// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2008 Gael Guennebaud // Copyright (C) 2006-2008 Benoit Jacob // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #ifndef EIGEN_GENERIC_PACKET_MATH_H #define EIGEN_GENERIC_PACKET_MATH_H namespace Eigen { namespace internal { /** \internal * \file GenericPacketMath.h * * Default implementation for types not supported by the vectorization. * In practice these functions are provided to make easier the writing * of generic vectorized code. */ #ifndef EIGEN_DEBUG_ALIGNED_LOAD #define EIGEN_DEBUG_ALIGNED_LOAD #endif #ifndef EIGEN_DEBUG_UNALIGNED_LOAD #define EIGEN_DEBUG_UNALIGNED_LOAD #endif #ifndef EIGEN_DEBUG_ALIGNED_STORE #define EIGEN_DEBUG_ALIGNED_STORE #endif #ifndef EIGEN_DEBUG_UNALIGNED_STORE #define EIGEN_DEBUG_UNALIGNED_STORE #endif struct default_packet_traits { enum { HasHalfPacket = 0, HasAdd = 1, HasSub = 1, HasShift = 1, HasMul = 1, HasNegate = 1, HasAbs = 1, HasArg = 0, HasAbs2 = 1, HasAbsDiff = 0, HasMin = 1, HasMax = 1, HasConj = 1, HasSetLinear = 1, HasBlend = 0, // This flag is used to indicate whether packet comparison is supported. // pcmp_eq, pcmp_lt and pcmp_le should be defined for it to be true. HasCmp = 0, HasDiv = 0, HasSqrt = 0, HasRsqrt = 0, HasExp = 0, HasExpm1 = 0, HasLog = 0, HasLog1p = 0, HasLog10 = 0, HasPow = 0, HasSin = 0, HasCos = 0, HasTan = 0, HasASin = 0, HasACos = 0, HasATan = 0, HasSinh = 0, HasCosh = 0, HasTanh = 0, HasLGamma = 0, HasDiGamma = 0, HasZeta = 0, HasPolygamma = 0, HasErf = 0, HasErfc = 0, HasNdtri = 0, HasBessel = 0, HasIGamma = 0, HasIGammaDerA = 0, HasGammaSampleDerAlpha = 0, HasIGammac = 0, HasBetaInc = 0, HasRound = 0, HasRint = 0, HasFloor = 0, HasCeil = 0, HasSign = 0 }; }; template struct packet_traits : default_packet_traits { typedef T type; typedef T half; enum { Vectorizable = 0, size = 1, AlignedOnScalar = 0, HasHalfPacket = 0 }; enum { HasAdd = 0, HasSub = 0, HasMul = 0, HasNegate = 0, HasAbs = 0, HasAbs2 = 0, HasMin = 0, HasMax = 0, HasConj = 0, HasSetLinear = 0 }; }; template struct packet_traits : packet_traits { }; template struct type_casting_traits { enum { VectorizedCast = 0, SrcCoeffRatio = 1, TgtCoeffRatio = 1 }; }; /** \internal Wrapper to ensure that multiple packet types can map to the same same underlying vector type. */ template struct eigen_packet_wrapper { EIGEN_ALWAYS_INLINE operator T&() { return m_val; } EIGEN_ALWAYS_INLINE operator const T&() const { return m_val; } EIGEN_ALWAYS_INLINE eigen_packet_wrapper() {} EIGEN_ALWAYS_INLINE eigen_packet_wrapper(const T &v) : m_val(v) {} EIGEN_ALWAYS_INLINE eigen_packet_wrapper& operator=(const T &v) { m_val = v; return *this; } T m_val; }; /** \internal \returns static_cast(a) (coeff-wise) */ template EIGEN_DEVICE_FUNC inline TgtPacket pcast(const SrcPacket& a) { return static_cast(a); } template EIGEN_DEVICE_FUNC inline TgtPacket pcast(const SrcPacket& a, const SrcPacket& /*b*/) { return static_cast(a); } template EIGEN_DEVICE_FUNC inline TgtPacket pcast(const SrcPacket& a, const SrcPacket& /*b*/, const SrcPacket& /*c*/, const SrcPacket& /*d*/) { return static_cast(a); } template EIGEN_DEVICE_FUNC inline TgtPacket pcast(const SrcPacket& a, const SrcPacket& /*b*/, const SrcPacket& /*c*/, const SrcPacket& /*d*/, const SrcPacket& /*e*/, const SrcPacket& /*f*/, const SrcPacket& /*g*/, const SrcPacket& /*h*/) { return static_cast(a); } /** \internal \returns reinterpret_cast(a) */ template EIGEN_DEVICE_FUNC inline Target preinterpret(const Packet& a); /* { return reinterpret_cast(a); } */ /** \internal \returns a + b (coeff-wise) */ template EIGEN_DEVICE_FUNC inline Packet padd(const Packet& a, const Packet& b) { return a+b; } // Avoid compiler warning for boolean algebra. template<> EIGEN_DEVICE_FUNC inline