan(a); }

/** \internal \returns the hyperbolic sine of \a a (coeff-wise) */
template<typename Packet> EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS
Packet psinh(const Packet& a) { EIGEN_USING_STD(sinh); return sinh(a); }

/** \internal \returns the hyperbolic cosine of \a a (coeff-wise) */
template<typename Packet> EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS
Packet pcosh(const Packet& a) { EIGEN_USING_STD(cosh); return cosh(a); }

/** \internal \returns the hyperbolic tan of \a a (coeff-wise) */
template<typename Packet> EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS
Packet ptanh(const Packet& a) { EIGEN_USING_STD(tanh); return tanh(a); }

/** \internal \returns the exp of \a a (coeff-wise) */
template<typename Packet> EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS
Packet pexp(const Packet& a) { EIGEN_USING_STD(exp); return exp(a); }

/** \internal \returns the expm1 of \a a (coeff-wise) */
template<typename Packet> EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS
Packet pexpm1(const Packet& a) { return numext::expm1(a); }

/** \internal \returns the log of \a a (coeff-wise) */
template<typename Packet> EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS
Packet plog(const Packet& a) { EIGEN_USING_STD(log); return log(a); }

/** \internal \returns the log1p of \a a (coeff-wise) */
template<typename Packet> EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS
Packet plog1p(const Packet& a) { return numext::log1p(a); }

/** \internal \returns the log10 of \a a (coeff-wise) */
template<typename Packet> EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS
Packet plog10(const Packet& a) { EIGEN_USING_STD(log10); return log10(a); }

/** \internal \returns the log10 of \a a (coeff-wise) */
template<typename Packet> EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS
Packet plog2(const Packet& a) {
  typedef typename internal::unpacket_traits<Packet>::type Scalar;
  return pmul(pset1<Packet>(Scalar(EIGEN_LOG2E)), plog(a)); 
}

/** \internal \returns the square-root of \a a (coeff-wise) */
template<typename Packet> EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS
Packet psqrt(const Packet& a) { return numext::sqrt(a); }

/** \internal \returns the reciprocal square-root of \a a (coeff-wise) */
template<typename Packet> EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS
Packet prsqrt(const Packet& a) {
  typedef typename internal::unpacket_traits<Packet>::type Scalar;
  return pdiv(pset1<Packet>(Scalar(1)), psqrt(a));
}

/** \internal \returns the rounded value of \a a (coeff-wise) */
template<typename Packet> EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS
Packet pround(const Packet& a) { using numext::round; return round(a); }

/** \internal \returns the floor of \a a (coeff-wise) */
template<typename Packet> EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS
Packet pfloor(const Packet& a) { using numext::floor; return floor(a); }

/** \internal \returns the rounded value of \a a (coeff-wise) with current
 * rounding mode */
template<typename Packet> EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS
Packet print(const Packet& a) { using numext::rint; return rint(a); }

/** \internal \returns the ceil of \a a (coeff-wise) */
template<typename Packet> EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS
Packet pceil(const Packet& a) { using numext::ceil; return ceil(a); }

/** \internal \returns the first element of a packet */
template<typename Packet>
EIGEN_DEVICE_FUNC inline typename unpacket_traits<Packet>::type
pfirst(const Packet& a)
{ return a; }

/** \internal \returns the sum of the elements of upper and lower half of \a a if \a a is larger than 4.
  * For a packet {a0, a1, a2, a3, a4, a5, a6, a7}, it returns a half packet {a0+a4, a1+a5, a2+a6, a3+a7}
  * For packet-size smaller or equal to 4, this boils down to a noop.
  */
template<typename Packet>
EIGEN_DEVICE_FUNC inline typename conditional<(unpacket_traits<Packet>::size%8)==0,typename unpacket_traits<Packet>::half,Packet>::type
predux_half_dowto4(const Packet& a)
{ return a; }