bool padd(const bool& a, const bool& b) { return a || b; } /** \internal \returns a - b (coeff-wise) */ template EIGEN_DEVICE_FUNC inline Packet psub(const Packet& a, const Packet& b) { return a-b; } /** \internal \returns -a (coeff-wise) */ template EIGEN_DEVICE_FUNC inline Packet pnegate(const Packet& a) { return -a; } template<> EIGEN_DEVICE_FUNC inline bool pnegate(const bool& a) { return !a; } /** \internal \returns conj(a) (coeff-wise) */ template EIGEN_DEVICE_FUNC inline Packet pconj(const Packet& a) { return numext::conj(a); } /** \internal \returns a * b (coeff-wise) */ template EIGEN_DEVICE_FUNC inline Packet pmul(const Packet& a, const Packet& b) { return a*b; } // Avoid compiler warning for boolean algebra. template<> EIGEN_DEVICE_FUNC inline bool pmul(const bool& a, const bool& b) { return a && b; } /** \internal \returns a / b (coeff-wise) */ template EIGEN_DEVICE_FUNC inline Packet pdiv(const Packet& a, const Packet& b) { return a/b; } /** \internal \returns one bits */ template EIGEN_DEVICE_FUNC inline Packet ptrue(const Packet& /*a*/) { Packet b; memset((void*)&b, 0xff, sizeof(b)); return b;} /** \internal \returns zero bits */ template EIGEN_DEVICE_FUNC inline Packet pzero(const Packet& /*a*/) { Packet b; memset((void*)&b, 0, sizeof(b)); return b;} /** \internal \returns a <= b as a bit mask */ template EIGEN_DEVICE_FUNC inline Packet pcmp_le(const Packet& a, const Packet& b) { return a<=b ? ptrue(a) : pzero(a); } /** \internal \returns a < b as a bit mask */ template EIGEN_DEVICE_FUNC inline Packet pcmp_lt(const Packet& a, const Packet& b) { return a EIGEN_DEVICE_FUNC inline Packet pcmp_eq(const Packet& a, const Packet& b) { return a==b ? ptrue(a) : pzero(a); } /** \internal \returns a < b or a==NaN or b==NaN as a bit mask */ template EIGEN_DEVICE_FUNC inline Packet pcmp_lt_or_nan(const Packet& a, const Packet& b) { return a>=b ? pzero(a) : ptrue(a); } template<> EIGEN_DEVICE_FUNC inline float pzero(const float& a) { EIGEN_UNUSED_VARIABLE(a) return 0.f; } template<> EIGEN_DEVICE_FUNC inline double pzero(const double& a) { EIGEN_UNUSED_VARIABLE(a) return 0.; } template EIGEN_DEVICE_FUNC inline std::complex ptrue(const std::complex& /*a*/) { RealScalar b = ptrue(RealScalar(0)); return std::complex(b, b); } template EIGEN_DEVICE_FUNC inline Packet bitwise_helper(const Packet& a, const Packet& b, Op op) { const unsigned char* a_ptr = reinterpret_cast(&a); const unsigned char* b_ptr = reinterpret_cast(&b); Packet c; unsigned char* c_ptr = reinterpret_cast(&c); for (size_t i = 0; i < sizeof(Packet); ++i) { *c_ptr++ = op(*a_ptr++, *b_ptr++); } return c; } template struct bit_and { EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR EIGEN_ALWAYS_INLINE T operator()(const T& a, const T& b) const { return a & b; } }; template struct bit_or { EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR EIGEN_ALWAYS_INLINE T operator()(const T& a, const T& b) const { return a | b; } }; template struct bit_xor { EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR EIGEN_ALWAYS_INLINE T operator()(const T& a, const T& b) const { return a ^ b; } }; /** \internal \returns the bitwise and of \a a and \a b */ template EIGEN_DEVICE_FUNC inline Packet pand(const Packet& a, const Packet& b) { return bitwise_helper(a, b, bit_and()); } /** \internal \returns the bitwise or of \a a and \a b */ template EIGEN_DEVICE_FUNC inline Packet por(const Packet& a, const Packet& b) { return bitwise_helper(a ,b, bit_or()); } /** \internal \returns the bitwise xor of \a a and \a b */ template EIGEN_DEVICE_FUNC inline Packet pxor(const Packet& a, const Packet& b) { return bitwise_helper(a ,b, bit_xor()); } /** \internal \returns the bitwise and of \a a and not \a b */ template EIGEN_DEVICE_FUNC inline Packet pandnot(const Packet& a, const Packet& b) { return pand(a, pxor(ptrue(b), b)); } /** \internal \returns \a or \b for each field in packet according to \mask */ template EIGEN_DEVICE_FUNC inline Packet pselect(const Packet& mask, const Packet& a, const Packet& b) { return por(pand(a,mask),pandnot(b,mask)); } template<> EIGEN_DEVICE_FUNC inline float pselect( const float& cond, const float& a, const float&b) { return numext::equal_strict(cond,0.f) ? b : a; } template<> EIGEN_DEVICE_FUNC inline double pselect( const double& cond, const double& a, const double& b) { return numext::equal_strict(cond,0.) ? b : a; } template<> EIGEN_DEVICE_FUNC inline bool pselect( const bool& cond, const bool& a, const bool& b) { return cond ? a : b; } /** \internal \returns the min or of \a a and \a b (coeff-wise) If either \a a or \a b are NaN, the result is implementation defined. */ template struct pminmax_impl { template static EIGEN_DEVICE_FUNC inline Packet run(const Packet& a, const Packet& b, Op op) { return op(a,b); } }; /** \internal \returns the min or max of \a a and \a b (coeff-wise) If either \a a or \a b are NaN, NaN is returned. */ template<> struct pminmax_impl { template static EIGEN_DEVICE_FUNC inline Packet run(const Packet& a, const Packet& b, Op op) { Packet not_nan_mask_a = pcmp_eq(a, a); Packet not_nan_mask_b = pcmp_eq(b, b); return pselect(not_nan_mask_a, pselect(not_nan_mask_b, op(a, b), b), a); } }; /** \internal \returns the min or max of \a a and \a b (coeff-wise) If both \a a and \a b are NaN, NaN is returned. Equivalent to std::fmin(a, b). */ template<> struct pminmax_impl { template static EIGEN_DEVICE_FUNC inline Packet run(const Packet& a, const Packet& b, Op op) { Packet not_nan_mask_a = pcmp_eq(a, a); Packet not_nan_mask_b = pcmp_eq(b, b); return pselect(not_nan_mask_a, pselect(not_nan_mask_b, op(a, b), a), b); } }; #ifndef SYCL_DEVICE_ONLY #define EIGEN_BINARY_OP_NAN_PROPAGATION(Type, Func) Func #else #define EIGEN_BINARY_OP_NAN_PROPAGATION(Type, Func) \ [](const Type& a, const Type& b) { \ return Func(a, b);} #endif /** \internal \returns the min of \a a and \a b (coeff-wise). If \a a or \b b is NaN, the return value is implementation defined. */ template EIGEN_DEVICE_FUNC inline Packet pmin(const Packet& a, const Packet& b) { return numext::mini(a,b); } /** \internal \returns the min of \a a and \a b (coeff-wise). NaNPropagation determines the NaN propagation semantics. */ template EIGEN_DEVICE_FUNC inline Packet pmin(const Packet& a, const Packet& b) { return pminmax_impl::run(a, b, EIGEN_BINARY_OP_NAN_PROPAGATION(Packet, (pmin))); } /** \internal \returns the max of \a a and \a b (coeff-wise) If \a a or \b b is NaN, the return value is implementation defined. */ template EIGEN_DEVICE_FUNC inline Packet pmax(const Packet& a, const Packet& b) { return numext::maxi(a, b); } /** \internal \returns the max of \a a and \a b (coeff-wise). NaNPropagation determines the NaN propagation semantics. */ template EIGEN_DEVICE_FUNC inline Packet pmax(const Packet& a, const Packet& b) { return pminmax_impl::run(a, b, EIGEN_BINARY_OP_NAN_PROPAGATION(Packet,(pmax))); } /** \internal \returns the absolute value of \a a */ template EIGEN_DEVICE_FUNC inline Packet pabs(const Packet& a) { return numext::abs(a); } template<> EIGEN_DEVICE_FUNC inline unsigned int pabs(const unsigned int& a) { return a; } template<> EIGEN_DEVICE_FUNC inline unsigned long pabs(const unsigned long& a) { return a; } template<> EIGEN_DEVICE_FUNC inline unsigned long long pabs(const unsigned long long& a) { return a; } /** \internal \returns the addsub value of \a a,b */ template EIGEN_DEVICE_FUNC inline Packet paddsub(const Packet& a, const Packet& b) { return pselect(peven_mask(a), padd(a, b), psub(a, b)); } /** \internal \returns the phase angle of \a a */ template EIGEN_DEVICE_FUNC inline Packet parg(const Packet& a) { using numext::arg; return arg(a); } /** \internal \returns \a a logically shifted by N bits to the right */ template EIGEN_DEVICE_FUNC inline int parithmetic_shift_right(const int& a) { return a >> N; } template EIGEN_DEVICE_FUNC inline long int parithmetic_shift_right(const long int& a) { return a >> N; } /** \internal \returns \a a arithmetically shifted by N bits to the right */ template EIGEN_DEVICE_FUNC inline int plogical_shift_right(const int& a) { return static_cast(static_cast(a) >> N); } template EIGEN_DEVICE_FUNC inline long int plogical_shift_right(const long int& a) { return static_cast(static_cast(a) >> N); } /** \internal \returns \a a shifted by N bits to the left */ template EIGEN_DEVICE_FUNC inline int plogical_shift_left(const int& a) { return a << N; } template EIGEN_DEVICE_FUNC inline long int plogical_shift_left(const long int& a) { return a << N; } /** \internal \returns the significant and exponent of the underlying floating point numbers * See https://en.cppreference.com/w/cpp/numeric/math/frexp */ template EIGEN_DEVICE_FUNC inline Packet pfrexp(const Packet& a, Packet& exponent) { int exp; EIGEN_USING_STD(frexp); Packet result = static_cast(frexp(a, &exp)); exponent = static_cast(exp); return result; } /** \internal \returns a * 2^((int)exponent) * See https://en.cppreference.com/w/cpp/numeric/math/ldexp */ template EIGEN_DEVICE_FUNC inline Packet pldexp(const Packet &a, const Packet &exponent) { EIGEN_USING_STD(ldexp) return static_cast(ldexp(a, static_cast(exponent))); } /** \internal \returns the min of \a a and \a b (coeff-wise) */ template EIGEN_DEVICE_FUNC inline Packet pabsdiff(const Packet& a, const Packet& b) { return pselect(pcmp_lt(a, b), psub(b, a), psub(a, b)); } /** \internal \returns a packet version of \a *from, from must be 16 bytes aligned */ template EIGEN_DEVICE_FUNC inline Packet pload(const typename unpacket_traits::type* from) { return *from; } /** \internal \returns a packet version of \a *from, (un-aligned load) */ template EIGEN_DEVICE_FUNC inline Packet ploadu(const typename unpacket_traits::type* from) { return *from; } /** \internal \returns a packet version of \a *from, (un-aligned masked load) * There is no generic implementation. We only have implementations for specialized * cases. Generic case should not be called. */ template EIGEN_DEVICE_FUNC inline typename enable_if::masked_load_available, Packet>::type ploadu(const typename unpacket_traits::type* from, typename unpacket_traits::mask_t umask); /** \internal \returns a packet with constant coefficients \a a, e.g.: (a,a,a,a) */ template EIGEN_DEVICE_FUNC inline Packet pset1(const typename unpacket_traits::type& a) { return a; } /** \internal \returns a packet with constant coefficients set from bits */ template EIGEN_DEVICE_FUNC inline Packet pset1frombits(BitsType a); /** \internal \returns a packet with constant coefficients \a a[0], e.g.: (a[0],a[0],a[0],a[0]) */ template EIGEN_DEVICE_FUNC inline Packet pload1(const typename unpacket_traits::type *a) { return pset1(*a); } /** \internal \returns a packet with elements of \a *from duplicated. * For instance, for a packet of 8 elements, 4 scalars will be read from \a *from and * duplicated to form: {from[0],from[0],from[1],from[1],from[2],from[2],from[3],from[3]} * Currently, this function is only used for scalar * complex products. */ template EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet ploaddup(const typename unpacket_traits::type* from) { return *from; } /** \internal \returns a packet with elements of \a *from quadrupled. * For instance, for a packet of 8 elements, 2 scalars will be read