// Slow generic implementation of Packet reduction.
template <typename Packet, typename Op>
EIGEN_DEVICE_FUNC inline typename unpacket_traits<Packet>::type
predux_helper(const Packet& a, Op op) {
  typedef typename unpacket_traits<Packet>::type Scalar;
  const size_t n = unpacket_traits<Packet>::size;
  EIGEN_ALIGN_TO_BOUNDARY(sizeof(Packet)) Scalar elements[n];
  pstoreu<Scalar>(elements, a);
  for(size_t k = n / 2; k > 0; k /= 2)  {
    for(size_t i = 0; i < k; ++i) {
      elements[i] = op(elements[i], elements[i + k]);
    }
  }
  return elements[0];
}

/** \internal \returns the sum of the elements of \a a*/
template<typename Packet>
EIGEN_DEVICE_FUNC inline typename unpacket_traits<Packet>::type
predux(const Packet& a)
{
  return a;
}

/** \internal \returns the product of the elements of \a a */
template <typename Packet>
EIGEN_DEVICE_FUNC inline typename unpacket_traits<Packet>::type predux_mul(
    const Packet& a) {
  typedef typename unpacket_traits<Packet>::type Scalar; 
  return predux_helper(a, EIGEN_BINARY_OP_NAN_PROPAGATION(Scalar, (pmul<Scalar>)));
}

/** \internal \returns the min of the elements of \a a */
template <typename Packet>
EIGEN_DEVICE_FUNC inline typename unpacket_traits<Packet>::type predux_min(
    const Packet &a) {
  typedef typename unpacket_traits<Packet>::type Scalar; 
  return predux_helper(a, EIGEN_BINARY_OP_NAN_PROPAGATION(Scalar, (pmin<PropagateFast, Scalar>)));
}

template <int NaNPropagation, typename Packet>
EIGEN_DEVICE_FUNC inline typename unpacket_traits<Packet>::type predux_min(
    const Packet& a) {
  typedef typename unpacket_traits<Packet>::type Scalar; 
  return predux_helper(a, EIGEN_BINARY_OP_NAN_PROPAGATION(Scalar, (pmin<NaNPropagation, Scalar>)));
}

/** \internal \returns the min of the elements of \a a */
template <typename Packet>
EIGEN_DEVICE_FUNC inline typename unpacket_traits<Packet>::type predux_max(
    const Packet &a) {
  typedef typename unpacket_traits<Packet>::type Scalar; 
  return predux_helper(a, EIGEN_BINARY_OP_NAN_PROPAGATION(Scalar, (pmax<PropagateFast, Scalar>)));
}

template <int NaNPropagation, typename Packet>
EIGEN_DEVICE_FUNC inline typename unpacket_traits<Packet>::type predux_max(
    const Packet& a) {
  typedef typename unpacket_traits<Packet>::type Scalar; 
  return predux_helper(a, EIGEN_BINARY_OP_NAN_PROPAGATION(Scalar, (pmax<NaNPropagation, Scalar>)));
}

#undef EIGEN_BINARY_OP_NAN_PROPAGATION

/** \internal \returns true if all coeffs of \a a means "true"
  * It is supposed to be called on values returned by pcmp_*.
  */
// not needed yet
// template<typename Packet> EIGEN_DEVICE_FUNC inline bool predux_all(const Packet& a)
// { return bool(a); }

/** \internal \returns true if any coeffs of \a a means "true"
  * It is supposed to be called on values returned by pcmp_*.
  */
template<typename Packet> EIGEN_DEVICE_FUNC inline bool predux_any(const Packet& a)
{
  // Dirty but generic implementation where "true" is assumed to be non 0 and all the sames.
  // It is expected that "true" is either:
  //  - Scalar(1)
  //  - bits full of ones (NaN for floats),
  //  - or first bit equals to 1 (1 for ints, smallest denormal for floats).
  // For all these cases, taking the sum is just fine, and this boils down to a no-op for scalars.
  typedef typename unpacket_traits<Packet>::type Scalar;
  return numext::not_equal_strict(predux(a), Scalar(0));
}