from \a *from and * replicated to form: {from[0],from[0],from[0],from[0],from[1],from[1],from[1],from[1]} * Currently, this function is only used in matrix products. * For packet-size smaller or equal to 4, this function is equivalent to pload1 */ template EIGEN_DEVICE_FUNC inline Packet ploadquad(const typename unpacket_traits::type* from) { return pload1(from); } /** \internal equivalent to * \code * a0 = pload1(a+0); * a1 = pload1(a+1); * a2 = pload1(a+2); * a3 = pload1(a+3); * \endcode * \sa pset1, pload1, ploaddup, pbroadcast2 */ template EIGEN_DEVICE_FUNC inline void pbroadcast4(const typename unpacket_traits::type *a, Packet& a0, Packet& a1, Packet& a2, Packet& a3) { a0 = pload1(a+0); a1 = pload1(a+1); a2 = pload1(a+2); a3 = pload1(a+3); } /** \internal equivalent to * \code * a0 = pload1(a+0); * a1 = pload1(a+1); * \endcode * \sa pset1, pload1, ploaddup, pbroadcast4 */ template EIGEN_DEVICE_FUNC inline void pbroadcast2(const typename unpacket_traits::type *a, Packet& a0, Packet& a1) { a0 = pload1(a+0); a1 = pload1(a+1); } /** \internal \brief Returns a packet with coefficients (a,a+1,...,a+packet_size-1). */ template EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet plset(const typename unpacket_traits::type& a) { return a; } /** \internal \returns a packet with constant coefficients \a a, e.g.: (x, 0, x, 0), where x is the value of all 1-bits. */ template EIGEN_DEVICE_FUNC inline Packet peven_mask(const Packet& /*a*/) { typedef typename unpacket_traits::type Scalar; const size_t n = unpacket_traits::size; EIGEN_ALIGN_TO_BOUNDARY(sizeof(Packet)) Scalar elements[n]; for(size_t i = 0; i < n; ++i) { memset(elements+i, ((i & 1) == 0 ? 0xff : 0), sizeof(Scalar)); } return ploadu(elements); } /** \internal copy the packet \a from to \a *to, \a to must be 16 bytes aligned */ template EIGEN_DEVICE_FUNC inline void pstore(Scalar* to, const Packet& from) { (*to) = from; } /** \internal copy the packet \a from to \a *to, (un-aligned store) */ template EIGEN_DEVICE_FUNC inline void pstoreu(Scalar* to, const Packet& from) { (*to) = from; } /** \internal copy the packet \a from to \a *to, (un-aligned store with a mask) * There is no generic implementation. We only have implementations for specialized * cases. Generic case should not be called. */ template EIGEN_DEVICE_FUNC inline typename enable_if::masked_store_available, void>::type pstoreu(Scalar* to, const Packet& from, typename unpacket_traits::mask_t umask); template EIGEN_DEVICE_FUNC inline Packet pgather(const Scalar* from, Index /*stride*/) { return ploadu(from); } template EIGEN_DEVICE_FUNC inline void pscatter(Scalar* to, const Packet& from, Index /*stride*/) { pstore(to, from); } /** \internal tries to do cache prefetching of \a addr */ template EIGEN_DEVICE_FUNC inline void prefetch(const Scalar* addr) { #if defined(EIGEN_HIP_DEVICE_COMPILE) // do nothing #elif defined(EIGEN_CUDA_ARCH) #if defined(__LP64__) || EIGEN_OS_WIN64 // 64-bit pointer operand constraint for inlined asm asm(" prefetch.L1 [ %1 ];" : "=l"(addr) : "l"(addr)); #else // 32-bit pointer operand constraint for inlined asm asm(" prefetch.L1 [ %1 ];" : "=r"(addr) : "r"(addr)); #endif #elif (!EIGEN_COMP_MSVC) && (EIGEN_COMP_GNUC || EIGEN_COMP_CLANG || EIGEN_COMP_ICC) __builtin_prefetch(addr); #endif } /** \internal \returns the reversed elements of \a a*/ template EIGEN_DEVICE_FUNC inline Packet preverse(const Packet& a) { return a; } /** \internal \returns \a a with real and imaginary part flipped (for complex type only) */ template EIGEN_DEVICE_FUNC inline Packet pcplxflip(const Packet& a) { return Packet(numext::imag(a),numext::real(a)); } /************************** * Special math functions ***************************/ /** \internal \returns the sine of \a a (coeff-wise) */ template EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS Packet psin(const Packet& a) { EIGEN_USING_STD(sin); return sin(a); } /** \internal \returns the cosine of \a a (coeff-wise) */ template EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS Packet pcos(const Packet& a) { EIGEN_USING_STD(cos); return cos(a); } /** \internal \returns the tan of \a a (coeff-wise) */ template EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS Packet ptan(const Packet& a) { EIGEN_USING_STD(tan); return tan(a); } /** \internal \returns the arc sine of \a a (coeff-wise) */ template EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS Packet pasin(const Packet& a) { EIGEN_USING_STD(asin); return asin(a); } /** \internal \returns the arc cosine of \a a (coeff-wise) */ template EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS Packet pacos(const Packet& a) { EIGEN_USING_STD(acos); return acos(a); } /** \internal \returns the arc tangent of \a a (coeff-wise) */ template EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS Packet patan(const Packet& a) { EIGEN_USING_STD(atan); return atan(a); } /** \internal \returns the hyperbolic sine of \a a (coeff-wise) */ template EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS Packet psinh(const Packet& a) { EIGEN_USING_STD(sinh); return sinh(a); } /** \internal \returns the hyperbolic cosine of \a a (coeff-wise) */ template EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS Packet pcosh(const Packet& a) { EIGEN_USING_STD(cosh); return cosh(a); } /** \internal \returns the hyperbolic tan of \a a (coeff-wise) */ template EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS Packet ptanh(const Packet& a) { EIGEN_USING_STD(tanh); return tanh(a); } /** \internal \returns the exp of \a a (coeff-wise) */ template EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS Packet pexp(const Packet& a) { EIGEN_USING_STD(exp); return exp(a); } /** \internal \returns the expm1 of \a a (coeff-wise) */ template EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS Packet pexpm1(const Packet& a) { return numext::expm1(a); } /** \internal \returns the log of \a a (coeff-wise) */ template EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS Packet plog(const Packet& a) { EIGEN_USING_STD(log); return log(a); } /** \internal \returns the log1p of \a a (coeff-wise) */ template EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS Packet plog1p(const Packet& a) { return numext::log1p(a); } /** \internal \returns the log10 of \a a (coeff-wise) */ template EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS Packet plog10(const Packet& a) { EIGEN_USING_STD(log10); return log10(a); } /** \internal \returns the log10 of \a a (coeff-wise) */ template EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS Packet plog2(const Packet& a) { typedef typename internal::unpacket_traits::type Scalar; return pmul(pset1(Scalar(EIGEN_LOG2E)), plog(a)); } /** \internal \returns the square-root of \a a (coeff-wise) */ template EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS Packet psqrt(const Packet& a) { return numext::sqrt(a); } /** \internal \returns the reciprocal square-root of \a a (coeff-wise) */ template EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS Packet prsqrt(const Packet& a) { typedef typename internal::unpacket_traits::type Scalar; return pdiv(pset1(Scalar(1)), psqrt(a)); } /** \internal \returns the rounded value of \a a (coeff-wise) */ template EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS Packet pround(const Packet& a) { using numext::round; return round(a); } /** \internal \returns the floor of \a a (coeff-wise) */ template EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS Packet pfloor(const Packet& a) { using numext::floor; return floor(a); } /** \internal \returns the rounded value of \a a (coeff-wise) with current * rounding mode */ template EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS Packet print(const Packet& a) { using numext::rint; return rint(a); } /** \internal \returns the ceil of \a a (coeff-wise) */ template EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS Packet pceil(const Packet& a) { using numext::ceil; return ceil(a); } /** \internal \returns the first element of a packet */ template EIGEN_DEVICE_FUNC inline typename unpacket_traits::type pfirst(const Packet& a) { return a; } /** \internal \returns the sum of the elements of upper and lower half of \a a if \a a is larger than 4. * For a packet {a0, a1, a2, a3, a4, a5, a6, a7}, it returns a half packet {a0+a4, a1+a5, a2+a6, a3+a7} * For packet-size smaller or equal to 4, this boils down to a noop. */ template EIGEN_DEVICE_FUNC inline typename conditional<(unpacket_traits::size%8)==0,typename unpacket_traits::half,Packet>::type predux_half_dowto4(const Packet& a) { return a; } // Slow generic implementation of Packet reduction. template EIGEN_DEVICE_FUNC inline typename unpacket_traits::type predux_helper(const Packet& a, Op op) { typedef typename unpacket_traits::type Scalar; const size_t n = unpacket_traits::size; EIGEN_ALIGN_TO_BOUNDARY(sizeof(Packet)) Scalar elements[n]; pstoreu(elements, a); for(size_t k = n / 2; k > 0; k /= 2) { for(size_t i = 0; i < k; ++i) { elements[i] = op(elements[i], elements[i + k]); } } return elements[0]; } /** \internal \returns the sum of the elements of \a a*/ template EIGEN_DEVICE_FUNC inline typename unpacket_traits::type predux(const Packet& a) { return a; } /** \internal \returns the product of the elements of \a a */ template EIGEN_DEVICE_FUNC inline typename unpacket_traits::type predux_mul( const Packet& a) { typedef typename unpacket_traits::type Scalar; return predux_helper(a, EIGEN_BINARY_OP_NAN_PROPAGATION(Scalar, (pmul))); } /** \internal \returns the min of the elements of \a a */ template EIGEN_DEVICE_FUNC inline typename unpacket_traits::type predux_min( const Packet &a) { typedef typename unpacket_traits::type Scalar; return predux_helper(a, EIGEN_BINARY_OP_NAN_PROPAGATION(Scalar, (pmin))); } template EIGEN_DEVICE_FUNC inline typename unpacket_traits::type predux_min( const Packet& a) { typedef typename unpacket_traits::type Scalar; return predux_helper(a, EIGEN_BINARY_OP_NAN_PROPAGATION(Scalar, (pmin))); } /** \internal \returns the min of the elements of \a a */ template EIGEN_DEVICE_FUNC inline typename unpacket_traits::type predux_max( const Packet &a) { typedef typename unpacket_traits::type Scalar; return predux_helper(a, EIGEN_BINARY_OP_NAN_PROPAGATION(Scalar, (pmax))); } template EIGEN_DEVICE_FUNC inline typename unpacket_traits::type predux_max( const Packet& a) { typedef typename unpacket_traits::type Scalar; return predux_helper(a, EIGEN_BINARY_OP_NAN_PROPAGATION(Scalar, (pmax))); } #undef EIGEN_BINARY_OP_NAN_PROPAGATION /** \internal \returns true if all coeffs of \a a means "true" * It is supposed to be called on values returned by pcmp_*. */ // not needed yet // template EIGEN_DEVICE_FUNC inline bool predux_all(const Packet& a) // { return bool(a); } /** \internal \returns true if any coeffs of \a a means "true" * It is supposed to be called on values returned by pcmp_*. */ template EIGEN_DEVICE_FUNC inline bool predux_any(const Packet& a) { // Dirty but generic implementation where "true" is assumed to be non 0 and all the sames. // It is expected that "true" is either: // - Scalar(1) // - bits full of ones (NaN for floats), // - or first bit equals to 1 (1 for ints, smallest denormal for floats). // For all these