/***************************************************************************
* The following functions might not have to be overwritten for vectorized types
***************************************************************************/

/** \internal copy a packet with constant coefficient \a a (e.g., [a,a,a,a]) to \a *to. \a to must be 16 bytes aligned */
// NOTE: this function must really be templated on the packet type (think about different packet types for the same scalar type)
template<typename Packet>
inline void pstore1(typename unpacket_traits<Packet>::type* to, const typename unpacket_traits<Packet>::type& a)
{
  pstore(to, pset1<Packet>(a));
}

/** \internal \returns a * b + c (coeff-wise) */
template<typename Packet> EIGEN_DEVICE_FUNC inline Packet
pmadd(const Packet&  a,
         const Packet&  b,
         const Packet&  c)
{ return padd(pmul(a, b),c); }

/** \internal \returns a packet version of \a *from.
  * The pointer \a from must be aligned on a \a Alignment bytes boundary. */
template<typename Packet, int Alignment>
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE Packet ploadt(const typename unpacket_traits<Packet>::type* from)
{
  if(Alignment >= unpacket_traits<Packet>::alignment)
    return pload<Packet>(from);
  else
    return ploadu<Packet>(from);
}

/** \internal copy the packet \a from to \a *to.
  * The pointer \a from must be aligned on a \a Alignment bytes boundary. */
template<typename Scalar, typename Packet, int Alignment>
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE void pstoret(Scalar* to, const Packet& from)
{
  if(Alignment >= unpacket_traits<Packet>::alignment)
    pstore(to, from);
  else
    pstoreu(to, from);
}

/** \internal \returns a packet version of \a *from.
  * Unlike ploadt, ploadt_ro takes advantage of the read-only memory path on the
  * hardware if available to speedup the loading of data that won't be modified
  * by the current computation.
  */
template<typename Packet, int LoadMode>
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE Packet ploadt_ro(const typename unpacket_traits<Packet>::type* from)
{
  return ploadt<Packet, LoadMode>(from);
}

/***************************************************************************
* Fast complex products (GCC generates a function call which is very slow)
***************************************************************************/

// Eigen+CUDA does not support complexes.
#if !defined(EIGEN_GPUCC)

template<> inline std::complex<float> pmul(const std::complex<float>& a, const std::complex<float>& b)
{ return std::complex<float>(a.real()*b.real() - a.imag()*b.imag(), a.imag()*b.real() + a.real()*b.imag()); }

template<> inline std::complex<double> pmul(const std::complex<double>& a, const std::complex<double>& b)
{ return std::complex<double>(a.real()*b.real() - a.imag()*b.imag(), a.imag()*b.real() + a.real()*b.imag()); }

#endif


/***************************************************************************
 * PacketBlock, that is a collection of N packets where the number of words
 * in the packet is a multiple of N.
***************************************************************************/
template <typename Packet,int N=unpacket_traits<Packet>::size> struct PacketBlock {
  Packet packet[N];
};

template<typename Packet> EIGEN_DEVICE_FUNC inline void
ptranspose(PacketBlock<Packet,1>& /*kernel*/) {
  // Nothing to do in the scalar case, i.e. a 1x1 matrix.
}

/***************************************************************************
 * Selector, i.e. vector of N boolean values used to select (i.e. blend)
 * words from 2 packets.
***************************************************************************/
template <size_t N> struct Selector {
  bool select[N];
};

template<typename Packet> EIGEN_DEVICE_FUNC inline Packet
pblend(const Selector<unpacket_traits<Packet>::size>& ifPacket, const Packet& thenPacket, const Packet& elsePacket) {
  return ifPacket.select[0] ? thenPacket : elsePacket;
}

} // end namespace internal

} // end namespace Eigen

#endif // EIGEN_GENERIC_PACKET_MATH_H