cases, taking the sum is just fine, and this boils down to a no-op for scalars. typedef typename unpacket_traits::type Scalar; return numext::not_equal_strict(predux(a), Scalar(0)); } /*************************************************************************** * The following functions might not have to be overwritten for vectorized types ***************************************************************************/ /** \internal copy a packet with constant coefficient \a a (e.g., [a,a,a,a]) to \a *to. \a to must be 16 bytes aligned */ // NOTE: this function must really be templated on the packet type (think about different packet types for the same scalar type) template inline void pstore1(typename unpacket_traits::type* to, const typename unpacket_traits::type& a) { pstore(to, pset1(a)); } /** \internal \returns a * b + c (coeff-wise) */ template EIGEN_DEVICE_FUNC inline Packet pmadd(const Packet& a, const Packet& b, const Packet& c) { return padd(pmul(a, b),c); } /** \internal \returns a packet version of \a *from. * The pointer \a from must be aligned on a \a Alignment bytes boundary. */ template EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE Packet ploadt(const typename unpacket_traits::type* from) { if(Alignment >= unpacket_traits::alignment) return pload(from); else return ploadu(from); } /** \internal copy the packet \a from to \a *to. * The pointer \a from must be aligned on a \a Alignment bytes boundary. */ template EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE void pstoret(Scalar* to, const Packet& from) { if(Alignment >= unpacket_traits::alignment) pstore(to, from); else pstoreu(to, from); } /** \internal \returns a packet version of \a *from. * Unlike ploadt, ploadt_ro takes advantage of the read-only memory path on the * hardware if available to speedup the loading of data that won't be modified * by the current computation. */ template EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE Packet ploadt_ro(const typename unpacket_traits::type* from) { return ploadt(from); } /*************************************************************************** * Fast complex products (GCC generates a function call which is very slow) ***************************************************************************/ // Eigen+CUDA does not support complexes. #if !defined(EIGEN_GPUCC) template<> inline std::complex pmul(const std::complex& a, const std::complex& b) { return std::complex(a.real()*b.real() - a.imag()*b.imag(), a.imag()*b.real() + a.real()*b.imag()); } template<> inline std::complex pmul(const std::complex& a, const std::complex& b) { return std::complex(a.real()*b.real() - a.imag()*b.imag(), a.imag()*b.real() + a.real()*b.imag()); } #endif /*************************************************************************** * PacketBlock, that is a collection of N packets where the number of words * in the packet is a multiple of N. ***************************************************************************/ template ::size> struct PacketBlock { Packet packet[N]; }; template EIGEN_DEVICE_FUNC inline void ptranspose(PacketBlock& /*kernel*/) { // Nothing to do in the scalar case, i.e. a 1x1 matrix. } /*************************************************************************** * Selector, i.e. vector of N boolean values used to select (i.e. blend) * words from 2 packets. ***************************************************************************/ template struct Selector { bool select[N]; }; template EIGEN_DEVICE_FUNC inline Packet pblend(const Selector::size>& ifPacket, const Packet& thenPacket, const Packet& elsePacket) { return ifPacket.select[0] ? thenPacket : elsePacket; } } // end namespace internal } // end namespace Eigen #endif // EIGEN_GENERIC_PACKET_MATH_H